• 回答数

    2

  • 浏览数

    288

郭嘎嘎2222
首页 > 职称论文 > 切割类毕业论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

孙先生孙太太

已采纳

《模具工业》2001. No . 4 总 242 40激 光 加 工 技 术 在 模 具 制 造 中 的 应 用江苏理工大学(江苏镇江 212013) 张 莹 周建忠 戴亚春[摘要]随着激光加工技术的日趋成熟和工业用大功率激光设备价格的逐渐下降 ,给产品和模具的制造工艺带来了新的变革 ,在模具制造、 模具表面强化与维修、 取代模具等 3个方面 ,就激光优化模具制造工艺作了较为详细的分析和探讨。关键词 模具 激光 工艺优化[ Abstract ]Wi t h t he mat uri ng of t he las e r p r oces si ng t echnology and t he dec r easi ng of p rice of t hei ndus t rial la r ge - p owe r las e r e quipme nt , a new i nnovat ion was br ought t o t he manuf act uri ngt echnology of t he p r oduct s and t he dies and moulds . A r elat ively de t ailed analysis and dis cus sionwas made on t he las e r op t imized manuf act uri ng p r oces s f or dies and moulds f r om t hr e e asp ect s ofmanuf act uri ng , s urf ace r ei nf orceme nt and mai nt e nance , and s ubs t i t ut ive dies or moulds .Key words die and mould , las e r , t echnological p r oces s op t imizat ion1 引 言激烈的市场竞争使制造企业对快速响应市场需求和一次制造成功等要求日益迫切。而在常规制造系统中 , 产品生产所需大量模具的设计、制造和装配调试不仅耗费大量资金 , 更严重的是延长了产品生产的准备时间 , 从而延长了新产品开发周期 ,形成制造过程中的瓶颈。因此 , 如何快速有效地制造出高质量、低成本的模具及产品 , 就成为人们不断探索的课题。随着激光加工技术的日趋成熟和工业用大功率激光器设备价格的下降 , 给产品和模具制造工艺带来了重大变革。本文在模具制造、模具表面强化与维修、取代模具等 3个方面 , 就激光加工在模具制造中的应用作一些探讨。2 模具制造2. 1 模具的激光叠加制造1982年 ,日本东京大学的中川教授等人提出用薄片叠加法制造拉伸模 , 1985年 , 美国加州某公司推出了模具的激光叠加制造法 , 并获得专利 , 其工艺流程见图 1 ,原理为将激光切割的多层薄板叠加 ,并使其形状逐渐发生变化 , 最终获得所需的模具立体几何形状。日本在冲模的激光叠加制造方面已达到实用阶段 ,所制的凸、 凹模质量高 ,加工尺寸精度— — —— — —— — —— — —— — —— — ——收稿日期:2000年8月10日已达 ±0. 01mm ,切割厚度为 12mm。 经激光切割后 ,在切口表面形成深 0. 1~0. 2mm、 硬度为 800HV 的硬化层 ,用来冲裁 1mm 厚的钢板 ,单凭自冷硬化层就可冲压 10 000 件 , 如在激光切割后再经火焰淬火 ,则可冲压 3~5万件。 由于各薄板间的连接简单 ,故用叠加法制作冲模 ,成本可降低一半 ,生产周期大大缩短。用来制造复合模、落料模和级进模等都取得了显著的经济效益。图 1 激光叠加模具制造工艺流程由模具 CAD 和激光切割相结合构成一个完整的模具 CAD/ CAM 系统 ,实现板料切割的 FMS ,适用于多品种小批量生产。用激光切割的薄板来叠加合成任意三维曲面的制造系统 , 不仅为在塑性加工和模具领域中实行 FMS 提供了思路 , 而且对于内部结构复杂的模具制造 ,如型孔、 中孔体及复杂的冷却管道等 ,也是快速而经济的制造模具的有效方法 ,并且能带动其他技术如固相扩散等的发展。2. 2 快速模具制造模具 CAD三维设计二维外形NC 程序激光切割去除梯级创层面精加工成形模具装配薄片连结精加工NC 程序模 具 制 造 技 术《模具工业》2001. No . 