bigsunsun001
地质方法的研究重点是地震发生的地质条件和地震活动在时间和空间上的大范围变化。统计方法指出了地震发生的概率和地震活动的“平均”状态。为了预测地震的位置、强度和时间,必须依靠地震前兆。寻找地震前兆是地震预报的核心。为了获得可靠的地震前兆,必须进行长期、广泛的观测和研究。
一.预测地震的目的:
地震预报的目的是避免减少地震灾害。因此,它应该具有较高的可靠性,不准确的预测会引起居民不必要的恐慌,并带来社会和经济损失。由于人们对地震的起因和规律不甚了解,很难作出可靠的预测。地震学家不能直接观测地球内部,也缺乏对发震过程及各种影响因素的观测资料。地震预报问题虽然提出已久,但进展缓慢。世界各地的科学家为此付出了巨大的努力,迄今为止他们还不能准确地预测地震,并能在最佳条件下作出粗略估计。
二.地质预测方法:
它是根据地质构造条件,从宏观上估计地震的位置和烈度的一种方法。该方法可用于大面积地震危险区的划分和不同烈度地震危险区的确定。这项工作称为地震分区。由于地质时间尺度大,地震时间预报不能依赖于这种方法。
三.地质地震:
地震地质学。地震发生在地壳中上部,属于地质作用。研究大地震的地质构造特征,有助于确定未来大地震发生的地质背景。在一些地震之前,地质构造往往是不清楚的。地震发生后,发现了一个断层,这被认为与地震有关。
动物对地震很敏感。许多动物的某些器官特别敏感。他们可以提前知道一些灾害的发生。例如,海蜇可以预报暴风雨,老鼠可以提前避开矿井塌陷中的有害气体。至于视觉、听觉、触觉、振动和平衡等在判断中起主要作用和辅助作用的器官可能因动物而异。
饕餮飨宴
按目前的科技发展来说,地震预测是相对比较困难,虽然还不能准确地预测地震,但是地震是可以预警的,地震的预警就是在地震发生之前的一个很短的时间内,通过技术手段检测到地震波,然后发出预警信号警示人们,避免地震对人们产生严重的伤害。
月影星云
我这里有的是,不过要打这些文章,花费的时间太多了。还是你把自己从事的工作进一步总结,找些有关的论文参考,自己编写,发表。我这里有:水位与地震,地热与地震,电磁波与地震,还有许多震例分析,这都是阶段性的总结的。在CN级发表的。
xuexue1535
翟继锋1,2韦成龙1,2曾宪军1,2
(1.广州海洋地质调查局 广州 510760;2.国土资源部海底矿产资源重点实验室 广州 510760)
第一作者简介:翟继锋(1982—),男,本科学历,助理工程师,主要从事海洋地震勘探工作。
摘要 地震观测系统是用来表示激发点、接收点和地下反射点三者之间的位置关系。观测系统决定地震采集资料的质量,其质量直接影响后续的处理解释结果和精度,关系到地震勘探的成败,可见观测系统的重要性。本文基于地震观测系统设计的基本理论,从基本原则、参数选择出发,讨论了如何合理设计海上二维地震观测系统。
关键词 观测系统 原则 参数
1 引言
地震资料采集的中心问题是通过各种手段和方法来增强有效波,压制干扰波,提高信噪比,获得高质量的地震记录。观测系统的设计取决于地震勘探任务、工区地震地质条件和勘探方法,总的原则是尽可能使记录到的地下界面得到连续追踪,避免发生有效波彼此干涉的现象,野外施工简单等。地震勘探野外施工中主要使用纵测线观测系统,即激发点和接收点布置在同一条测线上,该系统能得到测线正下方界面的反射信息,所获得的资料易于解释,野外施工方案简单直观,在实际工作中被广泛应用。
2 观测系统的各种参数
图1是“探宝号”船240道seal电缆常用的观测系统。对海上地震调查来说,所使用的震源、接收电缆、记录仪器的部分有着固定的参数,我们主要分析以下十个可以变化的参数。
最大炮检距
最大炮检距是炮点的中心到最远一道的中心的距离,图2中用X表示,设计时要以下几个因素为依据:
1)时距曲线,力求其近似为双曲线。比较合适的炮检距,可以使正常时差足够大,足以区分一次反射波、多次波以及其他相干噪音;比较大的炮检距,就会使远道的时距曲线近似为高次曲线,从而使记录得到的同相轴不满足双曲线的假设。水平层状介质的地震地质模型地震反射波的时距曲线为:
图1 探宝号船240道常用观测系统
The common observation system of 240 seismic channels of“TanBao”
图2 距离参数示意图
The sketch map of distance parameter
南海地质研究(2014)
如果在炮点的附近接收地震波,就可以把水平层状介质的波速简化为均方根速度,则反射波的时距曲线方程可简化为:
南海地质研究(2014)
由这两个方程可知,当最大炮检距的取值为勘探目标深度的~倍时,反射波的时距曲线近似为双曲线。
2)速度分析,力求能获得较高的精度。在水平层状介质中,一般认为射线速度是一种准确的速度,它随着炮检距的增大而增大,当炮检距一定时,射线速度等于均方根速度,也就是说这时的均方根速度可以认为是准确的,此时的炮检距就是所要选用的最大炮检距。由射线速度公式和炮检距公式式,可算出最大炮检距约为勘探目标的埋深。
南海地质研究(2014)
3)动校正拉伸畸变,力求使其小。动校正拉伸的程度,随反射界面深度和炮检距之比的减小而增大,即炮检距小,拉伸程度就小,炮检距大,拉伸程度就大。
百分比动校正拉伸量=(动校正量/双程反射时间)×100%
若在计算动校正量采用近似公式 ,则当最大炮检距为目的层埋深的倍时,动校正拉伸为;当最大炮检距为目的层埋深的倍时,动校正拉伸为。动校正拉伸使信号频率降低,从而影响分辨率。
4)反射系数,力求其变化尽可能小。反射系数随着炮检距的变化而变化,如果炮检距在小于某个数值时,反射系数几乎不随炮检距变化,则炮检距应当选取这个数值。反射系数可以通过佐普里兹方程来求取。
5)高频衰减,力求远道的高频衰减尽可能小。地震波的吸收和衰减随着传播距离的增大而增大,从而使高频信息能量变弱,降低分辨率。
通过以上的论述,合适的最大炮检距应选取勘探目标深度的~倍。最大炮检距过大,会使远道的反射时距曲线近似为高次曲线,不符合地震勘探中把时距曲线视为双曲线的假设;炮检距过大会使远道的反射系数有较大变化;炮检距过大会产生转换横波;炮检距过大会使动校正拉伸较严重,使远道地震信号中的高频信息衰减较厉害。最大炮检距偏小,则会使整个排列偏短,不利于接收中深层的地震反射信息,并且会由此造成时距曲线太短,反映不出双曲线的形态,得不到准确速度,而在资料处理叠加的过程中,最关键的是速度参数。因此在选择最大炮检距时,重点应考虑目标层的速度分析精度。
最小炮检距
最小炮检距是炮点的中心到电缆第一道(近道)的中心的距离,图2中用Y表示,应该小于最浅目标层的深度。最小炮检距大一些,确实可以有效地避免震源和作业船产生的部分噪音信号干扰,但却会损失有用的浅层有效信号。
最小炮检距的选取应从以下几方面考虑:
1)考虑炮检距与叠加特性的关系,选择较小的最小炮检距。
2)根据作业船噪音情况及地震地质条件,选择能够较好地避免震源和作业船产生的部分噪音信号干扰的最小炮检距。较大的偏移距有利于避开面波、船噪音等干扰。
3)为满足大炮检距的初至折射静校正或层析成像反演静校正处理的需要,宜采用较小的最小炮检距。
4)为提高分辨率,宜采用较小的最小炮检距。
随着偏移道数的增加,迭加特性曲线通放带宽度变窄,压制带范围向左移,同时压制范围内,特性曲线的三次极大值幅度变小。说明偏移道数的增加,能更好压制与反射波速度相近的多次波,即可以提高分辨率。但是,偏移道数增大,导致压制带宽度变窄,特性曲线二次极大值的幅度增大。因而,与反射波速度相差较大的多次反射波,就有可能进入二次极值带,得不到好的压制效果,所以不能认为偏移道数越大越好。
从以往的施工结果看,250m的最小炮检距可以有效地避免震源和作业船产生的噪音信号干扰,但是在研究区部分测线水深小于100m,最小炮检距过大的话就会损失有用的浅层有效信号,而且会使海底难以追踪。因为这时直达波和海底一次反射波几乎同时到达,给去除直达波,追踪海底造成困难,在以往的地震资料中也出现过海底辨认不准确的情况。这主要和水深太浅,最小炮检距偏大有关。因此在以后的野外作业中,对最小炮检距也应做试验。综合考虑准确追踪海底和减小近道噪音,通过现场处理结果,确定出一个合适的最小炮检距。
