RosaLifeShare
关于数学论文范文2000字
现如今,大家或多或少都会接触过论文吧,论文是我们对某个问题进行深入研究的文章。如何写一篇有思想、有文采的论文呢?下面是我整理的数学论文范文2000字,供大家参考借鉴,希望可以帮助到有需要的朋友。
论文题目: 学生自主学习能力培养提升小学数学课堂教学效果
摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。
关键词: 自主学习能力;创新思维;小学数学
在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。
一、小学数学教学中的现状及反思
小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。
(一)情境教学中过多地引入情境,丧失了教学目标
一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。
(二)成人化的想象对小学生缺乏新奇的吸引性
数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。
(三)课堂教学中“数学味”的弱化和缺失
在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。
二、自主学习的概念及其重要性
在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。
(一)提高数学知识吸收的质量
自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。
(二)为后续的数学知识学习奠定基础
小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。
(三)自主发现和自主学习能力的培养
小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。
三、自主性学习的小学数学课堂教学策略
小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。
(一)数学课堂有效导入,激发学生的自主参与性
合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。
1.以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]
2. 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。
3.以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]
4.用数学问题引导学生进行自主性的学习。问题可以调动学生的积极性,让学生在带着困惑、怀疑和探索的心理,进行数学知识的自主性学习,这也是教学引入策略之一。在问题设置的数学教学中,要注意问题提出的难易程度,要根据学生的思维层次进行问题的导入,逐渐进入数学知识的学习,而不能以深奥、难解的问题来给教学设置障碍,使学生缺乏探究的动力和兴趣。
(二)师生共学———尝试自主参与的探究学习过程
教师对学生的教育,流传着一句名言:告诉的知识,容易忘记;分析出来的知识,可以记住;自主参与的知识,就会真正理解。这意味着只有让学生自己动手、动脑自主参与,才能在动手实践、自主探索、合作交流的过程中,掌握数学知识的内化,培养自主学习能力。
1.引导学生进行自主性的探索学习。在数学“认识钟表”一课中,为了让学生对其有数学性的认知,需要引导学生进行对实物钟表的观察、触摸与参与,让小学生在观察的过程中注意到长针和短针的区别,并观察相邻两个数字之间的大小相等的格,学生在对钟表的触摸、观察和实践操作的过程中,完成了对数学知识的认知。
2.根据学生层次进行小组合作式自主式学习。小组合作必须在教师的指导和辅导之下完成,要引导学生仔细观察、对比,如在“长方形”的认知中,要各小组进行分组比赛,寻找出最多的长方形者获胜,在大家踊跃参与的过程中,教师要引导学生注意观察长方形和正方形的区别,通过对比、测量等不同手段,了解对生活中“长方形”的认知,如:课本、长方形的长桌、黑板的形状等,大家在分组合作的过程中掌握了数学知识的规律,并主动性地获取了相应的知识。
(三)数学知识的应用———巩固数学知识的自主性探索
小学生在教学的过程中掌握了基本的数学概念和规律,教师还要将数学知识进行巩固和运用,要充分利用“温故而知新”的记忆特点,对数学知识进行巩固和实际应用。例如:在数学“做一做”的课后练习中,可以组织学生进行同桌互检式的巩固,还可以进行板演练习、课堂评价的方式进行巩固,这样可以激励学生自主进行数学知识的实践性的巩固和运用,将更多的数学知识转化为内在的知识。在知识的巩固过程中要灵活加以整合和运用,如小学生学习完了图形这一课,对三角形、圆形、长方形、正方形、平行四边形等进行准确的认知后,就要进行灵活多变的图形拼板练习,让学生通过对不同图形的修剪和粘贴,进行图形自由空间的想象和布局,增强数学知识的应用能力。
四、结束语
小学数学教学的重点在于培养学生的自主学习能力,根据小学生的年龄特点和思维层次,进行动手、动脑的习惯培养,在生活引入、故事引入、游戏引入、情境引入的教学策略之下,用自主性、参与性、积极性进行数学知识的感知,并在自主探索、交流合作的过程中增加对数学知识的学习和巩固,提升小学数学的课堂教学效果。
参考文献:
[1]牟瑛.营造充满探索的数学课堂环境[J].商业文化(学术版),2010,(08).
