• 回答数

    4

  • 浏览数

    164

我不是水蜜桃
首页 > 职称论文 > 提高思维逻辑能力的文献论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

食戟之喵

已采纳

您好,对于你的遇到的问题,我很高兴能为你提供帮助,非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!那如何才能提高自己的逻辑思维能力呢?1、学会运用“PREP+A”的逻辑产出模式:P(Point,观点/论点),R(Reason,原因/理由/根据),E(Example,实例/例证),P(Point),A(Action,行动)。在正式的谈话、讲演、文案中,一般可以遵循下面的逻辑/步骤:P:首先,简洁明了的表明自己的观点/论点/主张,也就是你在说什么、你想要表达什么。R:其次,说出支持你结论的“依据”,也就是回答 你凭什么这样认为,是基于哪种事实和解释?E:再者,用实际的例证(资料、数据、个人例子等)来提高你结论或观点的说服力。P:最后重复结论,确保自己想传达的信息,已确实传递。A:行动就是你希望对方怎么做(根据实际需要,一把可以省略)。小结:简单来讲,这个模式就是先从结论说起,再说明得出结论的理由及根据,然后举出具体事例佐证,最后再强调一次结论 。2、日常谈话练习除了正式场合,我们在日常生活中,也可以借鉴“PREP+A”逻辑产出模式来增强自己的逻辑性。无论是你讲给别人听,还是听别人讲,都可以刻意的去思考一下“这篇稿子”中:要表达的观点是什么、理由是什么,案例是什么?这种潜移默化的练习,可以不断优化你的逻辑思维。3、自我提问练习在日常生活中,无论是看到、听到或读到一些:重要信息或者让你有触动的信息时,都可以通过一些刻意的自我提问来锻炼自己的思维。比如读到一个观点时,就可以这样问自己:作者为什么会从这个角度切入?作者是如何形成这个结论?这个结论有什么缺点?如果我来写如何可以更好?4、电影梳理练习法大部分人都比较喜欢看电影,既然如此,我们不妨就在看完电影后,花上一点时间,梳理一下电影的情节、主线吧(悬疑、科幻、罪案类的影视或书籍效果较好,因为它们都比较考验你的逻辑思维)。自己梳理完之后,还可以去网上搜搜别人的一些见解,做做比较,看看自己有哪些疏漏。经常这样做,你的逻辑思维,以及记忆力都会得到一定的提升。5、逻辑趣味题练习法6、通过“做结构式的读书笔记”来训练逻辑思维每一本书都有自己的逻辑架构,其中目录就是作者写这本书的基础逻辑。所以我们可以借着做笔记来锻炼自己的逻辑思维能力,这样一举多得。①初步阅读一本书,我们基本是站在作者的角度上看待问题的,为了检验自己的基本掌握情况,就可以通过“默写一本书的目录”的方式来检验,默写完之后再与这本书的目录对比。②从自身出发,思考“如果你是作者,你会怎么写这本书?”然后把你的写作大纲(逻辑架构)写出来。③读完书之后,多多少少会有一些你比较关注的重点内容,这些内容在理解、思考之后,你又可以以这些知识点作为主题来写写文章。7、通过写作练习来锻炼逻辑思维写作是一种自我思考的整理,花时间架构出一篇让别人能读懂得文章,其实就是训练自己的逻辑思考能力和组织能力。因为写作是一个设定主题,然后寻找答案的过程,你先要定义对的问题,然后决定切入问题的角度,再分析各种角度的优缺点,最后形成自己的结论。完成这整个过程,写完一篇文章,就等于进行了一遍逻辑思考的练习。至于写什么,这就很广泛了,比如写一个原创故事,写一篇读书或学习心得,或者生活感悟。等写作能力有所提升之后,你就可以随便找一个关键词,然后以这个关键词来搭建逻辑架构,写一篇文章。