炮间距
炮间距(图2中的Z表示)是炮点移动的距离: ;d为炮点移动的距离,M为排列长度,n为覆盖次数,Δx为道间距。令 ;υ是炮点移动的道数。则: ;单边放炮S为1,双边放炮S为2。
因炮点移动的道数与覆盖次数成反比关系,在排列长度及道间距一定时,炮点移动的距离越短,覆盖次数越高。缩短炮点移动的距离,增加覆盖次数,以提高对多次波的压制效果,增强有效反射波的能量,提高资料信噪比。
检波器组合参数
检波器的排列组合要兼顾压制干扰波和突出有效波这两方面,利用干扰波的视速度、主周期、道间时差、随机干扰的半径以及有几组干扰波,出现的地段,强度的变化特点与激发条件的关系等资料,设计出合理的排列组合参数。检波器组合参数的因素包括:组内距、组合基距、组合内的检波器个数以及组合的形式等。视速度和炮检距为反比关系,也即组合内的各检波器的时差随着炮检距的增大而增大。一般认为排列中最近道处的视速度最大,最远道处的视速度最小,因此组合中首尾检波器点的时差最大,其低频响应更加严重,组合排列越长,基距越大,这种现象就越明显。在中深层地震勘探中,利用检波器组合法提高信噪比的同时,要避免低频响应。
“探宝号”船目前所用的seal 24位电缆采用12个检波器线性组合作为一道。由于新技术的应用,使得检波器在线性度、灵敏度高,分辨力、迟滞、重复性、漂移、稳定性等性能也极大地提高。
道间距
道间距是指相邻两个接收点之间的距离。道间距的选择,应保证道与道之间的反射波都能对比。反射波到达相邻两个接收点的时差Δt,应满足下列关系:Δt≤T*/2,式中,T*为反射波的视周期。因反射波的视速度V*是道间距Δχ和时间差Δt之比值,即:V*= 。则 ,为了能够同时并且可靠地追踪来自深层和浅层的反射波,道间距的最大适合值Δχ应当以浅层反射波的视波长λ*来计算。
道间距的大小会直接影响地震资料的解释工作,影响横向分辨率:道间距偏大,将导致同一层的有效波追踪和辨认的可靠性将受到影响,会产生比较严重的空间假频,而且是道间距越大,低频响应也越严重;道间距偏小,将会使野外数据量、工作量及成本大大增加。选取道间距应当以在地震记录上能够可靠辨认同一有效波的相同相位为准则,这主要取决于:相邻的道记录形态的重复性;地震有效波、干扰波和随机振动背景的振动关系;地震波到达相邻道所用时的时差;地震波的视周期以及横向分辨率等。
由对工区采集资料进行的频谱、速度分析可知,有效反射波视频率主要分布范围(以-6dB计算)是6~60Hz;浅层层速度值约为1800~2400m/s。道间距Δχ1800/(2×60)约为15m。表明采用道间距已完全满足采集精度要求。
我局拥有海上地震调查设备Seal、MSX、Hydroscience三种24位地震采集记录系统,电缆的道间距均为。从以往进行地震资料采集结果看,使用的道间距能够在地震记录上清晰地辨认出同一有效波的相同相位。
覆盖次数
覆盖次数即地层界面某一点的追踪次数,n=S*N/2*r,其中,S代表一个系数,一般取1;N代表记录道数;r代表炮点移动的道数。若增加覆盖次数,迭加特性曲线通放带的宽度和压制带的左边界都不会有多大变化。说明增加覆盖次数,既不会改善因为动校正速度不准确而引起反射波迭加特性变坏的情况,也不会提高压制与反射波速度相近的多次波的能力。但若增加覆盖次数,则压制带的宽度将会加大,压制带范围内的三次极大值将会变小。叠加次数也即覆盖次数,越大则压制带平均值越小,压制效果就越好,所以增大覆盖次数对于提高信噪比是有利的。就是说,覆盖次数的增加,既有利于对多次波的压制,也有利于对与反射波速度相差较大的多次波的压制。总而言之,增大覆盖次数,可以提高压制的效果,提高信噪比,覆盖次数越大,信噪比的改善程度就越大。假设叠加后的信噪比为1,则各目标层所需要的覆盖次数可由下式计算:
南海地质研究(2014)
式中, 为震源信噪比;TRA(i)表示透反射、球面扩散以及地层吸收导致的地震波能量的损失。