[2]张大明.引导自主探究促进主动发展[J].成功(教育),2010,(04).
[3]周波儿.数学教学中如何捕捉和利用“动态生成”[J].山西师范大学学报(自然科学版),2010,(S1).
随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。
一、数学建模和大学生数学建模竞赛
何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。
那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。
二、大学生数学建模竞赛与课程教学培训中存在的问题
通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的'情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。
第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。
第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。
第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。
第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。
三、大学生数学建模课程教学培训策略
大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。
(一)教师层面
首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。
其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。
最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。
(二)学校层面
首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。
其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。
最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。
参考文献:
[1]刘建州.实用数学建模教程[M].武汉:武汉理工大学出版社,2004.
[2]李尚志.数学建模竞赛教程[M].南京:江苏教育出版社,1996.
[3]赫孝良.数学建模竞赛赛题简析与论文点评[M].西安:西安交通大学出版社,2002.
摘要:随着我国基础教育的不断改革和完善,创新形势下的课程标准已经逐渐落实,相比于以往的教育机制,新课程标准更加关注学生的发展能力,鼓励教师根据学生的特点开展教育活动,进而全面提高我国的教育质量和教学效率。新课程标准要求教师在制定教学计划时要准确定位自己和学生之间的关系,以便于开展更加高效的课堂教育。
关键词:小学数学;高效课堂;教学策略
数学是一门逻辑思维较强的学科,因此数学基础教育质量极其重要。高效的小学数学课堂不仅可以让学生的成绩得到有效提高,还能让学生在生活中体会到数学的魅力,加强学生对于理性思维的拓展和延伸,同时还能将学生对数学的兴趣调动起来。
1重视学生对数学概念的理解
学生开始接受小学教育的年龄在6周岁左右,该年龄阶段的孩子对故事的兴趣比公式的兴趣大的多,因此,教师可以在数学课程开始之前让学生先了解该节课程涉及到的历史故事,让学生不要认为数学是很难理解的课程,让学生在更加放松的心态中去完成教学任务。传统教育中,数学教师都会给学生大量的题目来巩固知识点和公式,部分学生在还没有完全理解课堂内容时就开始做题,答案准确率肯定很难得到保障。因此,教师应当重视学生对数学概念的理解程度,让学生先理解数与数之间的关系再开始做习题。同时,教师应当在课堂上为学生留出提问和解疑的时间,教师在和学生的问答互动中拉近彼此之间的距离,提高学生对数学的认知度和敏感度。
2积极开展数学情境教学模式
数学课程的开展必须要有严谨的逻辑性作为支持,如果教师只用数字的形式为学生讲解无实物情境下的运算知识,很难让学生理解这个运算在生活中的价值,而且单纯的思维计算会对小学生产生很大的困扰,小学生更倾向于涉及到生活经验的数学情境模式。教师在开展运算知识点授课的过程中,可以使用不同种类的水果来创建情境教学的条件,将水果的价格和数量制定好,让学生随意取用一部分水果来计算这些水果的总价格。学生在计算水果价格的时候会减轻对数学的抵触,把思维的重点放在水果的种类和形状上,教师可以在学生分组计算的同时查看学生对于价格结果的讨论情况,发现公式以及口诀上的问题及时提出并解决,让学生在不知不觉中牢记乘法和加法的运算规律,减轻公式记忆法的枯燥和乏味,促进小学数学高效课堂教学质量的提高。
3培养学生课前预习的好习惯
数学是一门实践性质很强的学科,解题过程中需要对课题内容及运算方式进行思考,而这个过程需要学生在课前预习环节中掌握,教师应提前告诉学生即将学习的单元和知识点,让学生在有准备的情况下,更有信心的参与到数学课堂中来。教师可以鼓励学生在陪同家长购物时关注买卖运算的方式,然后在课堂上将自己的理解和发现的问题进行阐述,教师可以在与家长互动之后将学生反馈的问题一一解答,并就超市买卖中遇到的问题和课本上的知识点有效结合,让学生了解到数学在生活中的作用,学生在预习的过程中也会加深对运算公式的印象,进而提高学生对数学的兴趣和学习效率,让小学数学教学质量更加高效。
4鼓励学生从多角度解决问题
数学并非一种固定思维的学科,很多数和图形的运算都不止一种解题方式,虽然正确的答案只有一个,但是其过程有着很灵活的多变性,因此,教师应当在数学课堂上鼓励学生以不同的形式来解决问题。教师在发现学生的答案与标准答案不同时,应该首先询问学生的解题思路,而不是直接否定学生的答案,否则很容易打消学生对于数学学习的积极性。在教学条件允许的情况下,教师应当尽量使用解题方式不唯一的例题,让学生了解到集思广益的效果,在之后的课堂小组讨论中也能更加用心,有助于活跃教学气氛和教学效果,做到高效的小学数学课堂教学。综上所述,学生对于科目的兴趣和能力都不是与生俱来的,教师的引导和鼓励会使学生在课堂上的表现更加优秀。在开展小学数学课程的过程中,教师应当注重数学概念、课堂情境、课前预习以及思维扩展带来的高效影响,为学生探索欲和求知欲的提高做出贡献。
参考文献
[1]杨小生.小学数学高效课堂教学的“三三”策略[J].现代中小学教育,2011(11):21~23.
