• 回答数

    3

  • 浏览数

    174

白色棉袜
首页 > 职称论文 > 中国煤层气杂志社

3个回答 默认排序
  • 默认排序
  • 按时间排序

弱智好儿童

已采纳

刘洪林 王红岩 李景明 李贵中 王勃 杨泳 刘萍

(中国石油勘探开发科学研究院廊坊分院 河北廊坊 065007)

作者简介:刘洪林,男,江苏徐州人,1973年生,汉族,2005年毕业于中国石油勘探开发研究院,获博士学位,主要从事煤层气勘探开发方面的研究工作。通讯地址:065007河北廊坊市万庄44号信箱煤层气E-mail:。

本研究受到国家973煤层气项目(编号:2002CB211705)资助。

摘要 在美国粉河、澳大利亚的苏拉特等低煤阶盆地煤层气勘探取得突破以前,大家一直认为具有商业价值的煤层气资源主要存在于中煤阶的煤层中,煤阶太低,一般含气量不高,不具有勘探价值。但是近几年来的发现证实,低煤阶盆地煤层厚度大,渗透率高,资源丰度大,含气饱和度高,同样可获得了商业性的气流,而且从其气体的成因来看,其中有很大一部分是生物成因的煤层气。本文利用煤层气成藏模拟装置对低煤阶含煤盆地的煤岩样品开展了成藏模拟,从实验角度证明了中国西北地区虽然煤层煤阶较低,热成因气较少,但是却存在着具有商业价值的二次生物成因的甲烷气,再加上含煤层系众多,煤层厚度大,资源丰度极高,仍具有巨大的勘探潜力。

关键词 煤层气 水动力 成藏

Simulation Experiment of Biogenic Gas in Low Rank Coal of China

Liu Honglin,Wang Hongyan,Li Jingming

Li Guizhong,Wang Bo,Yang Yong,Liu Ping

(Langfang Branch of PetroChina Research Institute of Petroleum Exploration & Development,Langfang 065007)

Abstract:Before CBMexploration achieved success in the low rank coal basins like Power Rive Basin of the Surat Basin of Australia,People thought that CBM resources with commercial development value mainly stored in medium-high rank coal seams and low rank coal was not worthy of exploration and development due to low gas the exploration practices for recent years proved that commercial CBMproduction could be obtained in low rank coal basins which have thick coal thickness,high permeability,high resource concentration,high gas ,from the cause of formation of CBM,most of CBMin low rank coal belongs to biogenic this paper,the simulation experiment on CBM accumulation in coal samples from low rank coal basin was carried out by using simulation apparatus of CBM experiment proved that commercial secondary biogenic methane gas possibly existed in northwest coal basin although the rank of coal is low and there was little thermal-genic gas in the there are lots of thick coal seams and the resources concentration is high,the exploration prospect of CBM is promising in the northwest coal basins.

Keywords:CBM;hydrodynamic condition;accumulation

前言

进入20世纪90年代,随着煤层气产业的迅猛发展,美国煤层气的资源开发活动不再局限于中煤阶煤储层发育的圣胡安和黑勇士盆地,资源评价和研究工作覆盖了18个主要含煤盆地或含煤区,在其中12个含煤盆地从事煤层气开发活动,煤储层的煤阶从中煤阶扩展到低煤阶和高煤阶,特别是发育低煤阶煤储层的含煤盆地因煤层气资源量较大而受到重视,发育低煤阶煤储层的含煤盆地6个,煤层气资源量10×1012m3,占总资源量的53%,以粉河盆地为代表的低煤阶含煤盆地煤层气商业开发的成功,大大拓展了煤层气勘探开发的视野和领域。粉河盆地位于蒙大拿州东南部和怀俄明州东北部,面积25800km2,为一大型沉积盆地,形成于腊腊米运动造山期,盆地中含有巨厚的晚白垩世煤层,单层厚度达67m,煤层总厚118m。盆地为一不对称向斜,轴部靠近西部边缘,西部边缘以逆断层为界,靠近Bighorn隆起。西部地层倾角5°~25°,东部为翘起端,倾角不超过2°。上白垩统沿东南部和东部分布,古新统Fort Union组沿盆地边缘分布,盆地晚三叠系低界深1067m,粉河盆地煤炭资源量×1012t,镜质体反射率为~,与西北一些低煤阶盆地相似,煤化程度低,含气量为~,但由于煤层厚度巨大,资源丰度大,预测煤层气资源量(~)×1012m3。粉河盆地煤层气碳同位素介于-65‰~-69‰之间,具有明显的生物成因特征,并且在其构造的高部位,生物气经过二次运移而富集,形成较高的含气量和较高的饱和度,有较高的渗透率,含气饱和度为80%~100%,钻井深度一般不超过305m,产气量为110~5976m3/d,产水量为45~69m3/d,最好的产气远景区是砂岩体附近与差异压实作用有关的构造高点、紧闭褶皱形成的构造高点以及煤层上倾尖灭的部位,并在该部位伴生有为非渗透性页岩所圈闭的游离气。

中国低煤阶煤储层非常发育。全国垂深2000m以浅的煤炭资源量为55697×108t,低煤阶煤储层占到煤储层的一半以上。低煤阶煤储层形成于早中侏罗世、早白垩世、第三纪等成煤期,其中早中侏罗世、早白垩世是中国重要的成煤期,早中侏罗世成煤作用主要发生在西北地区,煤炭资源量占全国的[1],新疆准噶尔、吐哈、塔里木盆地、伊犁和焉耆是低煤阶煤储层发育的典型的大型内陆盆地,煤层厚度大,煤层最大累厚近200m,最大单层煤厚逾100m,煤层层数超过50层[2]。中国西北地区低煤阶煤储层煤层气资源量丰富,早中侏罗世煤储层煤层气资源量超过10×1012m3[3-4]。随着美国低煤阶煤层气藏商业开发的成功、国内煤层气勘探开发工作的推进,在近期低煤阶煤层气藏受到了越来越多的关注,有望成为新的研究热点和煤层气勘探开发新领域[5,6,7]。但是中国西北地区与美国的粉河盆地、尤因塔盆地和澳大利亚的苏拉特盆地相比,在进入第四纪以来气候虽然总体较为干旱,但是部分地区由于受到天山影响,水动力仍非常活跃,具备二次生物气生成的可能,如位于天山北坡的准南地区、焉耆地区和伊犁地区。