4 总 242 41快速成型制造技术(RPM)是 80年代后期出现的一项制造技术 , 目前 RPM 技术已发展了十几种工艺方法。基于 RPM 技术快速制造模具的方法多为间接制模法 , 即利用 RPM 原型间接地翻制模具。(1) 软质简易模具 (如汽车覆盖件模具) 的制作。采用硅橡胶、低熔点合金等将原型准确复制成模具 , 或对原型表面用金属喷涂法或物理蒸发沉积法镀上一层熔点极低的合金来制作模具。这些简易模具的寿命为 50~5 000件 ,由于其制造成本低 ,制作周期短 , 特别适用于产品试制阶段的小批量生产。(2) 钢质模具制作。RPM 原型 — — — 三维砂轮— — — 整体石墨电极 — — — 钢模 ,一个中等大小、 较为复杂的电极一般 4~8h 即可完成。 美国福特汽车公司用此技术制造汽车覆盖件模具取得了满意的效果 ,与传统机械加工制作模具相比 , 快速模具制造省去了耗时、 昂贵的 CNC加工 ,加工成本及周期大大降低 ,具有广阔的应用前景。3 模具表面强化与修复为提高模具的使用寿命 , 常常需对模具表面进行强化处理。常用的模具表面强化处理工艺有化学处理 (如渗碳、 碳氮共渗等) 、 表层复合处理 (如堆焊、 热喷涂、 电火花表面强化、 PVD 和 CVD 等) 以及表面加工强化处理(如喷丸等) 。这些方法大多工艺较为复杂 , 处理周期较长 , 且处理后存在较大的变形。采用激光技术来强化和修复模具 , 具有柔性大 , 表面硬度高 , 工艺周期短 , 工作环境洁净等优点 ,因此具有很强的生命力。3. 1 激光相变硬化激光相变硬化 (激光淬火) 是利用激光辐照到金属表面 , 使其表面以很高的升温速度达到相变温度 (但低于熔化温度) 而形成奥氏体 ,当激光束离开后 , 利用金属表面本身热传导而发生自淬火 , 使金属表面发生马氏体转变 , 形成硬度高、抗磨损的表层 , 从而使金属表面得到强化。所用设备为三轴联动的数控激光加工机。影响激光强化的主要因素有激光功率、光斑尺寸和扫描速度。在强化过程中要对这些参数进行优化 , 并对具体材料选择合适的激光处理参数。对于CrWMn、 Cr12MoV、 Cr12、 T10A 及 Cr-Mo 铸铁等的常用模具材料 , 在激光处理后 , 其组织性能较常规热处理普遍改善。 例如 ,CrWMn 钢在常规加热时易在奥氏体晶界上形成网状的二次碳化物 , 显著增加工件脆性 ,降低冲击韧性 ,使用在模具刃口或关键部位寿命较低。采用激光淬火后可获得细马氏体和弥散分布的碳化物颗粒 ,清除网状 ,并获得最大硬化层深度以及最大硬度 1 017. 2HV。Cr12MoV 钢激光淬火后的硬度、抗塑性变形和抗粘磨损能力均较常规热处理有所提高。对 T8A 钢制造的凸模和Cr12Mo 钢制造的凹模 ,激光硬化深 0. 12mm ,硬度1 200HV , 寿命提高 4~6倍 , 既由冲压 2万件提高到 10~14万件。 对于 T10钢 ,激光淬火后可获得硬度 1 024HV、 深 0. 55mm 的硬化层;对于 Cr12 ,激光淬火后可获得硬度 1 000HV、 深 0. 4mm 的硬化层 ,使用寿命均得到了较大的提高。3. 2 激光涂覆激光涂覆是用激光在基体表面覆盖一层薄的具有一定性能的涂覆材料 , 这类材料可以是金属或合金 ,也可以是非金属 ,还可以是化合物及其混合物。在涂覆过程中 , 涂覆层在激光作用下与基体表面通过熔合迅速结合在一起。它与激光合金化的主要区别在于经激光作用后涂层的化学成分基本上不变化 , 基体的成分基本上不进入涂层内。激光涂覆工艺实用的材料范围很广 , 正在研究的母体材料有低碳钢、 合金钢、 铸铁、 镍铬钛耐热合金等 ,研究的添加材料有钴基合金、 铁基合金和镍基合金等。采用激光技术在有送粉器的 2kW CO2 激光器上 , 对 4Cr5MoV1Si 钢基体表面涂覆一层由镍基高温合金和 WC + W2C 粒子组成的高温耐磨合金粉末 ,在激光功率 P = 1 500W ,送粉量为 10g/ min ,工件移动速度为 2~3mm/ s 条件下 ,获得多道搭接的大面积高温耐磨合金。 在试验温度为 600℃ 时 ,硬度为 550~580HV0 .2 ; 在温度为 950℃时 , 硬度为100~200HV0 .2。 可见在 1 000℃ 左右高温下 ,涂覆层仍有很高的强硬性 , 是较理想的高温模具耐磨合金。另外 , 采用激光涂覆方法来修复已磨损的冲模及拉伸模等 ,可大大延长模具的使用寿命 ,降低模具的使用成本。3. 3 激光堆焊对于一些汽车覆盖件冲裁修边模具 , 为提高使用寿命 ,节省优质模具材料 ,刃口往往采用在较差的基体材料上堆焊一层性能优异的合金。 