[2]潘海燕.探究小学数学数与代数的高效课堂教学策略[J].中国校外教育,2015(02):72.
[3]王粉粉.新课程背景下小学数学高效课堂教学策略探究[D].延安:延安大学,2016.
浮云秋叶
想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1
小嘟嘟呀呀
考研的数学分为四种,分别是数学一、数学二、数学三、数学四 数学一是一般的理工科要考的,如计算机/材料等理工专业 数学二是对数学要求略微低一点的专业要考的,但他与数学一基本相当。如纺织专业 数学三是偏向于经济类别的考生,如经济管理 偏向概率 数学四是其它对数学要求相对低的学科。 而四种数学出题的题型相同,所占比例也相同,你很容易在网上或者书店找到某一年的考试题看一下每年出的题类型相同的。 大纲见下: 全国硕士研究生入学考试数学三考试大纲 考试科目 微积分、线性代数、概率论与数理统计 微积分 一、函数。极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较 极限四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数、反函数、隐函数和分段函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.会建立简单应用问题中的函数关系式. 6.了解数列极限和函数极限(包括左极限与右极限)的概念. 7.了解无穷小的概念和基本性质.掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系. 8.了解极限的性质与极限存在的两个准则.掌握极限的性质及四则运算法则,会应用两个重要极限. 9.理解函数连续性的概念(含左连续与右连续). 10. 了解连续函数的性质和初等函述的连续性. 了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用. 二、一元函数微分学 考试内容 导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点、浙近线 函数图形的描绘 函数的最大值与最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念). 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、柯西(Cauchy)中值定理的条件和结论,掌握这三个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题). 8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线. 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形. 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元积分法和分部积分法 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 定积分的换元积分法和分部积分法 广义积分的概念和计算 定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定积分定义的函数并会求它的导数. 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题. 4.了解广义积分的概念,会计算广义积分,了解广义积分(此处略)的收敛与发散的条件. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,掌握求多元复合函数偏导数和全微分的方法,会用隐函数的求导法则. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值,会用拉格朗日乘数法求条件极值.会求简单多元函数的最大值和最小值,会求解一些简单的应用题. 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法.会计算无界区域上的较简单的二重积分. 五、无穷级数 考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质和级数收敛的必要条件.掌握几何级数及p级数的收敛与发散的条件.掌握正项级数的比较判别法和比值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念,以及它们之间的关系.掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数. 6.掌提 ex,sinx,cosx,ln(1+x)与(1+x)a幂级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展成幂级数. 六、常微分方程与差分方程 考试内容 常微分方程的概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程的阶及其解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性方程. 4.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会应用微分方程和差分方程求解简单的经济应用问题. 线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解n阶行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 1、理解矩阵的概念,了解单位矩阵、对角矩阵、数量矩阵、三角矩阵的定义和性质,了解对称矩阵和反对称矩阵及正交矩阵等的定义和性质。 2、掌握矩阵的线性运算、乘法,以及他们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法. 4.了解向量组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩. 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线例方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组. 2.掌握线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示齐次线性方程组的通解. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准报和规范形 正交变换 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念. 