顺宏冷暖-MISS冯
因式分解(分解因式)Factorization,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。含义因式分解的定义和主要方法常规因式分解主要公式定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。分解因式与整式乘法为相反变形。同时也是解一元二次方程中因式分解法的重要步骤.高级结论在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。1、因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。2 、所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如X4+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。如果有兴趣,你也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)3 、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。方法因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。注意四原则:1.分解要彻底(是否有公因式,是否可用公式)2.最后结果只有小括号3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z)归纳方法:1.提公因式法。2.运用公式法。3.拼凑法。4.组合分解法。5.十字相乘法。6.双十字相乘法。7.配方法。8.拆项补项法。9.换元法。10.长除法。11.求根法。12.图象法。13.主元法。14.待定系数法。15.特殊值法。16.因式定理法。提取公因式法:各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。(真诚为您解答,希望给予【好评】,非常感谢~~)
只会品菜
导语:因式分解的常用方法,还有很多方法都很不错,也能对我们的数学能力进行拓展,例如十字相乘法等等。我们在学习初中数学因式分解的时候,一定要多做题,题海战术虽然饱受诟病,但是对于初中数学确实是理解和熟练知识点的最佳途径,当然要适量,不可疲劳战,这是为了保持对学习的浓厚兴趣,长此以往,养成习惯,你会发现数学这么简单。
因式分解的步骤
1、提公因式;
2、公式法(完全平方式、平方差公式)。
初中数学因式分解常用解法有哪些提公因式法
① 公因式: 各项都含有的公共的因式叫做这个多项式各项的~.
② 提公因式法 :一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③ 具体方法: 当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
初中数学因式分解常用解法有哪些
运用公式法
①平方差公式:.a^2-b^2=(a+b)(a-b)
②完全平方公式:a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
※多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
配方法: 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
换元法 :有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
待定系数法: 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
扩展资料:
因式分解(英语:factorization,factorisation或factoring)是指把一个多项式分解为两个或多个的因式的过程,分解过后会得出一堆较原式简单的多项式的积。例如多项式x-4可被分解为(x+2)(x-2)。
基本概念
定义
把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。
相关结论
基本结论:分解因式与整式乘法为相反。
高级结论:在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。
1)因式分解与解高次方程有密切的.关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。
2)所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如x+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)
3)因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。
4)因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。
分解一般步骤
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
原则
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;
5、结果的多项式首项一般为正。在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;
6、括号内的首项系数一般为正;
7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);
8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。
口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
分解方法
