jennyzhao701
数学中有一些奇妙的数字——有理数。有理数有正整数、负整数和0,许多人只把它们看成简单的正负数,但是这简单的正负数却迷惑了许多人,包括那些著名的数学家。 我对有理数有以下一些看法: 有理数的理解大家基本上都很懂了——把正数当成是盈利,把负数当成亏本。但关于有理数的计算却还有许多人搞不清楚。有理数的四则运算是“同号得正,异号得负”的,短短的“1-(-1)”大家都知道这等于“1+1”,但如果是很长的一个算式,一大堆的“+”、“-”号,再加上乘方,恐怕再细心的人也难免被迷惑、算错。难道就没有什么办法能让这种错误减少吗?在解这类问题时,我认为可以用一种简单的办法,只要把被乘数的符号记住,再与后面的数“同号得正,异号得负”,如果有乘方,正数的乘方都是正数,负数就是“奇数得负,偶数得正”。不过这还要靠认真,有的人总是因为乘数前面有一个比较好算、或是算得比较熟练的数,就把它们乘在一起——错了!这样的错误许多人肯定都犯过,可是能改的人就不多了。解决这种问题,最重要的还是能弄清符号
叶烨夜夜
有理数论文数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 希望能帮到你!
墨小客s
1、数和负数2、有理数有理数的分类有理数(从定义) (1)正有理数——正分数、正整数 (2)0(3)负有理数——负分数、负整数有理数(从正负) (1)整数——正整数、0、负整数 (2)分数——正分数、负分数数轴:规定了原点正方向和长度单位的直线叫数轴。相反数一、定义:1.像2和-2,5和-5这样,只有符号不同的两个数,叫互为相反数。2.若a+b=0,则称互为相反数。3.绝对值相等,符号相等的两个数叫相反数。二、特征:1.互为相反数的两个和为0。2.相反数是成对出现的。3.在数轴上,相反数与原点的距离相同,是对称的。三、计算法则:在任意一个数前面添上“-”号,新的数就表示原数的相反数。绝对值一、定义 一般的,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。二、绝对值的定义可知:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。(文字叙述)当a是正数时,|a|=a;当a是负数时,|a|=a;当a=0时,|a|=0。(字母表示)三、一个数的绝对值总是一个非负数,即|a|≥0。四、比较有理数大小法则:1.正数都大于0,0大于负数,正数大于负数。2.两个负数,绝对值大的反而小。有理数的加减法有理数的加法一、法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。3.互为相反数的两个数相加得0。4.一个数同0相加仍得这个数。二、运算律:1.加法交换律:两个数相加,交换加数的位置,和不变。(a+b=b+a)2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。有理数的减法一、法则:减去一个数等于加上这个数的相反数。字母表示:a-b=a+(-b)。有理数的乘除法有理数的乘法一、法则:1、(1)两数相乘,同号得正,异号得负,并把绝对值相乘。(2)任何数同0相乘,都得0。 2、(1)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。(2)几个数相乘,如果其中有因数为0,积等于0。二、数中仍然有:乘积是1的两个数互为倒数。三、1.乘法交换律:两个数相乘,交换因数的位置,积相等。2.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。3.乘法分配律:一个数同两个数的和相乘等于把这个数分别同这个数相乘,再把积相加。四、去括号法则:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反。 有理数的除法一、法则:除以一个不等于0的数,等于乘以这个数的倒数。(a÷b=a×b≠0)一、有理数的乘方乘方一、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。二、乘方的性质(法则)1.正数的任何正整数次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。 的正整数次幂是0。 科学记数法一、概念:把一个数N表示成a×10n(1≤|a|<10,n为整数的形式,叫做科学记数法) 近似数和有效数字一、准确数 与实际完全相符的数是准确数。二、精确度 一般的,把一个数四舍五入到哪一位,就说这个数精确到了那一位.所以,精确度是描述一个近似数的近似程度的量。三、有效数字 在近似数中,从左边第一个不是零的数字起,到由四舍五入所得的数位止,所有的数字,都叫做这个数的有效数字.一共包含的数字的个数,叫做有效数字的个数。四、近似数的混合运算(1) 近似数的加减运算 法则:先确定结果精确到哪一个数位;再把已知数中超过这个数值的数字四舍五入到这个数位的下一位;然后进行计算,并且把算得的数的末位四舍五入。(2)近似数的乘除运算 法则:先确定结1、数和负数2、有理数有理数的分类有理数(从定义) (1)正有理数——正分数、正整数 (2)0(3)负有理数——负分数、负整数有理数(从正负) (1)整数——正整数、0、负整数 (2)分数——正分数、负分数数轴:规定了原点正方向和长度单位的直线叫数轴。相反数一、定义:1.