1 研究区的煤层气地质概况

本次工作研究,重点对水动力较为活跃的伊犁和焉耆进行了采样,研究较强水动力条件下煤层次生生物气的生成问题。

伊宁地区

伊宁含气区块位于新疆维吾尔自治区西部伊犁自治州境内,区内为低山—丘陵及伊犁河畔冲积平原,含气区内地势西高东低,北高南低,属典型大陆性气候,盆地内先后由煤炭、石油、地矿部门进行过石油勘探及物探,煤炭部门在盆地边缘及局部进行过煤田勘探。特别是近几年来,随着油气勘探工作的进展,在盆地内,已进行了部分钻探实物工作量。该区含煤地层为侏罗系中统西山窑组,下统三工河组和八道湾组,主要为一套河湖相的灰、灰白色含砾砂岩,深灰色泥岩,砂质泥岩夹煤层。伊宁含气区块侏罗系下统八道湾组和中统西山窑组成煤环境优越,聚煤时间长,形成的煤层较稳定,厚度大,层数多,为煤层气的形成奠定了物质基础。西山窑组主要为一套浅灰色含砾粗砂岩,灰白色中、细粒砂岩,深灰色泥岩、砂质泥岩夹煤层,在区内北部地层厚度一般211~552m,含煤10~15层,煤层单层厚度相对较小,层数较多,反映成煤环境震荡性较强。南部一般厚度为102~132m,含煤4~6层。单层厚度相对较大,层数相对较少,反映成煤环境较稳定。八道湾组主要为一套灰白色含砾粗砂岩,中、细粒砂岩,深灰色泥岩,砂质泥岩夹煤层。在区内北部厚度一般在342~452m;南部厚度在60~150m。在北部含可采煤层10层,厚度15~68m,据(伊参1井)资料,可采煤层厚度为88m。在南部煤层厚度相对较小。煤质分析资料表明,该区侏罗系下统八道湾组和中统西山窑组煤层,原煤灰分含量在~,一般含量在12%~18%,其变化特征属中—低灰、低硫—特低硫、低磷煤,是有利于形成煤层气的煤质类型。

伊宁含气区块侏罗系中、下统沉积之后,受燕山构造运动的影响,褶皱、断裂使含煤地层遭受不同程度的改造。现构造形态主要表现为不对称的复式向斜,呈近东西向展布。含煤地层倾角一般在20°~30°之间,其中北部相对较陡,南部较缓。断层多发育在褶皱轴部,以逆断层为主,断层线呈北西西向展布。从构造展布特征分析,构造相对较简单,有利于煤层气的勘探开发。八道湾组和西山窑组煤层组埋藏深度0~2000m,分布面积约3445km2,占含煤地层分布面积的82%。从构造赋存地质条件分析,构造较简单,有利于煤层气的勘探开发。该区侏罗系中、下统煤层煤级为长焰煤,煤层气地质资源丰度为×108m3/km2,资源丰度较高,有着较好的勘探开发前景。

焉耆地区

焉耆含气区带侏罗系中、下统是主要的含煤岩系。侏罗系中、下统是在盆地经历了印支末期构造运动,三叠系遭受不同程度抬升剥蚀后,盆地又逐渐下降,接受该套内陆含煤碎屑建造。八道湾组沉积时,盆地受南缘库克塔格山和北缘南天山差异抬升隆起作用,呈现为南低北高的古地貌。由于古气候温暖潮湿,有利于植物的生长,植被茂盛,森林密布,形成大面积泥炭沼泽,为形成厚煤层奠定了物质基础。据本区哈满沟、塔什店矿区资料,本组煤层称A组,含煤3~14层,累计厚度10~30m,一般厚度10~15m。盆地内石油钻井钻遇本组煤层厚度一般30~40m,最厚可大于60m。煤层空间展布特征为东部厚度相对较薄,一般厚度10~15m,而西部较厚,在四十里城一带最厚可大于60m。

西山窑组沉积时,气候温暖潮湿,地势相对平坦,形成大面积泥炭沼泽,有利于成煤物质的生长,为形成厚煤层奠定了物质基础。据盆地内煤田及石油钻井资料统计,本组含煤5~10层,可采煤层厚度10~40m之间,一般厚度10~30m之间。焉耆含气区带侏罗系下统八道湾组和中统西山窑组成煤环境优越,聚煤时间长,形成的煤层较稳定,厚度大,层数多,为煤层气的形成奠定了物质基础。其中侏罗系下统八道湾组煤层厚度大,稳定性强,煤层气勘探开发潜力较好,是煤层气勘探开发选区评价的主要目的层。

本区内目前煤矿开采以西山窑组煤层为主,煤质分析资料较少。据塔什店矿区分析资料统计,煤层分析基水分含量平均在 ~,分析基灰分含量在~,挥发分产率在~,硫分含量在~。煤层水分含量中等,灰分、硫分含量较低,属特低—低灰、特低—低硫煤,是有利于形成煤层气的煤质类型。

焉耆含气区带大地构造位于库鲁克褶皱带和天山褶皱系南天山褶皱带之上,是受海西期—印支期构造作用的影响在夷平面的基础上形成的中生代含煤盆地。中生界沉积之后,经历了燕山和喜山多次构造运动的影响,改造后的侏罗系中、下统含煤地层形成了复杂多样的构造面貌。本区中生代以来构造演化大致经历了燕山、喜山二期,使盆地内侏罗系中、下统含煤地层遭受强烈抬升剥蚀,煤层压力降低,吸附在煤层中的气体解吸扩散,含气量降低。埋藏深度600~2000m 区,累计分布面积约930km2,占含煤地层分布面积的39%。主要分布在西部塔什店矿区,中东部盐家窝及库木布拉克等地,是煤层气勘探开发深度较理想的区域。

据钻井及矿井煤层采样分析资料及埋藏深度资料综合分析,焉耆含气区带侏罗系中、下统煤层埋藏深度2000m以浅区煤级以气煤为主。焉耆含气区带侏罗系中、下统以往煤田地质勘探程度相对较低,有关煤层含气量资料也较少,矿井开采深度较浅(一般在100~300m之间),相对瓦斯含量也较低。