因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
雪落0002
正如数字分解质因数,要变成所有的质数相乘的等式,分解因式,就要彻底分解,尽可能降低各个因式的最高次数,具体方法,第一步,提公因式,这也是最简单的方法,公因式不仅有:系数、字母、单项式,这些我们都熟悉了,而且,公因式还可能是一个式子,例如(a + b)(3m + 2n) + (2m + 3n)(a + b),公因式是 (a+b)= ( a + b )( 3m + 2n + 2m + 3n )= ( a + b )( 5m + 5n ) 这样再提系数 5= 5( a + b )( m + n )第二步,公式法,就是把整式乘法的公式倒过来用,a" - b" = (a - b)(a + b) ——平方差,a" + 2ab + b" = (a + b)" ——完全平方和,a" - 2ab + b" = (a - b)" ——完全平方差,a"' + b"' = (a + b)(a" - ab + b") ——立方和,a"' - b"' = (a - b)(a" + ab + b") ——立方差,熟悉公式,熟悉平方数、立方数是关键,平方差,还有两个完全平方相减的式子,例如 9( x + y )" - 4( x + y - 1 )"= [ 3(x + y) - 2(x + y - 1) ][ 3(x + y) + 2(x + y - 1) ]= ( 3x + 3y - 2x - 2y + 2 )( 3x + 3y + 2x + 2y - 2 )= ( x + y + 2 )( 5x + 5y - 2 )完全平方公式,或许因为 a" - 2ab + b" = a" + 2a(-b) + (-b)"公式就只有一个式子 (a + b)" = a" + 2ab + b"关于完全平方差,应该注意( a - b )" = [ - ( b - a ) ]" = ( b - a )"= a" - 2ab + b" = b" - 2ab + a"立方和、立方差,分解因式变成五个项,两个一次项、三个二次项,熟悉公式是难点,就拿具体数字算一算,2"' - 1 = 8 - 1 = 1 X 7 = ( 2 - 1 )( 4 + 2 + 1 )= ( 2 - 1 )( 2" + 2 + 1 )我就是利用“棋盘上的麦粒”问题,熟悉了立方差a"' - 1 = ( a - 1 )( a" + a + 1 )a"' - b"' = ( a - b )( a" + ab + b )立方差原来两个立方相减,两个一次项也是相减,三个二次项就都是相加,a"' + b"' = ( a + b )( a" - ab + b" )立方和,就只有中间一个二次项 -ab 是减,其余都是相加第三步,二次三项式,十字相乘分解,我的建议,使用分组分解法更好,正如 x" + (a + b)x + ab = ( x + a )( x + b )把单项式 mx = (a+b)x ,拆开变成 ax + bx ,就能够分组提公因式进行分解Q 关键是怎样把一次项一分为二,就由常数项的正负来决定,一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式x" + 10x + 24= x" + 4x + 6x + 24= x( x + 4 ) + 6( x + 4 )= ( x + 4 )( x + 6 )还有x" - 10x + 24= x" - 4x - 6x + 24= x( x - 4 ) - 6( x - 4 )= ( x - 4 )( x - 6 )Q 如果常数项是正数,一次项就是拆开两个绝对值比原来小的两个项;或者,完全平方式也可以这样分解再看x" - 10x - 24= x" - 12x + 2x - 24= x( x - 12 ) + 2( x - 12 )= ( x - 12 )( x + 2 )还有x" + 10x - 24= x" + 12x - 2x - 24= x( x + 12 ) - 2( x + 12 )= ( x + 12 )( x - 2 )Q 如果常数项是负数,一次项系数就是分开两个项的相差数;这样的二次三项式,一次项与常数项,绝对值不变,两项正负二二得四,就都有 4 种情况,x" ± 5x ± 6x" ± 10x ± 24x" ± 15x ± 54x" ± 20x ± 96x" ± 25x ± 150要么你也多做几个,熟悉一下这个方法最后,就要检验,确保分解彻底,因式分解变形正确,例如 x^6 - y^6,应该= ( x"' - y'" )( x"' + y"' )= ( x - y )( x + y )( x" - xy + y" )( x" + xy + y" )相当于 64 - 1,= ( 8 - 1 )( 8 + 1 )= ( 2 - 1 )( 4 + 2 + 1 )( 2 + 1 )( 4 - 2 + 1 )= 1 X 7 X 3 X 3如果先用立方差,做成= ( 4 - 1 )( 4" + 4 + 1 )= ( 2 - 1 )( 2 + 1 )( 16 + 4 + 1 )= 1 X 3 X 21就还有 21 分解不彻底,也就不正确了正如现在的平方差,有两个完全平方相减,现在要求分解的式子都比较复杂,要想还原就不方便了,各种类型的式子,我们就都要熟悉两三种解答方式,这样才能够相互检验,确保解答正确。
因而完成一篇论文可遵循以下步骤:1、完成论文内容。主要任务是在Word中尽情的打字,把论文的所有文字、引用、图片、题注、脚注、尾注、索引这些元素都加入文档中,只
不定方程:一个二元一次方程,如果没有其它的条件,它的解是不确定的,因此我们把它称为不定方程.变形、整数分离、换元、变形、整数分离直至未知数系数为1。例如:解不定
除了请教老师,还可以多看学长学姐的论文,或者把其他人的论文拿过来参考一下,多收集资料。
这个是俺们可以帮你的【代】【做】(1)文后参考文献的著录规则为GB/T7714—2005《文后参考文献著录规则》,适用于“著者和编辑编录的文后参考文献,而不能作
最重要的问题,写完后先提交毕业老师,问他可以打印了再打印,要不然。。。你就等着打印3,4遍吧