L..好菇凉
不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了,而对角形式保持不变如矩阵0 -11 0 用初等变换交换2行就成对角式了,但对角化必须是特征值正负i.当然,用初等变换当然可以实现对角化,但是只能是你知道对角化矩阵后在用初等变换往上靠
晨阳爱美食
1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值
davidzeng168
理论上看,意义是明显的。相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式……如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化的矩阵,只要研究它的标准形式——一个对角矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。这个过程相当于在一个等价类中选取最顺眼的元素研究。另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的。再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化。实践中的矩阵对角化作用也很大。别的不说,比如要算一个一般的3阶实对称矩阵A的n次幂,n较大时,按矩阵乘法定义去计算是相当繁琐的,计算复杂度呈指数型增长。但是如果把A可以对角化(实对称矩阵总是可以对角化的),写为=T^(-1)PT,P是对角阵。那么A^n=T^(-1)P^nT,P^n的计算是很简单的,只要把各特征值^n即可,此时计算A^n的复杂度几乎与n无关。以上纯属个人见解,仅供LZ参考:)
协方差矩阵的计算公式如下: Conv=frac {1} {n-1}tilde {X} tilde {X}^ {T}\ ktimes n 和 ntimes k 的
matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 corrcoef(X,Y) 函数功能:其中%返回
1、优势——机会(SO) 战略是一种发展企业内部优势与利用外部机会的战略,是一种理想的战略模式。当企业具有特定方面的优势,而外部环境又为发挥这种优势提供有利机会
这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500
不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了