么里斯古
录入完数据后,你可以先进行基础的数据统计--描述性统计。然后根据你的数据结果再看是否需要相关回归或者其他分析。spss里面的描述统计主要在analyze——descriptive里面,其中有描述统计、频数统计、交叉分析。 描述性统计分析是统计分析的第一步,先选择analyze,你就能看到descriptive,然后鼠标再选Descriptive 菜单中,最常用的是列在最前面的四个过程:Frequencies过程的特色是产生频数表;Descriptives过程则进行一般性的统计描述;Explore过程用于对数据概况不清时的探索性分析;Crosstabs过程则完成计数资料和等级资料的统计描述和一般的统计检验。先选择analyze,---再选descriptive打开任意的分析窗口后,你把想分析的数据选入,可以一起按鼠标左键选中按中间按钮加入,然后选择单击后弹出Statistics对话框,用于定义需要计算的其他描述统计量。你可以分析均数(Mean)、中位数(Median)、众数(Mode)、总和(Sum)等等。 然后还可以点Charts对话框,选择直方图、饼图等来绘图。都确定好后,选择单击Continue钮 ,然后选择OK。就可以了。直接就会有输出结果。你可以先看看描述性统计的结果,有没有什么缺失值或者不符合实际的数据出现。要是有,你需要纠正数据,再用描述统计进行分析。我觉得说的挺详细的了。呵呵~~~~
meimeimilly
Spss的基本方法使用步骤
由于一次的调研工作,我们的数据分析采用spss的统计分析工具,然后我是一个新人,全都是一步一步从零开始操作的。在学习的过程中简单记录了一点笔记,既然写了,就觉得应该把它保存下来,所以来到了这里,为我的第一次spss操作做个马克。
因子分析方法:指标非常多,反映相同事情的进行聚合
设置的地方:
描述—— kmo
抽取 —— 主成分,碎石图
旋转——最大方差法
得分——保存为变量
选项——大小为变量、删除最小系数,特征值为
kmo > ——看是否有效,对原始数据的检验。
在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值
公因子方差——提取程度(损失的数据,如果损失低于40%即满意)
解释总方差:可以分成几类,然后提取主成分因子,累积方差贡献率,累积特征值大于等于85%(放宽70%).(损失率低于15%)
碎石图:类似于解释总方差,特征值大于1的就是主成分,对解释方差的解释和完善
成分矩阵——一般不考虑,不够充分,只是中间步骤
旋转后成分矩阵——成分1,成分2中大于的归为一类,载荷大于设置的值才会把得分显示在视图。
步骤:
分析→度量→可靠性分析→统计量→描述性(如果项已删除则进行度量)→继续(模型α)→确定
分析:可靠性统计量:以上有效
可删除的分析:如果删除后信度变大,则可以考虑把这个因素删除
平均数:反应数量的中点
中位数:全体样本的中点
步骤:
均值:描述性统计分析→描述→导入变量→确定
中位数:比较均值→均值→导入变量→选项→导入中位数即可→确定
步骤:
分析→回归→线性→因变量→自变量→
统计量:估计→模型拟合度→共线性诊断→DW
绘制:Y:ZRESID, X:ZPRED; 直方图,正态概率图
保存:不操作
选项: 默认
→确定
模型汇总表
DW统计量代表自相关
DW = 2不存在为伪回归
DW < 2 正自相关
DW > 2 负相关
多重响应,多重响应数据本质上属于分类数据,但由于各选项均是对同一个问题的回答,之间存在一定的相关,将各选项单独进行分析并不恰当。因此对多选题最常见的分析方法是使用SPSS中的“多重响应”命令,通过定义变量集的方式,对选项进行简单的频数分析和交叉分析 作用1:进行简单的频数分析:可以直观明了的比较一道多选题的各个选项被选比例。 作用2:进行交叉分析:可以通过设置分层变量来进行某个选项控制下的分析。
沉默的苏克
可以将影响因素作为自变量,环保意识作为因变量做回归分析,比较标准化回归系数,回归系数越大代表哪个因素的影响更大。具体可查看在线spss软件spssau的方法说明 里面全部有自动化文字分析和分析建议。
80年代之后
你要先有论文的目的和分析思路,然后根据目的的论文和分析思路,确定需要收集的数据和类型,最后才考虑 应该用spss什么方法来实现。下面是我自己写的一个 带数据分析的论文写作指导首先,我要说明这里的指导并非常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作,其中涉及到有医学类、护理类、人文社科类、教育类、经济学类、心理学类等,单凡需要用到数据分析的论文。因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。因此,具体的过程应该如下:首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。第五.具体收集数据过程,不细说了,收集回来之后就是数据的录入。记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。第六.这一步才是你应该开始头疼的数据分析不会了怎么办。因为到这里才开始是数据的具体分析过程了。不会怎么办,前面已经知道了分析方法,这种情况,只有找本教材,然后找对应的方法介绍学习即可,或者实在不行找人指导,找人帮忙等等。最后。分析完成后,开始整篇论文的写作。其实完成前面的每一步,到最后写文献综述以及讨论时,自然就会得心应手了,很少会需要绞尽脑汁甚至东拼西凑。
毕业论文数据分析的做法如下: 首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课
1、进行案例的调查、分析。2、发现一个证据,可以证明别人已经提出但的尚未被别人证明过的理论。3、用大样本的数据来证明一种理论。4、进行历史分析或者比较分析。5、
实证分析方法:实证的分析工具 实证分析要运用一系列的分析工具,诸如个量分析与总量分析、均衡分析与非均衡分析、静态分析与动态分析、定性分析与定量分析、逻辑演绎与经
毕业论文实证分析不会怎么办: 1 .均衡分析与非均衡分析 简单的说均衡就是数量分析,非均衡就是变量分析。 2,静态分析与动态分析 动态分析需要考虑时间因素,静态
论文实证分析有两种分析的方法,一种是回归分析,另一种是统计分析。 扩展资料 论文