选取较大的覆盖次数,能够充分压制高频环境下的干扰噪音,增大目标层的有效反射能量,就能提高资料的信噪比,确保目标层的成像效果。因此,采集中都需选取较大的覆盖次数。
震源能量
在相同条件下,震源能量越强,得到的信号其信噪比也相应提高。但大震源大能量作业,在接收到更强的有效反射信号的同时,也会接收到更大的多次波等干扰信号,因而资料的信噪比不一定会提高。中深层地震勘探所关心的是信噪比,而不仅仅是反射信号的强弱。
通过对地震地质模型进行计算机模拟来测算最佳的震源能量,再经过野外震源试验来对比验证,确定合适的震源能量,是目前常规二维地震震源能量较好的确定手段。
震源电缆组合沉放深度
在海洋地震勘探作业中,我们使用电缆中排列组合的水听器记录压力P,若电缆沉放深度记作,且地震反射信号中的某一谐波波长为λ,其入射角为θ,则其简要关系式为:
南海地质研究(2014)
对海洋地震气枪震源来说,激发后所产生的地震波信号,以及由海面反射回来的地震波信号一起向地下传播。由于气枪震源的沉放深度相对于水深和地层厚度而言比较小,可以看做是叠加在一起的两个信号向地下传播。而这两个信号的叠加效果是受气枪震源沉放深度控制的,和地震电缆的情况相同,叠加信号的振幅大小变化也是受气枪震源沉放深度控制。
理论上的分析结果是:震源与电缆沉放的深度相同,并且深度值为按上式算出的使得压力P取最大值的Z的值,其中的λ可以认为是对应于目标层的主频波长。
实际上震源、电缆组合的沉放深度,震源激发信号在海水、地层中传播时的扩散、衰减,各界面的反射、折射和散射,海水、地层吸收所产生的各种组合滤波效应,再加上各种各样的噪音干扰,使得电缆中水听器接收到的信号已经发生了变化,电缆接收到的信号波形态与频谱早已不同于原震源波形态与频谱。
以理论值为依据,通过计算机模拟以及在工区中做震源、电缆组合沉放深度试验,就可以找到一个最佳的震源、电缆组合沉放深度。
采样率
合适的采样间隔Δt,可避免间隔过大使离散信号失真及谱畸变出现假频现象的缺点,又可避免采样过密使处理工作量加大的缺点。根据采样定理:
南海地质研究(2014)
Δt为采样间隔,fmax为要保护的目的层的最高频率。一个信号周期中至少需要三个样点〔也就是需要两个采样间隔(2Δt)〕的最小量来定义一个周期的信号。
对研究区所采集资料进行频谱分析可知,有效反射波频率分布范围(以-6dB计)为6~60Hz。计算结果表明选用2ms采样完全满足采集精度的要求。并且采样率为2ms,地震仪采集到的信号理论极限频率是206Hz左右。中深部地层信息主要反映在较低频率上,该采样率已经完全满足要求。
低截滤波
近几年的常规地震勘探中,对低截滤波的确定都倾向于低截频率尽可能地低一些,尽可能多地保留原始采集信号。在海上地震勘探中,涌浪等会产生几到十几赫兹的噪音,水鸟挂上异物会在附近道产生有规律的抖动等,低频干扰影响到资料信噪比。当低频干扰偏大时,在处理时滤波虽然可以将之除掉,但低频有效信号也同时损失,因此在干扰比较大的情况下,降低低截滤波的门槛值是没有益处的。利用现场处理的噪音分析,可以获得低频干扰的频率范围和幅值大小。良好的海况一般采用的低截滤波值为3Hz。当然,震源、电缆深度都加深后,涌浪等环境噪音大大降低,可以不加低截滤波。
3 结论
本文主要讨论了海上二维地震勘探观测系统各个参数的设计原则,详细介绍每个参数的作用及影响。观测系统有效合理的设计是在部分论证参数的约束下选择观测系统的几何形态、最大炮检距、最小炮检距、炮间距和道间距,这些参数的确定又以观测系统的属性分析为指导。在已建立的地球物理模型情况下,设计合理的观测系统,才能在合理的投入下,获得最适合处理与解释的资料。
参考文献
[1]刘振东.2010.泌阳凹陷复杂断裂带地震勘探采集处理方法研究与应用[D].中国地质大学博士学位论文,24-37
[2]冯凯.2006.三维地震观测系统最优化设计的方法研究[D].成都理工大学工学博士论文,9-23
[3]钱光萍,康家光,王紫娟.2001.基于模型的地震采集参数分析及应用研究[J].物探化探计算技术,23(2):109-114