2 煤层气成藏模拟实验装置和原理

煤层气成藏模拟装置的特点是模拟地层温度、压力、地层流体介质下煤层气富集成藏过程,它可以通过模拟不同物性组合、不同介质、不同充注压力、不同运移方式煤层气成藏过程,获取不同模拟条件下的物理和化学参数,确定煤层气不同运移条件下的边界条件。设备主要由气体增压泵、恒温箱、仪表控制面板和计算机采集-处理系统。其中控制面板包括压力控制子面板、温度控制子面板、平流泵控制子面板、真空泵控制按钮、流程图;恒温箱内放有多功能模型仓Ⅰ、多功能模型仓Ⅱ和参考缸;计算机采集系统包括一套数据采集模块和数据处理软件。图1是装置原理流程,装置考虑采用不同岩心、不同岩性、不同气体介质进行工作,同时进行精确计量。把设计制作后的岩心组合装进多功能模型仓,利用气体增压泵维持环压,利用平流泵提供不同的流体介质、不同充注压力,通过温度和压力仪表以及传感器采集温度和压力数据,并经过数据处理软件分析温度压力数据。

在自然界中,已知的产甲烷菌中有一半可利用甲酸盐形成甲烷。甲酸盐首先转化成CO2和H2,然后再通过还原反应生成甲烷。在自然界中能够利用氢还原二氧化碳及利用醋酸盐发酵的产甲烷菌的存在是生物成因的煤层气成藏的必要条件。与近地表甲烷生成过程研究相比,地下(十几米到几百米深度)甲烷生成的研究工作相对较少。在地下环境中,对于甲烷的产出来说,沉积物必须具备使产甲烷菌得以生存及繁殖的孔隙空间。对此,低煤阶煤层中发育的孔隙空间和裂隙系统对甲烷菌的生成是非常有利的。甲烷生成菌不具有直接分解煤层的能力,要形成甲烷须有一个前期阶段,即主要依酸发酵菌和还原菌分解类脂化合物和大分子聚合物如纤维素和蛋白质等;接着微生物进一步脱去长链酸(和乙醇以上的醇)的氢而生成氢、甲酸、乙酸、二氧化碳和醇等。甲烷菌由此取得碳源和营养而生存,并以此为基质进行生物化学和新陈代谢作用产生甲烷。

图1 FY-Ⅱ型煤层气成藏模拟装置流程示意图

3 生物成因煤层气成藏实验过程

煤矿煤岩样品的产甲烷菌检测实验

为了研究伊犁盆地和焉耆盆地低煤阶生物成因气体,在盆地中部分煤矿工作面采集煤层样品密封在解吸罐中,然后送达实验室,在无菌操作条件下,通过对岩样稀释并加入培养基在不同温度条件下培养之后,检测样品中有无微生物存在,并检测微生物种类及数量。经过实验研究,发现在大多数的煤岩样中均检测到了微生物和产甲烷菌的存在(见表1)。

表1 伊犁和焉耆部分煤样的细菌检测结果

甲烷菌煤层产气实验

为了避免煤层原来吸附的甲烷气体的影响,将上述部分密封岩样进行自然解吸,直到再没有气体解吸出来,然后往样品内注入产甲烷细菌进行产甲烷量实验。甲烷菌种泥培养、驯化-接种试验是在农业部成都沼气研究所完成的。实验中采用制取悬浮性接种物方法,弃去了一次富集培养中非活性有机物的绝大部分,再经过二次富集提高微生物的浓度与活性。实验结果表明各种煤岩样品均能产生甲烷气。图2是各岩样产甲烷量曲线,在80天以前产甲烷量是不断增加的,80天之后,产甲烷量呈下降趋势,总之,两地的煤岩样品都能产生一定量的生物甲烷气。这只是模拟实验的结论,自然地质条件下细菌群落的生存条件远不如实验室优越,产甲烷过程不可能在几十天之内完成,而是在一个非常漫长的地质过程中缓慢进行的,但是低产量长时间的累积效应仍然可以产生巨大的甲烷量。

图2 伊宁和焉耆地区煤岩样品产甲烷菌实验

生物甲烷气成藏模拟实验

把接种过甲烷菌的煤层样品放入成藏模拟装置内,在35oC的恒温状态下,开始培养,观测煤岩样品生气过程。经过近两个月的连续实验得到一条压力-时间曲线。经分析认为曲线存在两个明显的曲线段,第一阶段为快速生气阶段,第二阶段为生气-吸附平衡阶段(图3)。对最后生成的气体进行了分析,其所产气体成分主要为CH4、N2和CO2。除个别样品外,绝大多数样品所产气中C2+含量很低,甲烷碳同位素值相差较大,从-56‰~-67‰,表明为生物成因气体。

图3 煤样生物成气后吸附过程中的压力-时间变化曲线

4 实验结果及其讨论

(1)模拟试验表明,一方面在我国西北地区低煤阶煤层中存在产甲烷菌,另一方面证明了低煤阶的煤层可以作为二次生物气的来源。根据资料,伊犁盆地浅部的煤矿区在侏罗系煤层中所产气的δ13C为‰~‰,显然属于生物甲烷气。

(2)与高煤阶相比,低煤阶一般埋藏较浅,孔隙空间较大,适合产甲烷菌的生存和繁殖,所以国内外的低煤阶盆地多发现生物成因的煤层气富集成藏。

(3)在我国西北地区,由于煤阶普遍较低,热成因甲烷生成量有限,次生物成因气生成量巨大,特别是在焉耆和伊犁地区,煤层层数众多,地下径流活跃,煤层中有大量甲烷菌繁殖,有大量的二次生物成因气生成、运移,如遇到断层遮挡、煤层尖灭等圈闭条件,就有可能形成较高的饱和度,形成具有商业价值的煤层气藏群。

参考文献

[1]武汉地质学院编.1981.煤田地质学[M].北京:地质出版杜,2~3

[2]韩德馨,杨起编.1984.中国煤田地质学[M].北京:煤炭工业出版杜,387~407

[3]张建博,王红岩,赵庆波编.2000.中国煤层气地质[M].北京:地质出版杜,15~30

[4]中国煤田地质总局著.1999.中国煤层气资源[M].徐州:中国矿业大学出版杜,26~87

[5]王红岩,刘洪林,赵庆波等编.2005.煤层气富集规律.北京:石油工业出版杜,26~87

[6]钱凯,赵庆波,汪泽成等著.1995.煤层甲烷勘探开发理论.北京:石油工业出版杜,48~52

[7]张彦平等.1996.国外煤层甲烷开发技术译文集,北京:石油工业出版杜,20~80

155 评论

轻舞飞扬庆庆

陈润1 秦勇2

基金项目:国家重大专项(2011ZX05042-01-02),中国矿业大学青年科技基金A类项目(2010QNA09)和中国矿业大学青年教师启动基金资助。

作者简介:陈润,男,1979年生,江苏宿迁人,博士,助理研究员;从事煤层气与CCS研究。地址:(221008)江苏省徐州市中国矿业大学低碳能源研究院。电话:。E-mail:

(1.江苏省煤基CO2捕集与地质储存重点实验室(中国矿业大学低碳能源研究院),江苏徐州 221008;2.中国矿业大学资源与地球科学学院,江苏徐州 221008)

摘要:CO2的煤层封存是-当今节能减排的研究热点。认为CO2煤层封存是通过物理、化学以及微生物转化等方式实现,煤层封存CO2除对地下水以及上覆盖层岩石产生影响外,还可能诱发地震等地质灾害。为了保证煤层封存CO2的安全性与长久性,有必要对CO2在煤层中的运移状况进行监测。基于此,本文论述了目前CO2煤层运移的监测技术,指出CO2煤层封存及监测技术有待深入并加以系统化。

关键词:CO2 煤层 封存 影响 监测

Advance of CO2 Sequestration Effect in Coal Seams and Its Monitoring

CHEN Run1, QIN Yong2

( Key Laboratory of Coal-based and Geological Storage (Low Carbon Energy Institute, China University of Mining and Technology), Xuzhou, Jiangsu 221008, China; of Resource and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China)

Abstract: CO2 sequestration in coal seams is a focus of saving energy and reducing greenhouse gas emissions at is considered that CO2 sequestration in coal seams can be implemented through physical, chemical and microbial is found that CO2 sequestration in coal seams except effects on groundwater, microbes and rocks, geological hazards such as earthquake might be order to ensure the safety and longinquity, the monitoring of CO2 migration in coal seams is on this, the technologies of CO2 migration moni- toring in coal seams are discussed, and it is pointed out that the study of technologies of CO2 sequestration in coal seams and monitoring should be furthering and systematization.

Keywords: CO2; Coal seam; Sequestration; Effect; monitoring

1 引言

人类使用化石燃料排放的CO2气体是一种导致全球变暖的温室气体,其大量排放会带来一系列的自然灾害,从而CO2的减排工作引起世界各国政府与社会各界广泛关注。目前,我国CO2的排放总量仅次于美国,居世界第二位。如何将CO2气体有效封存成为我国环境乃至全球环境问题的一个重要议题。煤层气地质研究表明煤吸附CO2的能力比CH4强,众多研究者提出煤层注入CO2强化CH4产出(唐书恒等,2004;吴建光等,2004;苏现波等,2008)。基于此,笔者探讨了CO2煤层封存机制、CO2封存对煤储层环境影响以及CO2地下运移监测技术,以期为CO2煤层封存与驱替煤层气开发服务。

2 CO2煤层封存技术

煤层封存CO2可通过物理封存、化学封存以及微生物转化等机制实现。在已知的CO2煤层封存技术中,物理封存能力最大,煤层微生物转化最具前景。

物理封存

CO2的物理封存是一种不改变CO2理化性质的封存方式,被看做是天然气开采的逆过程。煤层封存捕获CO2与其他地质体相比既有相同之处,但也存在差异。一方面,在CO2注入煤层初期,煤层捕获CO2也是通过上覆岩层隔挡来实现。即CO2注入煤层后,由于上覆的页岩和粘土质岩类低渗透性而阻挡了CO2向上运移,形成了压力封存箱。另一方面,在高压条件下,煤对CO2吸附能力要比CH4大得多(苏现波等,2008),被压力封堵在煤层的CO2运移一定距离后很快就在煤表面吸附捕获,驱替煤表面吸附CH4产生;实现煤层物理封存CO2的方式转变,同时实现强化煤层气产出的功效。

此外,在一些含水煤层,CO2的物理封存还包括CO2的水溶封存以及其水合物封存等。在高压条件下,CO2在水中的溶解度是极其可观的(陈润等,2007),溶解作用也对CO2煤层封存起到了一定作用,但一般煤层含水性较差,CO2水溶封存在CO2煤层封存中一般不予考虑。CO2水合物封存具有很强的封存能力,但由于其封存需要极其苛刻的温压条件,在煤层封存CO2中很难实现。

化学封存

CO2的化学封存是CO2与其他物质发生化学反应生成新物质而实现CO2固定的一种方法。一般情况下,煤层这种特殊的储层存在渗透率各向异性(KelemenSR et al.,2009),即沿水平方向的渗透能力较强,锤直方向则相对较弱。而这种各向异性表现为煤层沿水平一侧或多侧开口,有利于CO2在盖层下侧向流动。随着运移的进行,CO2与煤中矿物质以及围岩中矿物发生化学反应,实现化学封存。该封存方式随着矿物的类型不同而有显著差异(于洪观,2005)。

中国煤层气技术进展:2011年煤层气学术研讨会论文集

中国煤层气技术进展:2011年煤层气学术研讨会论文集

从而,CO2通过溶蚀作用形成碳酸盐或碳酸氢盐不溶物或可溶物而实现了地质封存。

地下微生物转化

CO2的地下微生物转化利用是少有人涉足的领域,仅有的研究表明:地质条件下注入CO2和H2经微生物转化生成CH4(夏遵义等,2004),这样即实现了CO2封存,又生成了新的能源。由于研究中人为加入了H2,使得储层条件下(少氢气)能否实现CO2的微生物自然捕获并转化有待进一步验证。但相关研究表明:煤储层条件下产氢菌的大量存在是CO2微生物转化的一个有利条件(夏遵义等,2004),其他类型化学反应或低价含铁矿物的蚀变也都可能为产甲烷菌转化CO2提供必要的H2。如生物膜——岩石相互反应、岩浆热液流、水的辐射分解等(徐永昌,1994)。可见,CO2的地下微生物转化在一定的地质条件下是可以实现的。

CO2的微生物封存可实现CO2的永久转化,减少CO2的大气排放,达到减缓温室效应的目的;同时CO2的地下微生物转化具有可观的能源生成前景。但由于地下微生物作用要具备苛刻的环境条件,微生物转化CO2能力还有待进一步研究。