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理的条件和结论,会用正交变换和配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,掌握正定矩阵的性质. 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本时间空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式等基本公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念. 二、随机变量及其概率分布 考试内容 随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布 考试要求 1.理解随机变量及其概率分布的概念,理解分布函数F(x)=P{X<=x}(负无穷2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用. 3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为f(x)=(此处略). 5.会根据自变量的概率分布求其简单函数的概率分布. 三、随机变量的联合概率分布 考试内容 随机变量联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常见二维随机变量的联合分布 两个及两个以上随机变量的函数的概率分布 考试要求 1.理解随机变量的联合分布函数的概念和基本性质. 2.理解随机变量的联合分布的概念、性质及其两种基本表达式:离散型联合概率分布和连续型联合概率密度.掌握两个随机变量的联合分布的边缘分布和条件分布. 3.理解随机变量的独立性及相关性的概念,掌握随机变量独立的条件;理解随机变量的不相关性与独立性的关系. 4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义. 5.会根据两个随机变量的联合概率分布求其函数的概率分布,会根据多个独立随机变量的概率分布求其函数的概率分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差和相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计等具体分布的数字特征,掌握常用分布的数字特征. 2.会根据随机变量的概率分布求其函数的数学期望;会根据两个随机变量联合概率分布求其函数的数学期望. 3.掌握切比雪夫不等式. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyshev)大数定律 伯努利(Bernonlli)大数定律 辛钦(Khinchine)大数定律 棣莫弗一拉普拉斯( De Moivre- Laplace)定理(二项分布以正态分布为极限分布) 列维一林德伯格(Levy-Lindberg)定理(独立同分布随机变量列的中心极限定理) 考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论. 2.掌握棣莫弗—拉普拉斯中心极限定理、列维—林得伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关事件的概率. 六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 χ2分布 t分布 F分布 分位数 正态总体的常用抽样分布 考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为:S2=(此处略) 2.了解产生χ2变量、t变量和F变量的典型模式;理解标准正态分布、χ2分布、t分布和F分布的分位数,会查相应的数值表. 3.掌握正态总体的抽样分布. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和相合性(一致性)的概念,并会验证估计量的无偏性;会利用大数定律证明估计量的相合性. 2.掌握矩估计法(一阶、二阶矩)和最大似然估计法. 3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法. 4 掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验 考试内容 显著性检验的基本思想和步骤 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求 1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验. 2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率. 3.了解单个和两个正态总体参数的假设检验. 试卷结构 (一)内容比例 微积分 约50% 线性代数 约25% 概率论与数理统计 约 25% (二)题型比例 境空题与选择题约 30% 解答题(包括证明题) 约70% 由于这里回答问题限制字数,所以数学四的考纲无法贴上,请你自己去查找,网上有
烂醉的猫咪
数学专业毕业论文选题方向如下:
1、并行组合数学模型方式研究及初步应用。
2、数学规划在非系统风险投资组合中的应用。
3、金融经济学中的组合数学问题。
4、竞赛数学中的组合恒等式。
5、概率方法在组合数学中的应用。
6、组合数学中的代数方法。
7、组合电器局部放电超高频信号数学模型构建和模式识别研究。
8、概率方法在组合数学中的某些应用。
9、组合投资数学模型发展的研究。
10、高炉炉温组合预报和十字测温数学建模。
11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。
12、证券组合投资的灰色优化数学模型的研究。
13、一些算子在组合数学中的应用。
14、概率方法在组合数学及混合超图染色理论中的应用。
15、竞赛数学中的组合恒等式。
毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
考研的数学分为四种,分别是数学一、数学二、数学三、数学四 数学一是一般的理工科要考的,如计算机/材料等理工专业 数学二是对数学要求略微低一点的专业要考的,但他与
总路程为s总=vtAB间距离为s=vt/2水速为v0时,设从A到B为顺流,则vA→B=v+v0需时间tA→B=s/vA→B=vt/[2(v+v0)];那么从B到
NBA赛程的制定和评价【摘要】一个合理的赛程表是NBA能够精彩上演的保证。在问题一评价07—08赛季赛程的合理性和公平性时,本文首先将赛程表的信息存放于矩阵中,
在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科。下文是我为大家整理的关于数学与应用数学 毕业 论文的内
论文(答卷)用白色A4纸,上下左右各留出2.5厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单