121 评论

好难瘦小姐

数学直觉的含义数学直觉是一种直接反映数学对象结构关系的心智活动形式,它是人脑对于数学对象事物的某种直接的领悟或洞察。它在运用知识组块和直感时都得进行适当的加工,将脑中贮存的与当前问题相似的块,通过不同的直感进行联结,它对问题的分解、改造整合加工具有创造性的加工。数学直觉,可以简称为数觉(有很多人认为它属于形象思维),但是并非数学家才能产生数学的直觉,对于学习数学已经达到一定水平的人来说,直觉是可能产生的,也是可以加以培养的。数学直觉的基础在于数学知识的组块和数学形象直感的生长。因此如果一个学生在解决数学新问题时能够对它的结论作出直接的迅速的领悟,那么我们就应该认为这是数学直觉的表现。数学是对客观世界的反映,它是人们对生活现象的世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化。数学最初的概念是基于直觉,数学在一定程度上就是在问题解决中得到发展,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。一个数学证明可以分解为许多基本运算或多个“演绎推理元素”,一个成功的组合,仿佛是一条从出发点到目的地的通道,一个个基本运算和“演绎推理元素”就是这条通道的一个个路段,当一个成功的证明摆在我们面前开始,逻辑可以帮助我们确信沿着这条路必定能顺利地到达目的地,但是逻辑却不能告诉我们,为什么这些路径的选取与这样的组合可以构成一条通道。事实上,出发不久就会遇上叉路口,也就是遇上了正确选择构成通道的路段的问题。庞加莱认为,即使能复写一个成功的数学证明,但不知道是什么东西造成了证明的一致性。……,这些元素安置的顺序比元素本身更加重要。笛卡尔认为在数学推理中的每一步,直觉能力都是不可缺少的。就好似我们平时打篮球,要等靠球感一样,在快速运动中来不及去作逻辑判断,动作只是下意识的,而下意识的动作正是平时训练产生的一种直觉。在教育过程中,老师由于把证明过程过分的严格化、程序化,学生只是见到一具僵硬的逻辑外壳,直觉的光环被掩盖住了,而把成功往往归功于逻辑的功劳,对自己的直觉反而不觉得。学生的内在潜能没有被激发出来,学生的兴趣没有被调动,得不到思维的真正乐趣。《中国青年报》曾报道“约30%的初中生学习了平面几何推理之后,丧失了对数学学习的兴趣”,这种现象应该引起数学教育者的重视与反思。二、 数学直觉思维的主要特点直觉思维有以下四个主要特点:(1) 简约性。直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了“跳跃式”的形式。它是一瞬间的思维火花,是长期积累上的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但是它却清晰的触及到事物的“本质”。(2) 经验性。直觉所运用的知识组块和形象直感都是经验的积累和升华。直觉不断地组合老经验,形成新经验,从而不断提高直觉的水平。(3) 迅速性。直觉解决问题的过程短暂,反应灵敏,领悟直接。(4) 或然性。直觉判断的结果不一定正确。直觉判断的结果不一定都正确,这是由于组块本身及其联结存在模糊性所致。三、 数学直觉思维的培养从前面的分析可知,培养数学直觉思维的重点是重视数学直觉。徐利治教授指出:“数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的。”也就是说数学直觉是可以通过训练提高的。美国著名心理学家布鲁纳指出:“直觉思维、预感的训练,是正式的学术学科和日常生活中创造性思维的很受忽视而重要的特征。”并提出了“怎样才有可能从早年级起便开始发展学生的直觉天赋”。我们的学生,特别是差生,都有着极丰富的直觉思维的潜能,关键在于教师的启发诱导和有意培养。在明确了直觉的意义的基础上,就可以从下列各个方面入手来培养数学直觉:1、 重视数学基本问题和基本方法的牢固掌握和应用,以形成并丰富数学知识组块。直觉不是靠“机遇”,直觉的获得虽然是有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础。若没有深厚的功底,是不会迸发出思维的火花。所以对数学基本问题和基本方法的牢固掌握和应用是很重要的。所谓知识组块又称知识反应块。它们由数学中的定义、定理、公式、法则等组成,并集中地反映在一些基本问题,典型题型或方法模式。许多其他问题的解决往往可以归结成一个或几个基本问题,化为某类典型题型,或者运用某种方式模式。这些知识组块由于不一定以定理、性质、法则等形式出现,而是分布于例题或问题之中,因此不容易引起师生的特别重视,往往被淹没在题海之中,如何将它们筛选出来加以精练是数学中值得研究的一个重要课题。