像2和-2,5和-5这样,只有符号不同的两个数,叫互为相反数。2.若a+b=0,则称互为相反数。3.绝对值相等,符号相等的两个数叫相反数。二、特征:1.互为相反数的两个和为0。2.相反数是成对出现的。3.在数轴上,相反数与原点的距离相同,是对称的。三、计算法则:在任意一个数前面添上“-”号,新的数就表示原数的相反数。绝对值一、定义 一般的,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。二、绝对值的定义可知:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。(文字叙述)当a是正数时,|a|=a;当a是负数时,|a|=a;当a=0时,|a|=0。(字母表示)三、一个数的绝对值总是一个非负数,即|a|≥0。四、比较有理数大小法则:1.正数都大于0,0大于负数,正数大于负数。2.两个负数,绝对值大的反而小。有理数的加减法有理数的加法一、法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。3.互为相反数的两个数相加得0。4.一个数同0相加仍得这个数。二、运算律:1.加法交换律:两个数相加,交换加数的位置,和不变。(a+b=b+a)2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。有理数的减法一、法则:减去一个数等于加上这个数的相反数。字母表示:a-b=a+(-b)。有理数的乘除法有理数的乘法一、法则:1、(1)两数相乘,同号得正,异号得负,并把绝对值相乘。(2)任何数同0相乘,都得0。 2、(1)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。(2)几个数相乘,如果其中有因数为0,积等于0。二、数中仍然有:乘积是1的两个数互为倒数。三、1.乘法交换律:两个数相乘,交换因数的位置,积相等。2.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。3.乘法分配律:一个数同两个数的和相乘等于把这个数分别同这个数相乘,再把积相加。四、去括号法则:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反。 有理数的除法一、法则:除以一个不等于0的数,等于乘以这个数的倒数。(a÷b=a×b≠0)一、有理数的乘方乘方一、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。二、乘方的性质(法则)1.正数的任何正整数次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。 的正整数次幂是0。 科学记数法一、概念:把一个数N表示成a×10n(1≤|a|<10,n为整数的形式,叫做科学记数法) 近似数和有效数字一、准确数 与实际完全相符的数是准确数。二、精确度 一般的,把一个数四舍五入到哪一位,就说这个数精确到了那一位.所以,精确度是描述一个近似数的近似程度的量。三、有效数字 在近似数中,从左边第一个不是零的数字起,到由四舍五入所得的数位止,所有的数字,都叫做这个数的有效数字.一共包含的数字的个数,叫做有效数字的个数。四、近似数的混合运算(1) 近似数的加减运算 法则:先确定结果精确到哪一个数位;再把已知数中超过这个数值的数字四舍五入到这个数位的下一位;然后进行计算,并且把算得的数的末位四舍五入。(2)近似数的乘除运算 法则:先确定结果有几个有效数字;再把已知数中有效数字的个数多的,四舍五入到只比结果中需要的个数多一个;然后进行计算,并把算得的数四舍五入到与先确定的有效数字的个数相同。果有几个有效数字;再把已知数中有效数字的个数多的,四舍五入到只比结果中需要的个数多一个;然后进行计算,并把算得的数四舍五入到与先确定的有效数字的个数相同。
小小兔121
帮你把知识梳理了梳理,其他自己改改吧1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。3.倒数:若两个数的积等于1,则这两个数互为倒数。4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法.6.实数大小的比较:利用法则比较大小;利用数轴比较大小。7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
数学中有一些奇妙的数字——有理数。有理数有正整数、负整数和0,许多人只把它们看成简单的正负数,但是这简单的正负数却迷惑了许多人,包括那些著名的数学家。 我对有理
每个学校字数限定要求不一样,要问学校老师大致是这样的本科5000-15000字之间 硕士20000-50000字之间 博士50000-150000字之间含博
x-3=(x-1)+(x-1)-(x+1)所以(x-3)/(x-1)(x²-1)=[(x-1)+(x-1)-(x+1)]/[(x-1)²(x+1)]=2/(x-
论文研究方法包括哪些 论文研究方法包括哪些,大学生活的最后一年同学们是要写毕业论文的,而毕业论文对于每位同学来说都有很大的意义,下面大家就跟随我一起来看看论文研
论文的研究方法有哪些 论文的研究方法有哪些,研究方法是在一个研究中发现新的现象、新的事物,或者提出新理论、观点,论文研究方法需要大量阅读法,找到不足和创新点,来