• 回答数

    3

  • 浏览数

    251

美眉要加油
首页 > 毕业论文 > 功能晶体研究院毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

Toffee0528

已采纳

物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。

《 物理学在科技创新中的效用 》

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.

《 应用物理学专业光伏技术培养方案研究 》

一、开设半导体材料及光伏技术方向的必要性

由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。

二、专业培养方案的改革与实施

(一)应用物理学专业培养方案改革过程

我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。

(二)专业培养方案的实施

为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。

三、 总结

半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。

有关物理学博士论文推荐:

1. 有关物理学论文

2. 物理学论文范文

3. 物理学论文

4. 物理学教学专业毕业论文

5. 物理学实验本科毕业论文

6. 物理学本科毕业论文

196 评论

白色犬犬

周卫宁张昌龙霍汉德吕智卢福华左艳彬覃世杰

第一作者简介:周卫宁,中宝协人工宝石专业委员会第二届委员、第三届副主任委员,桂林矿产地质研究院教授级高级工程师,国家特种矿物材料工程技术研究中心副主任。

水热法是经典而又重要的人工合成晶体方法,在人工合成晶体的历史上发挥了重要的作用,时至今日,水热法仍然是某些重要晶体材料(如水晶等)最重要而有效的合成方法。我们曾经在国内率先开展了水热法合成祖母绿、红宝石、黄色蓝宝石、无色蓝宝石等宝石晶体的研究,并获得了成功,曾小批量生产这些晶体供应市场,受到了消费者的欢迎,填补了我国水热法合成宝石晶体的空白。近年来,为了满足光电子高技术发展对功能晶体材料的需求,我们开展了水热法合成磷酸钛氧钾(KTP)、氧化锌(ZnO)晶体的研发工作,取得了重要进展。本文旨在通过报道这些进展以引起同行的重视,共同推动我国水热法合成功能晶体材料事业的快速发展。

一、温差水热法合成晶体的基本原理

温差水热法合成晶体的基本原理是:利用晶体(物质)在一定的压力下溶解度随着温度变化而变化的特点,将培养料放在高压釜的高温区溶解形成饱和溶液,通过对流输运到低温区形成过饱和溶液而结晶析出,生长出所需要的晶体材料。在实际应用中,为了达到快速、经济地生长,往往在低温区放置晶体籽晶,籽晶表面在过饱和溶液中生长出满足我们需要的大块晶体。

温差水热法合成晶体的关键设备高压釜见图1。

图1 高压釜及晶体生长示意图

二、水热法合成KTP晶体

磷酸钛氧钾(KTP)晶体是一种性能非常优良的非线性光学晶体,它具有非线性系数大、容许温度和容许角度大、激光损伤阈值较高、化学性质稳定、不易潮解、抗热冲击性能好、机械强度适中、倍频转化效率高达 70%以上等特性。因此,在近红外激光倍频中,KTP是最好的晶体材料。它在军事科研、高密度数据存储、医疗、消耗型电子产品、海洋光学、激光探潜和环境遥感检测等领域里都有着重要的应用。

目前生长 KTP晶体的方法主要有熔盐法和水热法两种。熔盐法生长的KTP晶体具有生长速度较快、成本低的优点。但是,由于熔盐法的固有缺点(相对高的非恒定的生长温度、溶液的黏滞性很大、体系容易被环境污染等),此法生长出来的KTP晶体,其完整性、均匀性及纯度等均不如水热法生长的KTP晶体好,而且其抗激光损伤阈值较水热法 KTP要低一个数量级。目前熔盐法生长的KTP晶体的抗激光损伤阈值一般为~,最高也只能达到 2GW/cm2,灰迹问题严重限制了它在中等以上功率激光器上的应用。随着激光技术的飞速发展,对KTP晶体的抗激光损伤阈值要求越来越高(5GW/cm2,甚至10GW/cm2)。这样,用盐熔法技术生长的KTP晶体就达不到这方面的要求,因此,开展用水热法生长高抗激光损伤阈值KTF晶体的技术研究就成为迫在眉睫的课题。