3 CO2封存对环境的影响

地下水污染

CO2封存对地下水污染是多方面的。CO2在水中溶解量增加,会降低地层水的pH值,导致地下水酸化。研究表明,1kg水中溶解1摩尔CO2溶液的pH值为(孙茂远等,1998);研究也表明地下水的酸性不断增强,致使地层中许多微量元素被溶蚀在地层水中富集。CO2对地下某些重金属或其有机化合物大量溶蚀时,则可能严重影响人类工业、农业和生活用水的安全和健康。Wang和.Jaffe(WangS et al.,2004)采用化学模拟的方法,将CO2注入到100m深处让其向浅部含水层运移(中间层位富含一定浓度的硫化铅)。结果发现,在缺少束缚的条件下,封存的CO2充分溶解,导致地层水中大量有害的矿物硫化铅从固体中溶出,造成以注入点为中心的CO2晕,方圆几百米内的地层水受到了严重污染。

岩体变化

如前文所述,随着煤层CO2注入量的增加,CO2注入井附近煤储层负荷压力增加,导致CO2在煤层水中的溶解度增大溶蚀煤中的矿物,改变煤岩对原有矿物的束缚性,降低煤岩及上覆盖层的力学强度,造成岩层断裂;同时,由于煤储层吸附大量的CO2气体发生膨胀效应(KaracanCO,2007;SiriwardaneHJ et al.,2009),减小煤中孔裂隙空间,降低煤储层的渗透率。在地下水存在的情况下,CO2的大量溶解也可能使地层水中的一些矿物沉淀或析出,堵塞煤中通道孔隙。

诱发地质灾害

CO2注入煤层进行封存使得煤层所受有效应力增加,如果注入压力超过上覆地层所能承载压力时,将可能诱发上覆盖层断裂以及断裂沿一定方向移动。该现象反映到地表为地质变形、坍塌等地质灾害。在一些高压层位,伴随着一系列裂缝产生和断层的活动,也有可能诱发地震这种高危害地质灾害。如:美国科罗拉多州Rangely油田,就发生过因向其孔隙中注入流体而导致微地震产生的事件(Gibbs J Felal.,1973);同样由于向深部钻井中注入废液,德国大陆深钻工程(Shapiro S A et al.,1997)和加拿大艾伯特冷湖油田(Talebi S et al.,1998)都曾诱发过中等级地震;美国还曾因此诱发强度高达为级O-hio地震和级Denver地震(Bert M et al.,2005)。

对煤层微生物影响

煤层封存CO2对其中存活的微生物通过多方面产生影响。一方面,pH在之间适宜大部分产甲烷菌生长,而pH介于之间其活性最强(郭泽清等,2006)。煤层水酸化使得产甲烷菌活性降低,生长受到抑制,降低固定CO2能力。另一方面,煤层水的酸化可大量溶解岩石中碱金属元素和微量元素。如果煤中Na,K等离子大量溶解会抑制产甲烷菌的活性;与此相反,Fe,Co,Ni,Se等离子溶解则会增强产甲烷菌活性(祖波等,2008)。可见,金属离子和微量元素的溶解对产甲烷菌的影响应根据地质环境具体分析。

4 CO2运移监测

当CO2注入煤层时,其注入速度及注入量对封存效果及安全性产生重要影响,故开展CO2煤层运移监测是非常有必要的。如前文所述,当CO2注入煤层后,极易对煤层及围岩以及存活于其中的微生物产生影响,故监测多从CO2本身或其对煤层及其围岩地层产生的影响进行开展。目前监测技术主要分为物理监测和化学监测。

物理监测

物理监测有储层压力监测、测井、地震、电磁手段以及地表变形等多种方法(Preston C et al.,2005)。目前使用最广、技术最成熟的是三维地震监测技术和测井监测技术。三维地震监测是通过监测煤层CO2注入量随着时间偏移的变化来实现。即:随着CO2向煤层不断注入,煤吸附气体的饱和度、煤孔隙压力、气体饱和度以及流体运移方向都将发生变化,不同时期观测到的地震资料属性也将发生变化。该方法利用两次或多次观测对比,推断CO2的运移情况。除了人工源地震以外,煤层注入CO2所造成的盖层断裂及其微小震动在监测的过程中都可以加以利用。而电法、电磁法以及重磁法等监测技术都不如地震监测来的直观、准确和形象。

化学监测

地球化学成分的变化也可以有效地反映CO2在煤层中的运移状况。CO2注入煤层后,极易与煤层内的气、水以及围岩发生物理和化学反应,最为明显的变化是流体中酸度增加,尤其酸式碳酸盐离子。通过采集煤层气体和地下水层样品分析CO2的含量或根据水中碳、硫稳定同位素的特征直接测量。Emberley等(2004)研究加拿大Weybum油田封存CO2发现,CO2注入储体后其碳同位素相比注入前存在一定的差异。此外,化学监测与示踪剂联合使用不失为一种较为理想的监测方法。它通过监测CO2碳同位素以及外加示踪剂在煤层中的运移情况来反映CO2在煤层中的平面展布,通过时间偏移来反映CO2在煤层中的运移情况。

5 结语

CO2的煤层封存通过煤层物理封存、化学封存以及微生物封存三种途径来实现。其封存项目的实施除了具有减排、增产效应外,还可能带来一个极大的附加值——生物甲烷生成。最重要的是,CO2煤层封存对地质体具有一定的影响,其污染甚至可能威胁到人类健康。为此,在CO2封存的过程中,在保证CO2注入速度和注入压力的合理性的前提下,监测CO2在煤层中的运移与分布情况也非常重要。目前,CO2地质封存可行在不断细化,CO2地质封存的影响与危害的认识也在不断强化,因此,CO2地下运移的监测技术也需要不断更新。而我国在该方面的研究更是刚刚起步,仅有的试验井也以强化煤层气产出为目的,对CO2封存效果及其对地下环境的影响、危害及其监测甚少(中联煤层气有限责任公司,2007)。因此,相关认识和论证工作亟待深入开展,逐步实现系统化,为CO2煤层封存技术工业化实施扫除障碍。

参考文献

陈润,苏现波,林晓英.2007.亨利定律在煤层气组分溶解溶解分馏中的应用[J].煤田地质与勘探,35(2):31~33

郭泽清,李本亮,曾富英等.2006.生物气分布特征和成藏条件[J].天然气地球科学,17(3):407~413

苏现波,陈润,林晓英等.2008.煤解吸二氧化碳和甲烷的特征曲线及其应用[J].天然气工业,28(7):17~19

孙茂远,黄盛初.1998.煤层气开发利用手册[M].北京:煤炭工业出版社,12~17

唐书恒,汤达祯,杨起.2004.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,33(4):448~453