在解数学题时,主体在明了题意并抓住题目条件或结论的特征之后,往往一个念头闪现就描绘出了解题的大致思路。这是尖子学生经常会碰到的事情,在他们大脑中贮存着比一般学生更多的知识组块和形象直感,因此快速反应的数学直觉就应运而生。例:已知 ,求证:分析 观察题目条件与结论的式结构后会闪现两个念头:(1)在a、b、c为任意值时,等式通常是不成立的,从而在a、b、c之间存在比题给条件更简单的关系;(2)作为特例考虑,显然三个数中有两个互为相反数时,条件与结论均成立,这意味着条件式子含有因式(a+b)或(b+c)或(c+a),由于轮换对称性,则必含有(a+b)(b+c) (c+a)于是数学直觉形成,只需化简条件至既定目标即可推得结论。这个直觉来源于过去的运算经验—知识组块,也来源于对题给的图式表象的象质转换直感。2、强调数形结合,发展几何思维与类几何思维。数学形象直感是数学直觉思维的源泉之一,而数学形象直感是一种几何直觉或空间观念的表现,对于几何问题要培养几何自身的变换、变形的直观感受能力。对于非几何问题则要用几何眼光去审视分析就能逐步过渡到类几何思维。例2:若a<b<c,求函数y=|x-a|+|x-b|+|x-c|的最小值。分析:数轴上两点间的距离公式AB=|xA-xB|,而数a、b、c在数轴上大致位置如图所示abc求y=|x-a|+|x-b|+|x-c|的最小值。即在数轴上求点x,使它到a、b、c的距离之和最小。显然当x定在a、c之间,|x-a|+|x-c|最小。所以当x=b时,y=|x-a|+|x-b|+|x-c|的值最小。3、重视整体分析,提倡块状思维。在解决数学问题时要教会学习从宏观上进行整体分析,抓住问题的框架结构和本质关系,从思维策略的角度确定解题的入手方向和思路。在整体分析的基础上进行大步骤思维,使学生在具有相应的知识基础和已达到一定熟练程度的情况下能变更和化归问题,分析和辨认组成问题的知识集成块,培养思维跳跃的能力。在练习中注意方法的探求,思路的寻找和类型的识别,养成简缩逻辑推理过程,迅速作出直觉判断的洞察能力。例3 :I为△ABC的内心,AI、BI、CI的延长线分别交△ABC的外接圆于D、E、F,求证:AD+BE+CF>AB+BC+CADEFBACI分析:细心观察图形,寻求可运用的知识组块。有两个形象直感不难获得:(1)由内心性质知DI=DB=DC;(2)应运用三角形不等式的适当组合构成特征不等式,由此得到启发可将AD分成两段推证(BE、CF类同),即DB+DC>BC可以推出DI> BC及AI+IB>AB。再得另外四个类似不等式后,将它们同向相加即可推至结论。4、鼓励大胆猜测,养成善于猜想的数学思维习惯。数学猜想是在数学证明之前构想数学命题思维过程。“数学事实首先是被猜想,然后才被证实。”猜想是一种合情推理,它与论证所用的逻辑推理相辅相成。对于未给出结论的数学问题,猜想的形成有利于解题思路的正确诱导;对于已有结论的问题,猜想也是寻求解题思维策略的重要手段。数学猜想是有一定规律的,并且要以数学知识的经验为支柱。但是培养敢于猜想、善于探索的思维习惯是形成数学直觉,发展数学思维,获得数学发现的基本素质。因此,在数学教学中,既要强调思维的严密性,结果的正确性,也不应忽视思维的探索性和发现性,即应重视数学直觉猜想的合理性和必要性。例4:如图,正方形ABCD中,BC=2厘米,现有两点E、F,分别从点B、点A同时出发,点E沿线BA以1厘米/秒的速度向点A运动,点F沿折线A—D—C以2厘米/秒的速度向点C运动,设点E离开点B的时间为t(秒)(1≤t≤2),EF与 AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP∶PC的值。猜想:点P的位置不变。分析:因为点E离开点B的时间为t(秒),所以AE=(2-1t)厘米。因为点F离开点A的时间为t(秒),速度为2厘米/秒,所以CF=(4-2t)厘米。则:EFDABCP由于AE‖FC,因式AP∶PC=AE∶CF=1∶2,所以点P的位置不变。数学直觉思维能力的培养是一个长期的过程。要作一名好的教师,就必须在数学教育的每一个角落渗透对学生的直觉思维的培养,让学生有敏捷的思维,灵活的解题思路和很强的对以往知识结构综合利用能力。这不仅有利于对学生的智力开发,更有利于对学生逻辑思维的培养。主要参考文献1、钱学森主编,关于思维科学。上海:上海人发出版社,19862、孔慧英,梅智超编著,现代数学思想概论。北京:中国科学技术出版社,19933、朱智贤、林崇德,思维发展心理。北京师范大学出版社,19904、郭思乐、喻伟著,数学思维教育论。上海:上海教育出版社,19975、席振伟著,数学的思维方式。南京:江苏教育出版社,1995

