ALONI爱洛尼家居
条件概率的应用举例:某天你妈妈带你到她的一个朋友家做客,闲谈间正巧碰到她的女儿回家,这时主人介绍说:“这是我的一个女儿,我还有一个孩子呢。”这个家庭中有两个孩子,已知其中有一个是女孩,问这时另一个孩子也是女孩的概率为多大? 问题情境与探究 解 一般地,设A,B为两个事件, 且P(A)>0, 称 为在事件A发生的条件下,事件B发生的条件概率. 1、定义 条件概率 Conditional Probability 一般把 P(B︱A)读作 A 发生的条件下 B 的概率。 概念解析 分析:求P(B|A)的一般思想 因为已经知道事件A必然发生,所以只需在A发生 的范围内考虑问题,即现在的样本空间为A。 因为在事件A发生的情况下事件B发生,等价于事 件B和事件A同时发生,即AB发生。 为了把条件概率推广到一般情形, 不妨记原来的样本空间为W,则有 故其条件概率为 A B ? AB n(AB) (B|A) P n(A) = 例题1 在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定,若已知出现点数不超过3的条件下再出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择? B={出现的点数是奇数} ={1,3,5} 解:设A={出现的点数不超过3}={1,2,3} 只需求事件 A 发生的条件下, 事件 B 的概率即P(B|A) 5 2 1 3 4,6 解法一(减缩样本空间法) 例题解析 条件概率的计算 B={出现的点数是奇数} ={1,3,5} 设A={出现的点数不超过3}={1,2,3} 且P(AB)=1/2 5 2 1 3 4,6 解: 由条件概率定义得: 解法二(条件概率定义法) 例1 在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定,若已知出现点数不
最真的poor
条件概率在研究生的概率论的课程中会涉及。
本文主要想阐述对条件概率的理解,以及在工程中应用的原因。
其公式如下:
其值随Y取值变化,所以是Y的一个函数。由于Y是随机变量,所以条件概率也是一个随机变量。其期望E(E(X|Y))=E(X),这是无条件的恒成立公式。数学推理过程又被称为全期望定理:
全期望定理比全概率公式更贴近 加权求平均 。这个公式是易于理解的:随机变量X期望等于不同Y取值下X期望的加权平均数。
全期望定理适用于求解多次重复实验的期望或方差。考研数学一里有一种题型是,每次实验都是二项分布或伯努利分布,求解n次实验的期望。全期望定理是解决此问题的理想工具。
如果我们将Y视为含有X信息的观测值,则条件期望可以被理解为给定Y条件下对X的估计。它具备两个优良性质。这使得它在统计推断领域中被广泛应用。统计学中的名称是最小均方估计( LMS )。
两个性质分别是:
1、 其估计是无偏的
2、 估计误差与估计是不相关的 (注意相关和独立的区别)
下面是对这两个性质的推导及说明。
1、无偏性
X的估计为:
其误差为:
显然,估计误差也是随机变量,所以
成立的原因是 完全由 Y 的取值决定。所以在样本估计中, 是常数。
条件期望更广泛的一个性质是: 1)
表明这样的估计是没有系统级的正或负偏的,被称为无偏性,是估计的较好性质之一。
2、不相关性
最后等式为0可由公式1)推导得到。
应该先选一个题目做研究,有了研究成果,才可能产生论文。论文不是随心所欲编出来的。
光电效应实验中人们发现了几个实验现象:只有频率超过某一极限频率的光照射才有电子从金属表面逸出,从光照到电子逸出所需时间极短。 爱因斯坦提出的光子说认为光子的能量
对数函数是非奇非偶函数
参考答案是对的,老师给的答案如果Ai上面有个横线,即各个Ai对立事件的并集,也是对的。两个思路和表示方式不同,结果是一致的。上面表示方式的思路是第i个零件是次品
哥们是二中的吧~你去找一个高二的借一下就行了,因为高一和高二的作业是完全相同的!