吴建光,叶建平,唐书恒.2004.注入CO2提高煤层气产能的可行性研究[J].高校地质学报,10(3):463~467

夏遵义,白志强.2004.利用产甲烷菌进行CO2地质固定在中国生物气田的应用初探[J].石油勘探与开发,31(6):72~74

徐永昌.1994.天然气成因理论及应用[M].北京:科学出版社

于洪观.2005.煤对CH4、CO2、N2及其二元混合气体吸附特性、预测和CO2驱替CH4的研究[M].青岛:山东科技大学,157~158

中联煤层气有限责任公司编著.2007.中国煤层气勘探开发技术研究[M].北京:石油工业出版社

祖波,祖建,周富春等.2008.产甲烷菌的生理生化特征[J].环境科学与技术,31(3):5~8

Bert M, Ogunlade D, Heleen D C et special report on CO2 capture and storage [M] .Cambridge: Cam- bridge University Press, 195~276

Emberley S, Hutcheon I, Shevall er M et monitoring of rock-fluid interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada [J] .Energy, 29: 1393~1401

Gibbs J F, Healy J H, Raleigh C B et in the Rangely, Colorado area: 1962~1970 [J].Bulletin of theSeismological Sociely of America, 63: 1557~1570

Karacan C induced volumetric strains internal to a stressed coal associated with CO2 sorption [J] .International Journal of Coal Geology, 72: 209~220

Kelemen S R, Kwiatek L properties of selected block Argonne Premium bituminous coal related to CO2, CH4, and N2 adsorption [J].International Journal of Coal Geology, 77: 2~9

Preston C, Monea M, Jazrawi W et GHG Weyburn CO2 monitoring and storage project [J] .Fuel Processing Technology, 86: 1547~1568

Shapiro S A, Huenges E, Borm the crust permeability from fluid-iniection-induced seismic emission at the KTB site [J] .Geophysical Journal International, 131 (2): F15~F18

Siriwardane H J, Gondle R K, Smith D and swelling of coal induced by desorption and sorption of flu- ids: Theoretical model and interpretation of a field project [J] .International Journal of Coal Geology, 77: 188~202

Talebi S, Boone T J, Eastwood J induced microseismicity in Colorado shales [J] .Pure and Applied Ge- ophysics, 153: 95~111

Wang S, Jaffe P of trace metals in potable aquifers due to CO2 release from deep formations [J] .Energy Conversion and Management, 45 (18-19): 2833~2848

304 评论

莫小小爱吃肉

张兵 叶建平 张晓朋

( 中联煤层气有限责任公司 北京 100011)

摘 要: 目前,向深部煤层注入/埋存二氧化碳开采煤层气技术已经发展到微型先导性试验阶段,世界各国所做试验结果都表明该技术能够提高煤层气的单井产量和采收率,同时能够实现二氧化碳的埋存。但是,针对注入二氧化碳之前的选区评价研究较少,主要针对盆地级别的基础参数评价,没有进行系统的研究。本文以注入二氧化碳开采煤层气的可靠性和经济性两个基本原则,将选区分为盆地和有利区带评价两个层次,针对影响选区评价的地质、工程和经济因素,总结出五大方面 17 个影响参数,划分出各参数的评价指标。利用层次分析法对沁水盆地柿庄北区块和新疆硫磺沟区块进行了评价,优选出适合深煤层注入/埋藏二氧化碳开采煤层气的区域。

关键词: 深煤层 注入 二氧化碳 煤层气 选区 评价体系

基金项目: 科技部国际科技合作项目 ( 2007DFB60050) “深煤层注入/埋藏 CO2开采煤层气技术研究”。

作者简介: 张兵,男,1982 年生,工程师,现从事煤层气勘探开发研究工作。地址: 北京市东城区安外大街甲 88 号 ( 100011) 。Email: bzh010@163. com。

Deep Coal CO2Sequestration and Enhanced Coalbed Methane Production Selection Evaluation Technology

ZHANG Bing YE Jianping ZHANG Xiaopeng

( China United Coalbed Methane co,ctd. Beijing 100011,China)

Abstract: At present,the deep coal CO2sequestration and enhanced coalbed methane production selection evaluation technology has been developed to the micro-pilot test stage. Test results around the world have shown that the technique can improve the CBM production and coalbed methane recovery, CO2can be sequestrated. However,there is little research about the selection evaluation technology of deep coal CO2seques- tration and enhanced coalbed methane production,the main research is the basis for basin-level parameters of e- valuation. In this paper,reliability and economy of injecting CO2into coal seams are two basic principles. The con- stituency is divided into two-level zone of the basins and favorable area. This article summarizes five major aspects of 17 parameters from the evaluation of geological,engineering and economic factors. They are analyzed by the e- valuation index of each parameter. In this paper,Shizhuang North Block of Qinshui Basin and Liuhuanggou Block of Xinjiang are evaluated using the analytic hierarchy process. Coalbed methane extractions zone that suitable for deep coal CO2injection / burying are selected.

Keywords: Deep coal; injection; CO2; coalbed methane; selection; evaluation

深部煤层注入/埋藏二氧化碳开采煤层气(CO2ECBM)技术是指通过向煤层中注入一定量的二氧化碳,利用CO2更容易吸附到煤层表面上的性质,置换出更多的甲烷,提高煤层气井的单井产量和采收率,将大量的温室气体埋藏到煤层中。该技术一方面能实现CO2埋存,另一方面可提高煤层气井产量。

目前,美国、加拿大、波兰、中国和日本都进行了微型先导性试验。多次试验结果表明向煤层中注入二氧化碳能够提高煤层气井的产量和埋存CO2(叶建平等,2007;中联煤层气有限责任公司,2008;Scott Reeves et al.,2002;Van Bergen et al.,2003;,et al.,2004;Reeves al.,2005; al.,2007;,2008;)。但是,并不是所有的含煤地层都适合该技术,在注入CO2前进行深部煤层注入/埋存二氧化碳开采煤层气选区评价是非常必要的。到目前为止,针对注入二氧化碳之前的选区评价研究较少,主要针对盆地级别的基础参数评价,没有针对选区评价进行系统的研究。