[4]王桂华.2004.海上地震数据采集主要参数选取方法[J].海洋石油,24(3):35-39
[5]史乃祥,王德利.2005.深水区地震波传播特性研究[J].吉林地质,24(2):82-86
[6]罗文造,韦成龙,王立明,等.2008.南海北部中生界地球物理勘探采集技术[D].2007年度成果报告.6-39
[7]舒虎,易劲松,邢涛,等.年度区域综合地球物理补充调查地震资料处理报告[D].4-44
[8]黄文彬,郭嵩魏,李刚毅.地区三维地震观测系统研究,内蒙古石油化工[J].第17期17,94-99
[9]杨金华.2006.三维观测系统的设计优化[J].工程技术,128
[10]王玉娇,李刚.2006.障碍物密集区三维地震观测系统的设计与应用[J].大众科技,7,39-40
[11]夏建军,唐东磊,黄永平.2009.三维地震采集观测系统压噪能力的估算及应用[J].石油地球物理勘探,44(2),140-145
[12]秦广胜,蔡其新,刘学伟.2010.满足叠前偏移要求的三维地震观测系统设计[J].石油地球物理勘探,45(S1),25-29
Principle of Design Observation System of Marine 2 D Seismic
Zhai Jifeng1,2,Wei Chenglong1,2,Zeng Xianjun1,2
( Marine Geological Survey,Guangzhou,510760;
Laboratory of Marine Mineral Reasources,MLR,Guangzhou,510760)
Abstract:The seismic observation system is used to express the relationship among the shot point,the receiving point,and the reflection quality of acquisition data is decided by the observation system,and which directly affect the quality and accuracy of subsequent processing and the good or not of observation system is related to the success or failure of the seismic exploration,it is very article based on the basic theories of observation system,we discuss how to design observation system of 2D marine seismic with the basic principles and parameters.
Key word:Observation system;Principle;Parameter
世唯装饰
回答:我们可以以我国成功预报的发生在1975年2月4日的海城地震为例,了解地震地震是如何被预测的。
这次成功的预报的经验有:
一是自邢台地震周总理提出“以预防为主”的号召以来,地震科技工作者深入研究邢台地震前的有关地震活动信息以及其后近十年发生的10多次7级大震有关的地震活动信息,对地震预测预报进行认真探索、总结,及时抓住了海城地震前的前震信息、地球物理场的异常信息和宏观异常信息,做出了正确的预测。
二是当地政府带有高风险的果断决策,才会产生具有减灾意义的正确预报。可以这么说,成功的预报
是科学的预测和政府风险决策的有效结合。
三是地震前兆(能反映地震孕育和发生的物理、化学及其他自然现象)在局部地区重复,为地震预测提供了前提条件。海城地震,其预报成功是由于1973年9月以来的金县短水准异常以及小地震群、前震活动、水、宏观等突发性异常的相继出现、此起彼伏地发展,使地震发生的危险时间和可能地点逐步“缩小”,特别是前震的发生和正确的判断在最后确定发震时间和地点上起了关键的作用。