325 评论

尼古丁00144

[摘要]数学是小学教育中的重点科目,也是难点科目。培养孩子数学思维有利于孩子逻辑思维能力的培养,有利于孩子提高解决生活实际问题的能力。本文首先分析了数学思维能力培养的重要性,让后细致讨论了小学数学教学中数学思维能力培养的具体方法。旨在为小学数学教育工作者提供参考。[关键词]小学数学;数学教学;思维能力一、小学生数学思维能力培养的重要性(一)解决问题能力:数学是一门最基本的个工具学科,在生活中应用非常广泛。小到家里来人吃饭添加碗筷,大到商品交易。具有良好的数学思维能够提高解决问题的效率,可以将数学模型与生活问题相结合,从而解决生活中的问题。所以,培养小学数学思维对于孩子后续的工作和生活都非常重要。例如,动画《猫和老鼠》中啄木鸟运用三角函数计算出切割木杆的角度,正好砸晕了要吃掉老鼠的猫。这是个卡通动画,但是其反映出了数学解决实际问题的重要作用。(二)逻辑思维能力:数学是典型的理性思维,具有严密的逻辑性,培养孩子的数学思维,有利于学生在学习生活中做事严谨。当遇到问题时,会分析构成问题的各个要素之间的内在联系,然后找出解决问题的方法,具有良好的逻辑思维可以避免遇到问题时让情绪左右思维而无法跳出困境。(三)数学兴趣培养:具有良好的数学思维,能够深入理解数学计算中的内在逻辑关系,从而体验到学习数学的乐趣,进而有利于培养出学习数学的兴趣。兴趣是最好的老师,当学生们在听数学课时兴趣盎然,教学效率和学习质量都会大幅度提高,进而解决了小学数学成为教学难点的问题。二、小学数学教学中数学思维能力的培养方法(一)运用多媒体教学手段渗透数学思想:在小学阶段,数学思维能力的培养,要坚持寓教于乐的原则。通过多媒体和网络平台收集并呈现有趣的数学解决实际问题的内容。例如,将动画片中的有关数学的内容剪辑下来,在课前或者课间播放,既能够让学生的精神得到放松,又能够让学生在观看动画的时候感受数学的实用性。(二)套构的方式强化数学模型:套构的方式与类比的方法类同,是根据两类或两个对象的相似或相同点,推断他们其他方面也相似或相同的思想方法是自特殊至特殊的方法在解决数学问题时。利用类比思想可发现新问题,所得结论虽具有一定的偶然性但却可为该问题的深入研究提供线索为思维指明方向这对于问题的最终解决极为有利放而类比是数学发现中最基本、最重要方法在小学数学教学中教师应在结构特征上、数量关系上、算理思路与思想内容上进行类比思想的渗透教学。例如,在加法交换律的学习中,可以充分利用类比的方式。算式1+2+3+4+5+6+7+8+9+10=?这个题的解法有很多种,可以将各个加数依次相加,最终得出结构。也可以用加法交换率将算式进行加数上的调整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套构加法交换率在连加算式中的应用,能够使得计算更加简便。