晶体生长工艺

KTP晶体生长的有关工艺参数如表1所列,在此生长条件下,KTP晶体沿(011)面的生长速度为~,生长出来的晶体透明、无色,无包裹体,外形良好,晶体尺寸可达40mm×25mm×25mm,如图2所示。

表1 水热法生长KTP晶体的有关工艺参数

图2 水热法生长的KTP晶体

晶体性能测试

(1)透过率

我们将水热法生长的KTP晶体按 λ=1064nm→532nm时的Ⅱ类相位匹配(θ=90°,φ=26°)关系将晶体加工成3mm×3mm×7mm的器件,在LAMBDA900分光光度计上测试了晶体从200~3000nm波段的通过率,如图3所示。

图3 水热法KTP晶体的透过率曲线

从图3可以看出,水热法生长的KTP在450~2500nm波段内透过率曲线非常平坦,不存在任何吸收峰,且透过率超过80%。从图上还可以看到,水热法生长的KTP晶体在2750nm波段附近存在由OH-引起的强烈吸收,这是水热法晶体的共性,与熔盐法 KTP晶体有很大不同。但这一吸收峰并不影响水热法KTP晶体在Nd:YAG激光器1064nm波长倍频到532nm波长上的应用。

(2)抗激光损伤阈值

对同一样品,我们进行了抗激光损伤阈值测试。测试参数如表2所列。

表2水热法KTP晶体抗激光损伤阈值测试参数

在样品的3个不同部位测量其损伤阈值,均为30mJ,根据公式: ,可得脉冲宽度内平均面功率密度为,该晶体064nm波长激光的损伤阈值为。

三、水热法合成氧化锌(ZnO)晶体

衬底材料是发展微电子产业的重要基础性材料,大尺寸、高质量的氧化锌(ZnO)晶体是研究制作GaN,ZnO等发光电子器件的重要衬底材料,特点是:作为Zn()薄膜的衬底材料,ZnO单晶具有任何其他衬底材料无法比拟的优势——同质外延,因此其应用潜力巨大,市场前景宽广。可以预计,随着ZnO器件产业化的到来,对ZnO单晶的需求也会越来越大。因此重视并发展大尺寸高质量ZnO单晶的生长技术,不仅可以为今天ZnO器件的研究提供合适的衬底材料,更重要的是为将来ZnO器件的产业化打下坚实的基础。

1.氧化锌(ZnO)晶体生长工艺及生长结果

水热法生长ZnO晶体所用的原料是由分析纯ZnO粉末经等静压成型后在1200℃烧结而成的,有关的生长工艺参数见表3。

表3氧化锌晶体的水热法生长条件

在上述条件下,我们已经生长出了尺寸达到25mm×25mm×10mm的Zn()晶体,其颜色为浅黄绿色,透明。晶体外形呈规则的六角对称形状,主要显露面为 (图4)。各方向的生长速度为:v (即[0001]方向)方向与-C(即 方向])方向生长速率差异明显,前者大约是后者的两倍,这是因为Zn()晶体本身具有极性,晶体+C面为带正电荷的Zn原子面,-C面为带负电荷的()原子面,所以溶液中的负离子生长基团在+C方向大于-C方向叠合速率。从结果可以看到柱面 生长速率比较缓慢,这是目前用水热法生长更大尺寸的ZnO晶体所需要解决的关键问题之一

图4 水热法生长的ZnO晶体及其形貌示意图

2.氧化锌(ZnO)晶体性能测试

采用等离子体质谱分析(ICP-MS)对晶体+C部分新生长层中的杂质含量进行了分析,结果如表4所示。从中可以看出由于没有使用高纯度的原料,造成晶体中杂质的含量比较大,特别是Al,Fe,K,Si,Pb等元素,其中的Au应是来自于黄金衬套管。

