• 回答数

    4

  • 浏览数

    315

肖肖肖肖肖雪*
首页 > 职称论文 > 多面体欧拉定理研究论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

cHeN&Li$Li

已采纳

对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n) 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。还有很多 在参考资料上能看到

257 评论

臭臭爱毛毛

对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n) 证明: 首先证明下面这个命题: 对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是φ(n)个n的素数,且两两互素,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 则S = Zn 1) 由于a,n互质,xi也与n互质,则a*xi也一定于p互质,因此 任意xi,a*xi(mod n) 必然是Zn的一个元素 2) 对于Zn中两个元素xi和xj,如果xi ≠ xj 则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。 所以,很明显,S=Zn 既然这样,那么 (a*x1 × a*x2×...×a*xφ(n))(mod n) = (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n) = (x1 × x2 × ... × xφ(n))(mod n) 考虑上面等式左边和右边 左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n) 右边等于x1 × x2 × ... × xφ(n))(mod n) 而x1 × x2 × ... × xφ(n)(mod n)和n互质 根据消去律,可以从等式两边约去,就得到: a^φ(n) ≡ 1 (mod n) 推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n) 费马定理: a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p) 证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。 同样有推论:对于不能被质数p整除的正整数a,有a^p ≡ a (mod p)欧拉公式 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。 在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。 1、复变函数论里的欧拉公式: e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。 它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2. 这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到: e^i∏+1=0. 这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。 2、拓扑学里的欧拉公式: V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。 如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。 X(P)叫做P的拓扑不变量,是拓扑学研究的范围。 3、初等数论里的欧拉公式: 欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。 欧拉证明了下面这个式子: 如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有 φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm) 利用容斥原理可以证明它。 定理:正整数a与n互质,则a^φ(n)除以n余1 证明:设集合{A1,A2,...,Am}为模n的一个缩系(若整数A1,A2,...,Am模n分别对应0,1,2,...,n-1中所有m个与n互素的自然数,则称集合{A1,A2,...,Am}为模n的一个缩系) 则{a A1,a A2,...,a Am}也是模n的一个缩系(如果a Ax与a Ay (x不等于y)除以n余数相同,则a(Ax-Ay)是n的倍数,这显然不可能) 即A1*A2*A3*……Am≡aA1*aA2*……aAm(mod n) (这里m=φ(n)) 两边约去A1*A2*A3*……Am即得1≡a^φ(n)(mod n)来自百度百科

186 评论

桃大大仙

参考一下下面的baidu知道,我就不复制粘贴了。

102 评论

昂昂千里

你叼..劝你自学点高中数学符号再说吧...这里有一个证明.逐步减少多面体的棱数,分析V+F-E先以简单的四面体ABCD为例分析证法。去掉一个面,使它变为平面图形,四面体顶点数E、棱数V与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1(1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E=2。对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。没有符号,怕你也看不懂...嘿嘿..

208 评论

相关问答

  • 欧拉函数的毕业论文

    欧拉函数ψ( N) 是数论中重要的函数, 由18 世纪数学界最杰出的人物之一欧拉提出, 内容如下: 小于自然数N 并与N 互质( 除1 以外无其他公因子) 的自

    浮生若梦762 4人参与回答 2023-12-10
  • 多面体欧拉定理研究论文

    对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n) 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式。公式描述了简

    肖肖肖肖肖雪* 4人参与回答 2023-12-08
  • 拉格朗日中值定理毕业论文

    拉格朗日定理是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。 定理的现代形式如下:如果函数f(x)在闭区间

    黄某某007luffy 4人参与回答 2023-12-11
  • 研究欧亨利论文

    选题意义这个东西,我们一般都是在网上去搜,然后拼一拼,凑一凑的

    悠悠岁月里 5人参与回答 2023-12-07
  • 欧拉图毕业论文

    毕业论文采用Tex软件,一段时间学习摸索后,我将一些简单操作记录下来,方便以后直接调用。 一、加入各种宏包命令, 基本的字体,格式设置 以上两部分默认设

    XiangZong12 2人参与回答 2023-12-06