但是,海城地震的经验有若干不可重复之处。最重要的一点是,海城地震的前震序列特别明显,依据邢台地震“小震闹、大震到”的经验判据,地震专家们可以把海城地震前出现的一些异常现象确定为前兆异常。
海城地震在中国地震史上里程碑式的事件,同时它是人类历史上第一次准确预报的强震,联合国迄今为止只承认了这一个准确预报的地震案例。
地震作为一种破坏性极大的自然灾害。目前,各国都在不断研究地震预报的科学方法。而我国的国家地震局其主要职责在于防震减灾方面,对于地震也没有预测的能力,更直白的说地震局只能监测和判断地震大小,而不能预测地震。对于具体的监测方法,则是通过专门的地震监测仪等精密器械进行监测和处理数据。这个没什么可讨论的,都是一些机械式的记录。并且地震已经发生,对于救援用处不大了。以下,重点聊下地震预测方面的话题。
由于地震情况复杂,至今地震预报还是一个世界性难题。为此,国际不少科学家明确提出“地震无法预测”的论点。但另一些地质学家,却以一些学说和理论来佐证地震可预测。其中,我国著名地质学家蒋凤亮就是其中一位。他曾在2000年时出版《地球化学异常——地震预测整体观的探索》一书,通过对地震地球化学与地震地质构造以及地球物理研究,总结判断出“汶川地震”发生的背景与分析,并在该书第113页至122页,详细介绍了自己的研究成果。
现将原书结论摘录如下:
“未来十年,在四川鲜水河断裂带南乾宁一带或朱倭以北的甘孜带,未来存在发生级以上的地震背景。”
(图为2000年时,蒋凤亮所出版的《地球化学异常——地震预测整体观的探索》一书中第113页截图)
这一结论发表后未引起社会的重视,直到八年后汶川地震发生,地震研究领域的国内外部分科学家和机构,才关注起蒋凤亮在八年前做出的这项预报。蒋凤亮具体是怎么预报的,笔者在多年前采访其本人时,问到过这一问题,他只是言简意赅的说是用地震地球化学与地震地质构造以及地球物理相结合的方法得出的一个结论。对此,我国两院院士、中国信息产业的开拓者和奠基人罗沛霖做出过这样的评价,他说:“地震预报是一个世界性科学难题,蒋凤亮研究员的研究应是攻克这一难题的思路之一。”
蒋凤亮作为老一辈地质科研工作者,曾经在八十年代担任北京分析测试委员会委员、中国地震前兆委员会委员,随后被推选为美国地球物理学会年会水文地球化学专项执行主席。在1983年时,担任国家地震局地质研究所研究室主任,后在地震水文地球化学前兆机理攻关实验研究中,获国家地震局科技专项二等奖。同年,应日本科学家邀请参加了国际水一岩作用会议,发表了“水一岩作用地震水文化地球化学前兆机理模拟实验研究”的论文,得到各国专家的关注。1986—1994年,在英国及捷克斯洛伐克等国进行学术交流。1984—1986年,参与中美地震科研合作项目阶段性的研究工作,主要研究地球内部物质受热应力作用的变迁。1985来,承担了国家地震局关于“华北地区地球化学背景与地震关系研究”这一重大课题,获科技进步二等奖。同时,开展《潜在震源区地震地球化学标志的综合研究》、隐身战机化学图层分析等课题取得不俗成绩。
一、当前建筑结构抗震设计需要解决的问题 (一)合理选择建筑结构体系 在建筑物的结构设计中,最重要的一项就是选择结构体系,该体系选择的合理与否,直接关系到整个建筑
检测发动机爆震以抑制爆震现象的发生。工程师在调整爆震感测器时会时将爆震的振动模式写入电子控制单元。如果爆震传感器检测到振动模式,电子控制单元确定发动机爆震,然后
水质高锰酸盐指数是反映水体中有机及无机可氧化物质污染的常用指标样品中加入已知量的高锰酸钾和硫酸,在沸水浴中加热30min,高锰酸钾将佯品中的某些有机物和无机还原
地质方法的研究重点是地震发生的地质条件和地震活动在时间和空间上的大范围变化。统计方法指出了地震发生的概率和地震活动的“平均”状态。为了预测地震的位置、强度和时间
可以从动力源,灵敏性,准确性,结构。应该认真研究机械手表,地震仪等仪器!