过去 ,堆焊大多采用人工氧 — 乙炔火焰堆焊法 ,这种方法虽然设备《模具工业》2001. No . 4 总 242 42费用低 ,但功率密度不高(102~103W/ cm 2) ,且难以进行精确控制 , 因而堆焊质量和生产率都较低。70年代以来 , 开发成功了等离子粉末堆焊技术 , 由于其具有较高的功率密度且控制性能也较好 , 因而得到了广泛的应用。但等离子堆焊存在着电极寿命短、 堆焊层母材稀释率较高等问题。80年代以来出现的激光堆焊法与使用同一材料的氧 —乙炔火焰堆焊法相比 ,激光堆焊层组织细微、 致密 ,不良品率仅为前者的 1/ 10。激光堆焊的速度快 ,生产率比氧— 乙炔火焰堆焊高 1. 75倍 , 而堆焊的材料使用量仅为其 1/ 2。而且激光堆焊层的室温硬度比氧 — 乙炔火焰堆焊的高 50HV 左右。 激光堆焊质量与激光的光束模式、 功率及堆焊速度等因素有关。4 激光加工替代模具冲压加工4. 1 激光切割替代薄板件的冲裁模激光切割替代钣金件及汽车车身制造中的冲裁修边模大有可为。三维激光切割技术 , 由于其本身具有加工灵活和保证质量的特性 , 在 80 年代就开始在汽车车身制造中应用。切割时只需用平直的支撑块来支撑工件 , 因此夹具的制作不仅成本低而且快速。由于与 CAD/ CAM 技术相结合 ,切割过程易于控制 , 可实现连续生产和并行加工 , 从而实现高效率的切割生产。切割板材所使用的激光器主要有两大类 , 即CO2 激光器和 Nd : YA G激光器 ,功率为 100~1 500W , 因为功率小于 1 500W 的激光器其振动模式为单模 , 切缝宽度为 0. 1~0. 2mm , 切割面也很整洁 ,而输出功率大于 1 500W 时激光器的振动模式为多模 , 割缝宽度近 1mm , 切割面质量较差。因 Nd :YA G的激光可通过光导纤维输送 , 比较灵活方便 ,适用于机器人手执激光喷嘴配程序控制进行精确操作 , 因此在三维切割时大多采用。影响激光切割工件质量的主要因素有切割速度、焦点位置、辅助气体压力、 激光输出功率及模式。美国福特和通用汽车公司以及日本的丰田、日产等汽车公司 , 在汽车生产线上普遍采用激光切割技术 , 它不必采用各种规格的金属模具 , 除了快速方便地切割各种不同形状的坯料外 , 还用来大量切割加工因规格不同需要更改的零件安装孔位置 , 如汽车标志灯、 车架、 车身两侧装饰线等。通用汽车公司生产的卡车仅车门就有直径为 <2. 8~<39mm 的20种孔 , 公司采用 Rofin- Sinar 的 500W 激光器通过光纤连接到装在机械手的焊头上 , 用以切割这些孔 ,1min 就完成一扇门开孔的加工 ,孔边缘光滑 ,背面平整 。<2. 8mm 孔的公差为 0. 03~0. 08mm ,<12mm 孔的公差为 - 0. 25mm~ + 0. 03mm。该公司生产的卡车和客车有 89 种孔径和孔位配置不同的底盘 ,经过优化设计 ,现在只需要冲压 5种不同的底盘 ,然后再由激光切割出配置不同的孔 ,简化了工艺 ,提高了效率 ,降低了成本。我国自然科学基金委在 1997 年把大功率 CO2及 YA G激光三维焊接和切割理论与技术作为重点项目进行资助 , 国家产学研激光技术中心的课题组成员对此进行了系统的研究 , 为在我国汽车车身制造业中应用三维激光立体加工技术做出了很大贡献。该中心为一汽轿车公司、宝山钢铁公司等国有大型企业的技术改造开展了重大工程项目攻关 , 其中开发红旗加长型轿车覆盖件的三维激光制造工艺技术 , 在我国轿车生产中是首次采用。在汽车用薄厚钢板激光大拼板拼接工艺试验研究中首次采用了激光切割替代精裁工艺技术 , 取得了较好的技术经济效果。三维激光切割在车身装配后的加工也十分有用 ,例如开行李架固定孔、 顶盖滑轨孔、 天线安装孔、修改车轮挡泥板形状等。在新车试制中用于切割轮廓和修正 ,既缩短了试制周期又节省了模具 ,充分体现出采用激光切割加工的优点。4. 2 激光打标替代冲模打标企业在其生产的零部件上常常需要打上企业自己的标志或特定的符号与数字 , 以往的方法是使用冲模打标或用铸模成型 , 打标质量不高。采用数控激光机打标不仅速度快 , 而且克服了冲模打标中常见的毛边、尖锐的边缘和畸变。由于采用计算机控制 , 因此可以打出任意复杂的图案 , 省去了模具设计、 制造及调试等环节 ,大大缩短了产品的开发制造周期 , 同时也降低了成本。因激光打标机所需功率小 ,成本低 ,打出的标记美观、 漂亮 ,现已为大多数企业所采用。4. 3 激光成形替代弯曲模成形金属板料的激光成形技术是一种利用聚焦光束以一定的速度扫描金属板料表面 (扫描速度应足够快以防止表面熔化) ,使热作用区内的材料产生明显的温度梯度 ,导致非均匀分布的热应力 ,从而使板料塑性变形的方法。