表4水热法氧化锌晶体杂质元素分析结果

取晶体+C部分切片,对晶体(0001)面进行机械抛光后进行双晶摇摆曲线w扫描,所得到曲线如图5所示。从中可看出,其半峰宽为FWHM值为60弧秒,考虑到仪器入射X射线发散角为12弧秒,所以结果表明该样品晶体结构完整性较好。

图5 水热法ZnO晶体双晶摇摆曲线

四、结束语

我们应用水热法合成 ,ZnO晶体的工作已取得重要进展,基本确定了KTP,ZnO晶体的水热法生长工艺条件,合成出了可供实际应用的晶体材料。我们相信,这些材料的合成成功,将为我国相关产业的快速发展提供有利条件。

作者衷心感谢曾骥良教授、陈振强教授对本研究工作的指导和帮助!

参考文献

邱志惠,霍汉德,阮青锋等.2006.水热法KTP晶体生长及形貌特征.广西师范大学学报(自然科学版),24(2):52~55.

阮青锋,霍汉德,覃西杰等.2006.水热法 KTP晶体生长与宏观缺陷研究.人工晶体学报,35(3):608~611.

Zhang Chang-long,Huang Ling-xiong,Zhou Wei-ning et of KTP crystals with high damage threshold by hydrothermal of Crys-tal Growth,~367.

254 评论

流浪的好吃狗

天津理工大学功能晶体研究院的评价是:很好。

天津理工大学功能晶体研究院是响应国家创新驱动发展战略,落实“双一流”建设等重大战略决策,瞄准科技前沿和国家重大战略需求,同时服务天津区域经济发展而设立。研究院以吴以成院士为学术带头人,以天津市功能晶体材料重点实验室为依托,凝聚国内知名教授组成的优秀人才队伍。

正在建立包括新晶体材料探索平台、大尺寸晶体生长平台、晶体加工镀膜与器件研发平台、激光技术及激光整机研发平台、基于新型激光的生物医学检测设备研发平台、晶体与激光应用产业化研发平台等6个研发平台。发展功能晶体核心关键技术,承担国家重点科研任务,在获得国际前沿科学成果的同时,重视科技成果的转化。

在天津市建立晶体:原料-生长-加工-器件-激光-应用完整的产业链,为天津市晶体相关高新企业及企业群的形成和发展提供不竭的源头和动力。形成了一条从先进功能晶体材料研究、全固态激光光源研制到应用的完整的研发创新链,努力建成世界知名、中国一流的晶体材料与器件研究基地,支撑基础研究、满足国家重大需求,推动天津高新技术产业快速发展。

315 评论

相关问答

  • 功能晶体研究院毕业论文

    物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。 《 物理

    美眉要加油 3人参与回答 2023-12-08
  • 晶体结构毕业论文范文

    毕业 论文是培养学生综合运用所学知识和技能,是训练我们独立进行科学研究的过程。我整理了毕业设计论文 范文 ,欢迎阅读! 用流行 音乐欣赏 激活高中音乐

    一个胖子0528 3人参与回答 2023-12-06
  • 杨振宁毕业论文超离子晶体

    杨振宁读联大物理学系时,给他上一年级普通物理课的是擅长实验的物理学家、清华大学赵忠尧教授,上二年级电磁学课的是著名学者、清华大学吴有训教授,上力学课的是在广义相

    和信长庆 3人参与回答 2023-12-05
  • 王晶晶硕士毕业论文

    王晶晶,女,毕业于北京对外经济贸易大学,中国内地模特。 出生日期:1988年2月12日出生地:北京市朝阳区职业:模特、学生学历:大学学校:北京对外经济贸易大学高

    晓晓小同学 2人参与回答 2023-12-11
  • 毕业论文整体设计功能相似

    1、一般相似度高的部分在查重报告中是会标示颜色的,大家可以直接清楚的看到是哪些部分需要修改,如果是部分小片段小句子相似度过高,虽说字数不多,但是也是构成相似度过

    小小小雨桐 5人参与回答 2023-12-10