1 选区的基本原则

深煤层中注入/埋藏二氧化碳开采煤层气选区需要遵循两个基本原则:一是可靠性,即选择的地点必须能够将CO2长时间埋藏在地层中;二是经济性,即该技术的应用能够创造经济效益。

大量的CO2需要长时间或者永久的被埋藏在煤层中才能起到减少温室气体的作用。CO2泄露出来,将会影响到地层水和土壤,对注入地区环境造成影响。

深煤层注入/埋藏二氧化碳开采煤层气的技术已经达到微型先导性试验阶段,大范围的推广需要该技术应用具有经济性。国内没有对埋藏CO2进行补偿的政策,如果大规模的埋藏CO2必须选择在能够产生经济效益的地点实施。

2 选区阶段划分

深煤层注入/埋藏二氧化碳开采煤层气选区是分析和评价某一特定区域(小至一口井的影响范围,大至全盆地)地下煤层埋藏CO2与开采煤层气能力的一项工作。选区按含煤盆地(坳陷)和区带两个层次进行评价。由于各个层次的规模、对象不同,评价的内容、要求和方法也不同。在选区过程中,先进行盆地的优选,然后针对有潜力的盆地进行区带的筛选。通过地质评价、埋藏量的计算、风险分析和经济分析等环节来实现有利区带的优选。

盆地评价

盆地评价是区域性评价的基本单元,是在对盆地基本地质条件(包括盆地类型、构造、沉积、地热等)、盆地煤层气地质条件(包括含气量、煤层气丰度和煤炭储量等)、煤矿开采、钻井情况、基础设施等进行综合分析,计算相关的评价参数,估算煤层气资源量和二氧化碳可埋藏量。针对各个参数进行盆地级别的评价,选出优势盆地。

有利区带评价

在优势盆地选区的基础上,根据可获得的采矿数据和煤岩特征参数(包括工业分析、元素分析和镜质组反射率等)评价煤田的范围和品质。根据井下岩心分析测试,确定煤层含气量、渗透率、等温吸附特征、含气饱和度等。针对各参数进行综合评价,优选出适合煤层中注入/埋藏二氧化碳开采煤层气的有利区带,并对所在地区的交通和天然气需求等情况进行评价,利用层次分析法确定最有利的区带。

3 选区评价指标体系

目前,国际上对煤层中注入/埋藏二氧化碳开采煤层气选区评价主要针对地质埋藏潜力进行分析,并且是以大的盆地为评价单位,评价系统只包括地质因素,较少的对埋藏CO2的经济性进行评价。

本文针对ECBM项目所涉及的主要因素进行了评价,包括煤层气的资源潜力和CO2埋藏潜力、CO2埋存的安全性、CO2供给能力、注入地点的工程控制程度和市场潜力等五大方面17个参数进行评价。

指标Ⅰ———煤层气资源潜力/CO2埋藏潜力

煤层气的资源潜力

煤层气资源潜力可以用待选点的煤层气资源丰度来判定,它能够代表待选点煤层气开发潜力。煤层气资源丰度以亿m3/km2作为单位,它是吨煤含气量和净煤厚度的函数。

煤层气资源丰度由下式计算:

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

式中:A为面积,km2,取1km2;H为煤层的有效厚度,m;nc为煤的密度,t/m3;fa为煤中的灰分占煤的质量分数,%;fm为煤中的水分占煤的质量分数,%;GCH4为含气量(空气干燥基),m3(气)/t(煤);

CO2埋藏潜力

它与煤层气资源潜力有密切的关系。本文同样采用单位平方公里能够埋存二氧化碳的量来表述,以亿m3/km2作为单位。

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

式中:A为面积,km2,取1km2;H为煤层的有效厚度,m;nc为煤的密度,t/m3;fa为煤中的灰分占煤的质量分数,%;fm为煤中的水分占煤的质量分数,%;GCO2为二氧化碳在原始储层压力下的吸附量(空气干燥基),m3/t。

为了方便对比CO2在某一区带的埋存潜力,只计算原始储层压力下的最大埋藏量。本次研究具体评价指标分为Ⅰ、Ⅱ、Ⅲ类。采用单位面积埋存量大于等于2为Ⅰ类,大于1小于2的为Ⅱ类,煤层气资源丰度小于等于1的为Ⅲ类(表1)。

表1 煤层气资源/CO2储存潜力评价表

指标Ⅱ———埋存的风险

CO2能被大量的长期保存在地层中是主要目的之一。影响埋存时间长短的影响因素主要是埋存地点的地质和工程条件,包括埋存深度、埋存层位上部盖层的厚度及封闭性、埋存地点断层发育的复杂程度与封闭性,以及与埋存地层连通井的封闭性。

(1)煤层深度。根据目前国内煤炭开采深度大部分都在0~1000m范围。煤层中埋藏二氧化碳需要选择深部非开采煤层。

(2)盖层的封闭性。由于在CO2注入过程中,需要尽量保持井底压力低于煤层的破裂压力,但是注入压力会逐渐大于煤储层原始压力,因此煤层上部盖层的封闭性非常重要。一般认为泥岩或页岩作为盖层的密封性最好,其次是致密砂岩。盖层的厚度越大,封闭能力越好。

(3)断层的发育。在封存地点有大的断层发育,并且断层是开启状态,那么CO2将沿着断层裂缝运移到其他的地层或者到地面。

(4)埋藏区废弃井的处理。如果注入区块内已经有煤田勘探钻孔或者煤层气废弃井,需要对这些井的处理情况进行监测。

(5)地震发生概率。将CO2埋存到地下的时间有效性目前并没有明确的说法,一般认为至少在100年以上才有控制温室气体排放的效果。因此,要求优选的地区地壳比较稳定,不易发生地震。

本文将以上五个风险因素划分三个层次进行评价(表2)。

表2 埋存的风险评价表

指标Ⅲ———CO2供给潜力

要使CO2-ECBM项目具有经济效益,必须有大量廉价的CO2源。

(1)CO2的捕获成本。目前中国进行烟道气的回收电厂都分布在东部地区,距离煤田很远,运输费用很高。在这种情况下,CO2运输成本太大。另一个可选择的来源是利用纯净的CO2源。例如,从氢气生产炉的尾气中进行提纯CO2,这时CO2捕获成本将大大降低,从而能提高CO2-ECBM技术的经济性。