套构既定数学定律或者定律,不但有利于学生巩固所学的知识,而且能够让学生养成用数学模型来解决实际问题的意识。这样有利于学生后续数学建模思想的学习和研究。(三)逆向思维的方法:逆向思维是发散式思维的一种其基本特征是从已有思路的反方向去思索问题这种思维形式反映了思维过程的间断性、突变性、反联结性是对思维惯性的克服其优点在于首先有利于克服惯常思维的保守性,开拓新的数学领域其次有利于纠正惯常思维所造成的错误认识,开辟数学新方向最后有利于排除惯常思维过程中。逆向思维的方法多用于应用题的解答。例如,张兰在暑假阅读文学名著《三国演义》,在第一周,他阅读了一本书的一半少40页,在第二周,他阅读了剩下的一半多10页,第三周他阅读了30页,至此全部看完。问题是《三国演义》这本书一共多少页?利用逆向思维来解答,第二周阅读了剩下的一半多10页,第三周阅读了30页看完,即30页加10页正好是剩下的一半,也就是40页;剩下的书页数是80页;第一周阅读了书的一半少40页,即比80页少40页,也就是第一周阅读了40页。所以这本书总共是80页加上40页,等于120页。逆向思维这种数学思维的好处在于可以根据问题和题中已知的部分条件来还原出潜在的条件,运用还原出的条件可以继续向前堆。如此这般环环相扣,最终就能解决问题。(四)联系生活创设情境:人们在学习比较难的知识时,其最大的动力是能够解决自己的实际问题。为了培养学生的数学思维,可以通过将数学内容与学生日常生活相联系的方法。这样学生在情境中可以意识到如果解决这个问题会给其生活带来益处,所以要努力学生,最终养成用数学思维解决问题的好习惯。相反,在数学课堂上,联系生活情景,能够让孩子们利用生活常识和生活经验更好地去理解数学解题方法。例如,关于三角形具有稳定性的教学内容中,教师可以让学生用三个磁扣将挂图固定在黑板上,为了配合教学活动,可以增加挂图的重量,这样可以使得三个磁扣平行放置无法稳定住挂图。学生通过实验发现,只有三个磁扣组成三角形时才能够稳定挂图。教学内容讲授结束后,还要引导学生联系生活实际。比如,用三个钉子来固定一个镜框,钉子的位置怎么安排最合理。三、结语综上所述,小学数学教学中数学思维能力的培养,要充分利用多媒体和互联网资源来激发学生学习数学的兴趣,要通过套构的方式来引导学生使用数学模型来解决问题,要通过逆向思维的方式来让学感受解决问题的成就感,要通过联系生活创设情境的方式来拉近数学与学生的距离,让学生切实感觉到数学的实用性。因此,小学数学教师要结合孩子的实际认知水平,选择适合孩子的教学素材来设计教学活动,从而让孩子在数学课堂上能够激发潜能,养成良好的数学思维能力。

