• 回答数

    6

  • 浏览数

    349

虾虾虾虾酱
首页 > 职称论文 > 高等数学函数论文800字

6个回答 默认排序
  • 默认排序
  • 按时间排序

丢了肥膘的猪

已采纳

您好,看我资料

282 评论

爆米花也是花

生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。下面是我整理的数学科技论文800字,希望你能从中得到感悟! 数学科技论文800字篇一 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学科技论文800字篇二 生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。 记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以,也就是35*(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*(元),40*(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈,32/650≈0。049,>,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。 记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报x个数,我就报(4-x)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔! 看了“数学科技论文800字”的人还看: 1. 科技论文800字 2. 科技论文800字左右 3. 科技论文800字以上 4. 高一科技论文800字 5. 高中生科技论文800字

91 评论

壹只头俩只脑

高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。

92 评论

李利李利5

像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。

295 评论

五小样儿同学

随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。

一、高等数学在地方高等职业教育中遇到的问题及解决办法

(一)数学师资力量短缺,教师学历偏低

地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。

(二)学生对数学课重要性认识不够,学习热情不高

目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。

(三)高等数学课程设置不合理,教学与实际应用脱节

由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。

二、总结

高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。

一、网络教育高等数学的现状分析

1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。

2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。

二、网络教育高等数学的教学初探

教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:

1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。

2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。

90 评论

活性炭1986

牛顿、莱布尼茨和微积分微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作 者以及技术人员不可缺少的工具。 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 1605 年 5 月 20 日,在牛顿手写的一面文件中开始有 “ 流数术 ” 的记载,微积分的诞生不妨以这一天为标志。牛顿关于微积分的著作很多写于 1665 - 1676 年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。 牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。 牛顿于 1642 年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前卓越的。尽管取得无数成就,他仍保持谦逊的美德。 如果说牛顿从力学导致 “ 流数术 ” ,那莱布尼茨则是从几何学上考察切线问题得出微分法。他的第一篇论文刊登于 1684 年的《都市期刊》上,这比牛顿公开发表微积分著作早 3 年,这篇文章给一阶微分以明确的定义。 莱布尼茨 1646 年生于莱比锡。 15 岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到 20 岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。莱布尼茨对数学有超人的直觉,并且对于设计符号很第三。他的微积分符号 “dx\" 和 ”∫” 已被证明是很发用的。 牛顿和莱布尼茨总结了前人的工作,经过各自独立的研究,掌握了微分法和积分法,并洞悉了二者之间的联系。因而将他们两人并列为微积分的创始人是完全正确的,尽管牛顿的研究比莱布尼茨早 10 年,但论文的发表要晚 3 年,由于彼此都是独立发现的,曾经长期争论谁是最早的发明者就毫无意义。牛顿和莱尼茨的晚年就是在这场不幸的争论中度过的。 牛顿的“流数术” 数学史的另一次飞跃就是研究“形”的变化。17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克?牛顿(1642~1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念 直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力不概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形――线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (1)已知流量之间的关系,求它们的流数的关系,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值,求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(1)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20日的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(. Leibniz 1646~1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是他们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一等,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度――阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展。莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。 德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。 微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。 应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。 直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、…… 欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。 留给后人的思考 从始创微积分的时间说牛顿比莱布尼茨大约早10年,但从正式公开发表的时间说牛顿却比莱布尼茨要晚。牛顿系统论述“流数术”的重要著作《流数术和无穷极数》是1671年写成的,但因1676年伦敦大火殃及印刷厂,致使该书1736年才发表,这比莱布尼茨的论文要晚半个世纪。另外也有书中记载:牛顿于1687年7月,用拉丁文发表了他的巨著《自然哲学的数学原理》,在此文中提出了微积分的思想。他用“0”表示无限小增量,求出瞬时变化率,后来他把变量X称为流量,X的瞬时变化率称为流数,整个微积分学称为“流数学”,事实上,他们二人是各自独立地建立了微积分。最后还应当指出的是,牛顿的“流数术”,在概念上是不够清晰的,理论上也不够严密,在运算步骤中具有神秘的色彩,还没有形成无穷小及极限概念。牛顿和莱布尼茨的特殊功绩在于,他们站在更高的角度,分析和综合了前人的工作,将前人解决各种具体问题的特殊技巧,统一为两类普通的算法――微分与积分,并发现了微分和积分互为逆运算,建立了所谓的微积分基本定理(现今称为牛顿――莱布尼茨公式),从而完成了微积分发明中最关键的一步,并为其深入发展和广泛应用铺平了道路。由于受当时历史条件的限制,牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念比较模糊,因此引发了长期关于微积分的逻辑基础的争论和探讨。经过18、19世纪一大批数学家的努力,特别是在法国数学家柯西首先成功地建立了极限理论之后,以极限的观点定义了微积分的基本概念,并简洁而严格地证定理即牛顿―莱布尼茨公式,才给微积分建立了一个基本严格的完整体系。 不幸的是牛顿和莱布尼茨各自创立了微积分之后,历史上发生了优先权的争论,从而使数学家分为两派,欧洲大陆数学家两派,欧洲大陆的数学家,尤其是瑞士数学家雅科布?贝努利(1654~1705)和约翰?贝努利(1667~1748)兄弟支持莱布尼茨,而英国数学家捍卫牛顿,两派争吵激烈,甚至尖锐到互相敌对、嘲笑。牛顿死后,经过调查核实,事实上,他们各自独立地创立了微积分。这件事的结果致使英国和欧洲大陆的数学家停止了思想交流,使英国人在数学上落后了一百多年,因为牛顿在《自然哲学的数学原理》中使用的是几何方法,英国人差不多在一百多年中照旧使用几何工具,而大陆的数学家继续使用莱布尼茨的分析方法,并使微积分更加完善,在这100年中英国甚至连大陆通用的微积分都不认识。虽然如此,科学家对待科学谨慎和刻苦的精神还是值得我们学习的。 莱布尼兹 莱布尼兹 (1646-1716) 莱布尼兹是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。 生平事迹莱布尼兹出生于德国东部莱比锡的一个书香之家,广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,还广泛阅读了培根、开普勒、伽利略、等人的著作,并对他们的著述进行深入的思考和评价。在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。 