(2)CO2的运输成本。CO2的运输方式包括汽车运输、管道运输、火车运输和船运。在中国西部地区进行船运的可能性几乎为零。微型试验要架设CO2的专门运输管线的成本过高。火车的运输成本较低,但需要再转为汽车运输到注入地点。汽车的单公里运输成本最高,但对于距离小于100km的情况,这种运输方式是较方便和经济的。

(3)CO2埋存后的安全性。深部煤层注入/埋存二氧化碳开采煤层气要求注入气体CO2的浓度在90%以上即可。但是,如果混合气体中含有有毒或者污染环境的气体也是非常危险的。因为注入的气体可能跟随采出的煤层气到地面污染环境或者对人类的安全造成危害。

本文对5个与CO2供给潜力有关的参数进行评价,并且划分为三个层次(表3)。

表3 CO2供给潜力评价表

指标Ⅳ———注入地区工程控制程度

为了正确地评价项目,必须获得一些地质和工程资料。数据资料不充足将增加评价过程中的不确定性。注入CO2最好选择勘探成熟的地区。

通过数值模拟认为在煤层气井达到高峰的时候注入CO2能达到提高产量的最好效果。具体分析见图1。

图1 不同阶段注入二氧化碳开采煤层气的数值研究

a)没有注入CO2情况下,煤层气井的生产情况。

b)对于CO2减排的角度来看,应该越早的注入CO2越能达到减排的目的。但是在生产初期就注入CO2,可能导致注入压力过大,注入总量减少,并且注入CO2后,CO2在煤层气井达到最高产量之前突破,最终导致煤层气井生产出来的甲烷含量降低,CO2含量很高,生产井被废弃。

c)在煤层气井的产气高峰后期注入CO2,煤层气井的产量将会迎来另一次的高峰,并且CO2能够在较低的注入压力下注入。同时,CO2的突破时间将延后,煤层气井的总产量增加。直到CO2突破后,注入压力仍然不是很高,可以继续注入一段时间,从而增加了注入CO2的总量。

另外,注入点所在区带的地球物理勘探程度和煤层气井的数量也影响了评价的可信程度。本文选择三个指标进行评价(表4)。

表4 注入地区工程控制程度

指标Ⅵ———市场潜力

煤层气销售获取利益是CO2-ECBM项目的主要经济驱动力。煤层气作为一种天然气,需要通过管线输送到集输中心。一旦煤层气被输送到集输中心,就需要分销网络将煤层气输送到用户。如果在试验点附近存在这样的管线基础设施,那么项目的市场潜力就极大地被提高。另外,CO2-ECBM项目将产生碳交易指标,创造货币价值,在评价市场潜力时,我们需要考虑这方面的效益。目前何时能实现碳交易指标的销售还不是很清楚。本文将市场潜力的两个参数列出评价指标(表5)。

表5 市场潜力分析标准表

4 综合评价

本文选择沁水盆地柿庄北区块和新疆硫磺沟区块进行深部煤层注入/埋存二氧化碳开采煤层气潜力评价,对区带的地质、地球物理和地理资料进行了收集整理,并按照上述的评价准则进行分级评价,采用层次分析法进行权重排序,从而优选出有利区带。

首先建立层次结构模型,根据本文的评价指标进行分级评价,运用分层分析法计算各个区块的权重(图2与表6)。

图2 层次结构模型

表6 选区参数评分及权重

经过分层分析法的判定,无论是在环境和经济性等方面柿庄北更适合进行注入CO2开采煤层气(表7)。

表7 二氧化碳注入选区评价结果

参考文献

叶建平,冯三利.2007.沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J].石油学报.(4):77~80

中联煤层气有限责任公司,.中国二氧化碳注入提高煤层气采收率先导性试验技术[M].地质出版社,18~

M. J. Mavor,W. D. Gunter and J. R. Robinson,2004. Alberta Multiwell Micro-Pilot Testing for CBM Properties,Enhanced Methane Recovery and CO2Storage Potential Paper 412,2004. International Coalbed Methane Symposium,University of Ala- bama,Tuscaloosa,May 2004,14p

Reeves S. R. and Oudinot,2005. The Allison Unit CO2- ECBM Pilot-A Reservoir and Economic Analysis. International Coal- bed Methane Symposium,Paper 0523,Tuscaloosa,Alabama,May 16 ~ 20

Schepers. K. C. and Reeves. S. R. 2007. Gas Injection and Breakthrough Trends as Observed in ECBM Sequestration Pilot Projects and Field Demonstrations. International Coalbed Methane Symposium,Paper 0714,Tuscaloosa,Alabama,May 21 ~ 25,2007

Scott Reeves and Anne Taillefert Advanced Resources International . 2002. Reservoir Modeling for the Design of the RECO- POL CO2Sequestration Project,Poland U. S. Department of Energy July

S. Reeves Geologic Sequestration of CO2in Deep,Unmineable Coalbeds. An Integrated Research and Commercial - Scale Field Demonstration Project,2008

Van Bergen. 2003. HJM Pagnier Development of a field experiment of ECBM in the Upper Silesian Coal Basin of Poland( RECOPOL)

163 评论

相关问答

  • 煤层气论文参考文献

    吴 见 王赞惟 ( 中联煤层气有限责任公司,北京 100011) 摘 要: 我国低煤阶煤层气资源十分丰富,但目前开发效果不明显。本文总结了低煤阶煤层气勘探开发现

    豌豆大晟 1人参与回答 2023-12-08
  • 煤层气生产技术毕业论文

    黄晓明1 F.Andrew2 莫日和1 王洪洲2 林亮1 黄晓明,中联煤层气有限责任公司,邮箱:,电话:64298881。 (1.中联煤层气有限责任公司 北京

    我豆是我 3人参与回答 2023-12-09
  • 中国煤层气杂志社

    刘洪林 王红岩 李景明 李贵中 王勃 杨泳 刘萍 (中国石油勘探开发科学研究院廊坊分院 河北廊坊 065007) 作者简介:刘洪林,男,江苏徐州人,1973年生

    白色棉袜 3人参与回答 2023-12-06
  • 煤炭机械杂志社

    那是。同感,

    meteorakira 6人参与回答 2023-12-09
  • 中国煤层气杂志电话

    叶建平 作者简介:叶建平,男,1962年生,教授级高工,中联煤层气有限责任公司总经理助理,中国煤炭学会煤层气专业委员会秘书长,主要从事煤层气勘探开发科研工作。地

    江河装饰 2人参与回答 2023-12-11