与常规成形方法相比 , 激光成形《模具工业》2001. No . 4 总 242 43具有许多优点: ① 属于无模成形 ,生产周期短 ,柔性大 , 可不受加工环境限制 , 通过优化激光加工工艺参数 , 精确控制热作用区域以及热应力的分布 , 将板料无模成形; ② 因其是一种仅靠热应力而不用模具使板料变形的塑性加工方法 , 因此属无外力成形; ③ 为非接触式成形 ,所以不存在模具制作、 磨损和润滑等问题 ,也不存在贴模、 回弹现象 ,成形精度高; ④ 可使板料通过复合成形得到形状复杂的异形件(如球形件、 锥形件和抛物形件等) 。激光成形机理的实质就是弯曲机理。当激光加热板料时 , 一方面在激光作用区及其周围产生热应力 , 同时降低了被加热区域板料的屈服极根 , 从而使热应力作用区的热态材料产生非均匀的塑性变形 ,实现板料的弯曲成形。试验表明 ,激光每扫描一道次 ,金属板料可弯曲 1° ~5° ,不同的扫描轨迹和工艺参数组合能够产生不同的成形效果和不同程度的变形量 , 即可得到各种复杂形状的工件。图 2表示在工艺参数为激光速功率 1. 5kW , 激光束直径5. 4mm , 材料 SUS304 , 厚 1mm , 碳涂覆面的条件下 ,激光扫面速度与材料弯曲角之间的变化关系。图 2 激光扫描速度对弯曲角的影响现在世界上许多国家都投入较大的人力、物力对激光成形技术进行专项研究 , 在某些领域现已开始了初步的工业应用。波兰基础技术研究所的HFrackiewicz 教授利用激光成形先后制造出了筒形件、 球形件、 波纹管和金属管的扩口缩口、 弯曲成形等;德国学者 MGeiger 等将激光成形与其他加工工序复合运用于汽车制造业 , 进行了汽车覆盖件的柔性校平和其他成形件的成形 , 而且对弯曲成形过程进行计算机闭环控制 , 提高了成形精度。德国Trumpf 公司于 1997 年开发了商品化激光成形多用机床 Trumat ic L 3030。 相信随着研究的不断深入以及其他相关技术的发展 , 激光成形技术将逐趋成熟 ,进入实用化阶段。5 结束语激光加工技术作为一种先进的加工工艺 , 在国外各行业已得到了广泛的应用 ,我国机械行业在 “九五”期间也将其作为十大技术之一。国家自然科学基金委也把激光加工工艺和激光加工设备的研究作为重点研究项目进行资助 , 并明确指出其主要应用领域应该在汽车制造业。模具作为一种工具 , 其生产周期、质量和成本直接影响产品的制造过程和销售。而激光作为一种万能加工工具 , 在减少模具制造装备 ,缩短模具制造周期 ,降低制造成本和保证模具质量等方面具有很大的优势。如何在实际生产中应用激光加工技术来优化模具制造工艺 , 对传统的模具制造工艺进行改进和组合 , 需要我们做出不断的努力。参 考 文 献1 陈大明 ,徐有容 . 模具钢表面激光熔覆硬面合金层改性研究.金属热处理 ,1998 , (1)2 李懦荀 ,平雪良.连续激光强化模具刃口的工艺研究.电加工 ,1995 , (6)3 孙中发 . 我国激光产业发展对策.上海交通大学学报 ,1997 , (10)4 曹 能 ,冯 梅.激光加工技术在汽车工业中的应用 ,宝钢技术 ,1998 , (3)5 管延锦 ,孙升.激光快速成形与制造技术及其在汽车工业中的应用.汽车工艺与材料 ,1999 , (9)6 A Domenico . 加工汽车车身部件的三维激光切割技术 .机电信息 ,1999 , (6)7 周建忠 ,袁国定.应用激光强化技术提高覆盖件模具寿命.模具工业 ,2000 , (4)8 胡晓峰 . 基于数控激光切割的快速制模方法研究 . 江苏理工大学硕士论文 , M Geiger ,F Voll tert sen. Flexible St raightening ofcar Body Shells by laser .10 Bob Trving. Welding Tailorde Blanks. Welding Jou-rnal ,1995 , (8)11 M Geiger . Synergy of laser Material Porcessing andMetal Forming. Annals of t he CIRP ,1994 ,43(2)12 H Arnet ,F Vollert sen. Extending Laset bendingfor t he generation of convex shapes. Porc . Inst . Engrs. ,1995 , (209)13 Trumf Lt d. The heat is on for laser profiler . SheetMetal Indust ries ,1997 , (1)