20岁时他发表了第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。 莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作。他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。 始创微积分 17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼兹在1673-1676年间也发表了微积分思想的论著。以前,微分和积分作为两种数学运算、两类数学问题,是分别加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼兹和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表明了微积分基本 示的微积分运算法则。 然而关于微积分创立的优先权,数学上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿。莱布尼兹在1684年10月发表的《教师学报》上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献。牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外。”因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹。莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他发明了一套适用的符号系统,如,引入dx 表示x的微分,∫表示积分,dnx表示n阶微分等等。这些符号进一步促进了微积分学的发展。 1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。 莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼兹证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论。此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础。 丰硕的物理学成果 莱布尼兹的物理学成就也是非凡的。他发表了《物理学新假说》,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,他将带着处于完全静止状态的物体的部分一起运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在《教师学报》上发表了“关于笛卡儿和其他人在自然定律方面的显著错误的简短证明”,提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,第一次认为动能守恒是一个普通的物理原理。他又充分地证明了“永动机是不可能”的观点。他也反对牛顿的绝对时空观,认为“没有物质也就没有空见,空间本身不是绝对的实在性”,“空间和物质的区别就象时间和运动的区别一样,可是这些东西虽有区别,却是不可分离的”。在光学方面,莱布尼兹也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。可以说莱布尼兹的物理学研究一直是朝着为物理学建立一个类似欧氏几何的公理系统的目标前进的。 发明乘法计算机 德国人莱布尼兹发明了乘法计算机,他受中国易经八卦的影响最早提出二进 制运算法则。莱布尼兹对帕斯卡的加法机很感兴趣。于是,莱布尼兹也开始了对计算机的研究。1672年1月,莱布尼兹搞出了一个木制的机器模型,向英国皇家学会会员们做了演示。但这个模型只能说明原理,不能正常运行。 1674年,最后定型的那台机器,就是由奥利韦一人装配而成的。莱布尼兹的这台乘法机长约1米,宽30厘米,高25厘米。它由不动的计数器和可动的定位机构两部分组成。整个机器由一套齿轮系统来传动,它的重要部件是阶梯形轴,便于实现简单的乘除运算。莱布尼兹设计的样机,先后在巴黎、伦敦展出。由于他在计算设备上的出色成就,被选为英国皇家学会会员。 中西文化交流之倡导者 莱布尼兹对中国的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向耶酥会来华传教士格里马尔迪了解到了许多有关中国的情况,包括养蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料编辑成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在《中国近况》一书的绪论中,莱布尼兹写道:“全人类最伟大的文化和最发达的文明仿佛今天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲——中国。”“中国这一文明古国与欧洲相比,面积相当,但人口数量则已超过。”“在日常生活以及经验地应付自然的技能方面,我们是不分伯仲的。我们双方各自都具备通过相互交流使对方受益的技能。在思考的缜密和理性的思辩方面,显然我们要略胜一筹”,但“在时间哲学,即在生活与人类实际方面的伦理以及治国学说方面,我们实在是相形见拙了。”在这里,莱布尼兹不仅显示出了不带“欧洲中心论”色彩的虚心好学精神,而且为中西文化双向交流描绘了宏伟的蓝图,极力推动这种交流向纵深发展,是东西方人民相互学习,取长补短,共同繁荣进步。莱布尼兹为促进中西文化交流做出了毕生的努力,产生了广泛而深远的影响。 由于莱布尼茨在牛顿完成其前两段工作之后曾访问巴黎(1672年)和伦敦(1673年),并且和了解牛顿微积分工作的科学家们通过信,因而被指责为“剽窃者”。这使他起而为自己的名誉辨护,因而使这场争论达到了相当激烈的地步。许多数学家都被牵扯了进来,直到使欧洲数学家分成两派,大陆的数学家们为莱布尼茨辩护,英国的数学家们则捍卫牛顿,以至长期对立,形成学术上的门户之见,达到双方停止了学术思想交流的程度,影响了此后一段时间的数学进展。在牛顿和莱布尼茨都已逝世之后进行的调查表明:虽然牛顿的大部分工作是在莱布尼茨之前做的,但莱布尼茨也是微积分主要思想的独立创立者,他们都同样地接受了前辈数学家的启发,同样地作出了自己的独立贡献。在以前的科学史上我们已经看到,在以后的科学史上我们还将一再地看到这种同一发现在大致相同的时间被完全不同甚至互不相识的人们独立完成的现象。这种现象的大量出现,最好不过地说明:是科学的发展造就了杰出的科学家,而不是杰出科学家的个人天赋决定了科学的发展。

165 评论

相关问答

  • 数学论文800字数列

    【摘 要】高等数学是高职院校的基础课程之一,本文以案例教学为载体,通过若干具体应用实例阐述了如何培养学生的数学应用能力和实践能力,从而更好地适应当前高等职业教育

    天晴小姐8755 5人参与回答 2023-12-08
  • 高等数学函数论文800字

    您好,看我资料

    虾虾虾虾酱 6人参与回答 2023-12-08
  • 数学论文高一800字

    数学是人类的一种文化,我们的数学学习,在内容上应当是现实的、有意义的、富有挑战性的。数学不仅帮助我们更好地探求客观世界的规律,同是也为我们交流信息提供了一种有效

    小淘淘0312 4人参与回答 2023-12-11
  • 大一高数论文800字

    数学与生活 自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。数学是一门给人智慧、让人聪

    超级能吃的兔兔 6人参与回答 2023-12-07
  • 高中三角函数研究性论文800字

    谁有高中数学小课题的完整资料,发出来我们共享哈,谢谢

    sanmoyufeng 3人参与回答 2023-12-05