177 评论

猪宝0517

思维是人脑对客观事物的一般特性和规律的一种间接的、概括的反映过程。进行思维训练,培养学生的思维能力,是小学数学教学的主要任务之一,是实施素质教育开发学生智能,提高学生素质的重要措施。下面就如何培养学生的思维能力谈几点粗浅的看法。一、进行类比迁移,培养思维的深刻性思维的深刻性是指思维活动达到较高的抽象程度和逻辑水平,表现在能善于深入地思索问题,从纷繁到复杂的现象中,抓住发现事物的本质规律。小学生的认知结构往往缺损,他们不善于将知识纳入原有的认知结构之中,因而考虑问题缺乏深度,因此,在教学中应抓以下三点:1、培养学生对数的概括能力。数的分解能力,是数的概括的核心。如教20以内的加法,利用直观教具,让学生了解某数是由几个部分组成和如何组成的,引导他们将20以内的数比较实际意义,认识大小,顺序、进行组合与分解练习。2、让儿童逐步掌握简单的推理方法。根据教材的内在联系,引导儿童进行类比推理。例如:在乘法口诀教学中,先通过一环紧扣一环的步骤,让学生展示“生动”的思维过程,使学生认识2—4的乘法口诀的可信性,还了解每句乘法口诀形成的过程。然后利用低年级学生模仿性强的特点,让他们模仿老师的做法去试一试,推导出5—6的乘法口诀。生模仿获得成功后,就与他们一起总结步骤。3、培养掌握应用题结构的能力。各科教学问题,都有一个结构问题。狠抓结构训练,使学生掌握数学问题的数量关系,而不受题中具体的情节干扰,是培养思维深刻性的重要一环。由于低年级学生受年龄和知识水平的限制,他们的思维往往带有很大的局限性。为此,我在数学教学中采取多种方法。如:补充条件和问题,不变题意而改变叙述方法,根据问题说所需条件,扩题训练,拆应用题缩题训练,审题训练,自编应用题训练等等,拓展学生思维活动,训练学生思维的深刻性。二、进行合理联想,培养思维的敏捷性思维敏捷性是指一个人在进行思维活动时,具有当机立断的发现和解决问题的能力,表现在运算过程的正确迅速,观察问题的避繁就简,思维过程的简洁敏捷。因此,我在计算教学过程中,以培养学生思维的敏捷为目的,要求学生有正确迅速的计算能力。办法有以下两点:1、计算教学中,要求学生在正确的基础上,始终有速度。对于低年级的儿童,应注意抓好学生计算的正确率的同时,狠抓速率训练,每天用一定时间进行一次速算练习。老师说前半句乘法口诀,全班同学回答下半句乘法口诀,让全体学生的思维都处于积极状态。速算比赛,如:比在规定时间内完成计算题的数量,比完成规定习题所需时间,使全班学生人人都能正确迅速地思考问题。2、计算过程中传授一些速算方法。例如:在学习掌握“凑十法”的基础上,借鉴珠算的长处,教给学生“互补法”使学生知道1和9,2和8,3和7,4和6等互为补数。如计算9+2时,因为9和1互为补数,就能见9想10,得11。通过反复训练,引导学生合理联想,沟通知识间的内在联系,是训练学生思维敏捷一条行之有效的途径。三、进行说意练习,培养思维的逻辑性思维的逻辑性表现为:遵循逻辑的规律,顺序和根据,使思考问题有条理,层次分明,前后连贯。语言是思维的裁体,思维依靠语言,语言促进思维。教师对学生加强语言的调控,训练其口语表达能力,是学生能够有根有据进行思考的基础。因此教学中要使学生比较完整地叙述思考过程,准确无误地说出解答思路,并训练学生的语言表达简洁规范,逐步提高思维的条理性和逻辑性。

351 评论

相关问答

  • 语文逻辑思维能力论文参考文献

    摘 要:论述类文本是高考阅读的重要组成部分,也是高中语文阅读教学的一个重、难点内容。简要介绍论述类文本的含义,并对高中论述类文本的教学解读方法进行探讨。

    小韵子39 3人参与回答 2023-12-09
  • 论文的逻辑思路模板

    论文写作思路的写法如下: 一、广泛地搜集、阅读 1、能够反映研究对象本身各种具体特征的专题材料 充分熟悉对象,是正确认识对象的必不可少的前提。除了直接了解对象本

    燃情咖啡 2人参与回答 2023-12-05
  • 维普论文查重逻辑

    维普系统计算字符数的方法为:通过字符数+空格来计算,WORD不计算图表,格式代码信息,但图表和格式设置在转化中的部分是会计算总字数的。此外,中文论文按字符数计算

    小开心文文 4人参与回答 2023-12-07
  • 思维能力论文范文

    简析小学数学教学中数学思维能力的培养 在小学数学的教学中,培养学生的数学思维能力是一项重要任务,具有启发性的关键作用。以下是我J.L为大家分享的2017年关于小

    Johnhockson 4人参与回答 2023-12-06
  • 提高思维逻辑能力的文献论文

    您好,对于你的遇到的问题,我很高兴能为你提供帮助,非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!那如何才能提高自己的逻辑思维能力呢?1、学会运用“PR

    我不是水蜜桃 4人参与回答 2023-12-12