303 评论

我许你一世安好

电火花下切割加工在实际生产加工中应用非常广泛,特别是在冲压模具加工中是最为理想的加工设备,在加工过程中加工参数的调整时影响工件质量的重要因素。我为大家整理的电火花加工技术论文,希望你们喜欢。 电火花加工技术论文篇一 浅谈电火花线切割加工工艺 摘要:文章针对电火花线切割加工的工艺及对工件材料的预处理、穿丝孔的加工进行了分析,明确了线切割加工前工件的预处理方法,对实际工件的线切割加工路线设计起到了指导作用。 关键词:退磁处理;预处理;穿丝孔;线切割;电火花加工 中图分类号:TG661文献标识码:A文章编号:1009-2374(2014)22-0131-02电火花加工是利用能量密度很高的电火花,使工件材料熔化、气化和蒸发而去除的一种特种加工方法。电火花线切割加工是电火花加工中的一种,利用金属丝做线状电极,对工件进行切割。下面对线切割加工中的工艺问题进行分析。 1工件材料的预处理 锻造和淬火的工件材料在加工前需要进行预处理。锻打的淬火后的材料会有不同的残余应力。在大面积去除切割和切断加工中,由于残余应力的相对平衡受到破坏,在加工过程中应力会释放,从而导致工件变形,达不到尺寸精度要求。淬火不当的材料还会在加工中出现裂纹。因此这样的材料在线切割加工前,一般应进行低温回火处理。 经过热处理的工件,需将工件上电极丝起割处的热处理残余物、氧化皮和锈斑清除。因为这些残余物不导电,电极丝极容易产生断丝、烧丝或者使工件表面出现深痕,严重时使电极丝离开加工轨迹,造成工件报废。若工件需要机械加工的方法(如车削、铣削等)加工外形及定位面,应注意棱边倒角,孔口倒角。以磨削加工定位面,需对工件材料进行消磁处理。 2穿丝孔的加工 穿丝孔是电极丝相对工件运动的起点,同时也是程序执行的起点,一般选在工件上的基准点处。 穿丝孔(又称工艺孔)的作用 (1)用于加工凹模。凹模类封闭工件在切割前必须具有穿丝孔,以保证工件的完整性。(2)减小凸模加工中的变形量,防止因材料变形而发生夹丝、断丝现象。(3)作为定位基准,保证被加工部位与其他部位的位置精度。对于前两个作用来说,穿丝孔的加工精度要求不需过高。但是对于第三个作用来说,就必须考虑其加工精度。 穿丝孔的位置 穿丝孔的轮廓和加工零件轮廓的最小距离与工件的厚度有关。工件越厚,则最小距离越大,一般不小于3mm。对于凸模类、凹模类工件,穿丝孔轮廓到工件的加工轮廓的最短距离≥3mm。对于凸模类工件,为减小变形,工件的加工轮廓到坯料侧面的距离≥5mm,工件的加工轮廓到坯料尖角处的距离≥8mm。线切割加工用的坯料在热处理时,表面冷却快,内部冷却慢,形成热处理后坯料的金相组织不一致,产生内应力,并且越靠近边角处,应力变化越大。所以,线切割的图形轮廓应尽量避开坯料边角处,避免变形影响工件精度,一般让出8~10mm。对于凸模还应留出足够的夹持余量。 选取穿丝孔时,应遵循以下原则: 加工凹模(型孔类工件):(1)小的型孔切割,穿丝孔设在型孔中心。在切割中、小孔形凹模类工件时,穿丝孔应选在凹型的中心位置最为方便。因为这样既能使穿丝孔的加工位置准确,又能便于控制坐标轨迹的计算。(2)大的型孔切割(或凸型工件),穿丝孔设在靠近加工轨迹的边角处或者已知坐标尺寸的交点上,以便简化运算过程。在切割凸型工件或大孔形凹型工件,穿丝孔不宜选择凹型的中心,因为这样将使无用行程的切割路径较长。所以此类切割一般选择起割点附近为好。(3)多型孔切割,每个型孔都有各自独立的穿丝孔。 加工凸模(轮廓类工件):(1)凸型工件(或大的型孔)切割,穿丝孔在靠近加工轨迹的边角处,即起割点附近。穿丝孔的位置可选在加工图形的拐角附近,以便简化编程运算,缩短切入时的切割行程。(2)封闭式切割,而非开放式切割,否则破坏残余内应力的平衡状态,引起变形。如图1(a)所示,许多模具制造者在切割凸模类外轮廓工件时,常常直接从材料的侧面切入,在切入处产生缺口,残余应力从缺口处向外释放,容易使凸模变形。为了避免变形,在淬火前先在模坯上打出穿丝孔,孔径为3~10mm,工件淬火后从模坯内部对凸模进行封闭式切割。(3)由外向内切割。如图1(b)所示,对于零件,特别是凸模类工件,切割方向可采用由外向内切割。切割方向应该有利于保证工件在切割过程中的刚度以及避开应力变形影响。采用由外向内切割方式,即先切割远离装夹部位的加工轨迹,再切割靠近装夹部位的加工轨迹。如果采用由内向外切割,坯料与工件的主要连接部位被太早地割离,剩余的材料被夹持部位少,工件刚性大大降低,极易产生变形,从而影响加工精度。 (a)封闭式切割(b)由外向内切割 在选择穿丝孔位置时,还应该注意以下问题:(1)孔可能打歪。如图2,如果穿丝孔的轮廓和工件的加工轮廓的最小距离过小,则有可能导致工件报废。反之如果穿丝孔与工件的加工轨迹的最小距离过大,则会增加切割行程。(2)清理毛刺。穿丝孔加工完成后,和工件一样需要预处理,需要清理毛刺,以避免加工中产生短路而导致加工不能正常进行。 (a)穿丝孔与加工轨迹太近(b)穿丝孔与加工轨迹太远 穿丝孔的尺寸 为了加工容易,穿丝孔的直径不宜过小或过大,一般选择3~10mm。孔径最好选整数值,以便简化用其作为加工基准的运算。 如果因为零件加工轮廓等方面的原因导致穿丝孔的直径必须很小,那么在打穿丝孔时要很小心,尽量避免打歪或者尽可能减小穿丝孔的深度。如图3所示,图a直接用电火花打孔机打孔,操作较困难;图b是在不影响使用的情况下,设计先将底部铣削出一个较大的底孔来减小穿丝孔的深度,从而降低打孔的难度。这种方法在加工注塑模的推杆孔等零件时常常应用。 穿丝孔的制造 穿丝孔可以用铣床、钻床进行铣削、钻削加工淬火前的工件,也可以用电火花穿孔机电火花加工孔径小、硬度大、淬火后的工件。 穿丝孔作为加工基准时,它的位置精度和尺寸精度要等于或高于工件要求的精度。因此加工穿丝孔要用钻、铣、镗、铰等较精密的机械加工方法,并在具有较精密坐标工作台的机床上加工,以保证其位置精度和尺寸精度。 当材料余量很小时,使穿丝孔的尺寸受到限制而无法用机械方法加工时,可用电火花高速打孔机加工。加工出的穿丝孔直径一般为¢~¢3mm,深径比可达20以上。 3结语 通过对工件材料的预处理和穿丝孔的作用、位置、尺寸、制造方法分析,明确了线切割加工前工件的预处理方法,指导了实际工件的线切割加工路径要素设置。 参考文献 [1] 高速走丝线切割机床操作与实例[M].北京:国防工业出版社,2010. [2] 王敏.探析项目教学法在模具钳工教学中的应用[J].现代交际,2013,(3). [3] 特种加工技术[M].西安:西安电子科技大学出版社,2011. 作者简介:梁天宇(1978―),女,吉林四平人,大连职业技术学院讲师,硕士,研究方向:冲压模具、压铸模具、电加工技术等。 电火花加工技术论文篇二 电火花线切割加工参数分析 [摘要]电火花下切割加工在实际生产加工中应用非常广泛,特别是在冲压模具加工中是最为理想的加工设备,在加工过程中加工参数的调整时影响工件质量的重要因素。本文是通过总结实践经验,重点分析了电参数与非电参数的调整与设置,从而达到更为合理的加工质量。 [关键词] 质量 电参数 非电参数 电加工又称电火花加工,也有称为电脉冲加工的,它是一种直接利用热能和电能进行加工的工艺。电火花加工与金属切削加工的原理完全不同,在加工过程中,工具和工件不接触,而是靠工具和工件之间的脉冲性火花放电,产生局部、瞬时的高温把金属材料逐步蚀除掉。由于放电过程可见到火花,所以称为电火花加工。在加工过程中影响工件加工质量的因素有很多,其中加工参数是影响加工质量的主要因素,下面我主要从电参数和非电参数两个主要方面为大家进行分析: 一、电参数 电参数主要包括:脉冲宽度、脉冲间隔、开路电压、短路峰值电流、放电波形、加工极性 、进给速度 。 1、脉冲宽度Ti的影响,增加脉冲宽度,切割速度提高,表面粗糙度变差。(增加脉冲宽度,则单脉冲放电能量增加,当Ti>40μs,加工速度增加不多,而电极丝损耗却增大)。[通常Ti为1~60μs,脉冲频率为10~100KHz] 2、脉冲间隔To的影响,减小脉冲间隔,切割速度提高,表面粗糙度稍有增大,但太小,放电产物来不及排除,间隙间不能充分消除电离,未回复绝缘状态,易造成烧伤工件或断丝。 [一般To=4~8Ti,工件增厚,to增加] 脉间为脉宽的5~9倍,短路电流随脉宽量大小的变化而变化,切割越厚,脉间倍频越大,300mm以上达9倍; 3、开路电压Ui的影响,开路电压峰值提高,加工电流增大,切割速度提高,表面粗糙度差(高电压使加工间隙变大,有利于放电产物排除,提高加工稳定性和脉冲利用率,但造成电极丝振动,降低加工精度,加大电极丝损耗),电压:一般金属为1H,只有半导体材料或多次切割小电流时可为2H; 4、短路峰值电流Is的影响,增加短路峰值电流,切割速度提高,表面粗糙度会变差,(短路峰值电流大,相应的加工电流大,脉冲能量大,放电痕变大,且电极丝损耗大,从而使加工精度降低。 (一般情况下,Is<40A,平均加工电流I<5A); 5、放电波形的影响,电压波形前沿上升较缓,电极丝损耗较小,但不利于脉冲宽度变窄,波形不易形成,降低切割速度。 6、加工极性的影响,线切割加工因脉冲宽度较窄,所以用正极加工,即工件接正极,电极丝接负极,(选用正脉冲波),反接会降低切割速度甚至不能进行切割,并且电极丝损耗大。 二、非电参数 非电参数主要包括:机械传动精度 、电极丝及其走丝速度 、工件厚度的影响 、工件材料的影响 、工作液的影响 、导轮参数及位置对锥度加工精度 ; 1、机械传动精度的影响,传动精度高,加工效果好; 坐标工作台传动精度的影响,坐标工作台传动精度很大程度上决定线切割的尺寸加工精度,其主要取决于四个因素: (1)传动机构部件的精度(丝杆、螺母、齿轮、蜗杆、导轨等); (2)配合间隙(丝杆副、齿轮副、蜗轮副及键等的配合间隙); 装配精度(主要是丝杆与螺母的三线对中,齿轮的均匀配合涡轮蜗杆的吻合相切,纵横向两拖板的丝杆与导轨的平行度两拖板导轨间的垂直度); (3)机床工作环境(温度、湿度、防尘、震动等)。坐标工作台传动精度差,移动的浮动量就大,导致放电间隙经常发生短路或开路现象,使加工不稳定,常在加工表面留下放电痕迹,甚至出现锯齿状条痕,加工精度和表面粗糙度差。同时脉冲利用率低,降低加工速度,严重时造成断丝。 2、 走丝机构传动精度的影响,电极丝在放电加工区域移动的平稳程度,取决于走丝机构的传动精度,走丝不平稳、速度不均匀,影响加工效果和丝的使用寿命,走丝速度越快,对加工的影响越大。 电极丝运动位置由导轮决定,主要由三方面造成: (1)导轮有径向跳动或轴向窜动,导致电极丝振动,振幅与导轮跳动或窜动正相关。实际上,上下导轮的跳动(窜动)可能同时存在的,运动相对复杂,但可以从工件的上下锥度来判断导轮是否有跳动,是哪一个导轮或什么方向上跳动大(在电极丝切割方向里侧的工件对应尺寸较小一端的导轮在跳动或跳动幅度更大,同理,在电极丝切割方向外侧对应尺寸(较小)一端的导轮在跳动或跳动幅度(更大),导轮有轴向窜动时也有类似的后果。 (2)导轮的V形槽的圆角半径因磨损超过电极丝时,将不能保证电极丝精确位置,通常磨损是不对称的,磨损越深,抖动越大;两导轮轴线不平行,或V形槽的不在同一平面内,电极丝运动时不是靠在同一侧面上,使电极丝正反方向不是靠在同一侧面上,加工平面上产生反向条纹。V形槽磨损主要原因有:电极丝高速正反方向运动;导轮轴承安装不灵活,密封不好,运动阻力大;反向时,导轮不能立即跟随反向;放电产物硬度高; (3)储丝筒振动,引起电极丝振动,要保证储丝筒同心度。 3、电极丝及其走丝速度的影响 (1)电极丝材料的影响,常用电极丝材料有钼丝、钨丝、钨钼丝,常用规格为Ф~. (2)电极丝直径的影响,电极丝直径小,则承受电流小,切缝窄,不利于排屑和稳定加工,切割速度低;电极丝直径过大,切缝大,熔蚀量大,切割阻力相应加大,不利于提高速度,因此,电极丝直径要适中。最常用为Ф~。 (3)电极丝上丝,紧丝的影响,电极丝上丝,紧丝的好坏直接影响电极丝的张力。电极丝过松,抖动大;过紧,张力大,振动小,放电效率相对高,可提高速度,但易断丝。 (4)走丝速度的影响,走丝速度高,则电极丝热应力小,减少断丝和短路的几率,可相应提高切割速度,但电极丝抖动大,对导轮的V形槽磨损大,影响切割精度,电极丝寿命减短。 4、工件厚度的影响,工件的切割厚度薄,有利于排屑和消电离,加工稳定性好,但工件太薄,放电脉冲利用率低,效率低,且电极丝易产生抖动,影响精度;工件厚,工作液,难于进入和充满放电间隙,排屑差,易发生短路,影响精度,加工稳定性差,降低切割速度;但电极丝抖动小,又有利于提高加工速度和精度。因此注意根据工件厚度选择脉冲间隔和脉冲宽度。 5、工件材料的影响,工件材料不同,其熔点, 汽化点,热导率不同,切割速度不同。 6、工作液的影响,增大工作液压力和流速,排除蚀除物容易;过高,会引起电极丝的振动;过低不利于排屑,易短路,不能及时带走熔蚀热,烧伤工件,发生断丝等。维持层流(直线流动)为限。 7、导轮参数及位置对锥度加工精度的影响 在锥度加工时,导轮参数及导轮相对工件的位置对加工精度会产生直接的影响(切入位置偏差)。包括:上下导轮的距离(Z轴高度),用Hc-c表示;下导轮中心到工件底面的距离,Hb表示;工件厚度;导轮半径R。 作者简介:张东伟,男,汉族,吉林白城人,2009年毕业于太原科技大学材料成型专业,工学学士,助理讲师。看了“电火花加工技术论文”的人还看: 1. 超声波加工技术论文 2. 材料制备技术论文 3. 工业设计论文范文 4. 微系统技术的概念、应用及发展论文

235 评论

相关问答

  • 线切割论文开题报告

    电火花下切割加工在实际生产加工中应用非常广泛,特别是在冲压模具加工中是最为理想的加工设备,在加工过程中加工参数的调整时影响工件质量的重要因素。我为大家整理的电火

    猫猫不在家叻 4人参与回答 2023-12-08
  • 切割类毕业论文

    《模具工业》2001. No . 4 总 242 40激 光 加 工 技 术 在 模 具 制 造 中 的 应 用江苏理工大学(江苏镇江 212013) 张 莹

    郭嘎嘎2222 2人参与回答 2023-12-06
  • 线切割毕业论文怎么做

    3“数控技术”专业的毕业论文怎么写 亲爱的朋友,由于这里不让发网站网址,我们发了搜索结果给您,您在搜索结果页面点进去后会见到我们网站网址,然后在我们网站里即

    天秤座dan 3人参与回答 2023-12-09
  • 青饲料切割机设计毕业论文

    机械毕业设计论文 题目如下 详情请查看 andy1014831557.blog.163.com+工艺-“填料箱盖”零件的工艺规程及钻孔夹具设计+工艺-

    一人食24 5人参与回答 2023-12-11
  • 线切割齿轮毕业论文

    毕业设计 可伸缩带式输送机结构设计毕业设计 AWC机架现场扩孔机设计 毕业设计 ZQ-100型钻杆动力钳背钳设计 毕业设计 带式输送机摩擦轮调偏装置设计毕业设计

    PP的猪窝 3人参与回答 2023-12-11