粉色小恶魔yiyi
给一张图片,判断图片中的人物在做什么,对于人来说通常并不困难。但是,怎么让机器也学会判断呢?从静态的姿态识别,到动态的动作识别,再到将不同情景下的同一个人识别出来,机器已经变得越来越聪明。 1、2D、3D姿态识别 非常强大,很适合入门,通读后再对具体细节进行深究。 还介绍了动作识别:要识别出人物的动作通常需要连续的视频数据进行分析处理,需要采集的特征通常有单帧图像数据的特征和多帧图像数据之间时间上的特征,简单来说就是静态帧数据+ 帧间数据 。 2、DensePose开源了,2D变3D人体姿势实时识别 对其中一种方法(人体姿势实时识别系统DensePose)的直观介绍 3、SkeletonNet:完整的人体三维位姿重建方法 对SkeletonNet模型进行具体介绍 4、人体姿态估计(人体关键点检测)分类与经典方法分析(附GitHub地址 ) 菜鸡要努力 人体姿态估计(Human Pose Estimation)也称为人体关键点检测(Human Keypoints Detection)。 对于人体姿态估计的研究,简要介绍了各种方法。 1、行为识别 人体骨架检测+LSTM yengjie 2、解读:基于动态骨骼的动作识别方法ST-GCN(时空图卷积网络模型) 我是婉君的 3、基于3D关节点的人体动作识别综述 叶落寒蝉 是一篇针对论文的翻译 1、用单张2D图像重构3D场景 zouxy09 2、【深度相机系列三】深度相机原理揭秘--双目立体视觉 计算机视觉life 介绍的很详细 3、双目摄像机测深度原理 西海岸看日出 可以看作是上一篇的精简版 4、 真实场景的双目立体匹配(Stereo Matching)获取深度图详解 给出了一个具体的实践例子
乐趣小鱼
人体姿态识别的过程中我们首先需要进行关键点检测,我们需要生成高分辨率的heatmap,但是传统的特征提取网络如VGG网络会将我们的feature map分辨率降 的很低,损失了空间结构。我们知道VGG的结构是穿行结构,使用HRNet则是将VGG的穿行结构改变成了并行结构,将不同分辨率的feature map进行并联,下面我们看下HRNet系列吧。 应用领域: 人体姿态检测 方法:只选择高分辨率特征图 应用领域:人脸关键点检测 方法:利用所有分辨率的特征图,对低分辨率特征图上采样后与高分辨率特征图拼接,经过1*1卷积,softmax层生成分割预测图 应用领域:图像分类 方法:HRNet-Wx-C:4张不同分辨率特征图经过bottleneck层,通道数翻倍后,从高分辨率图依次经过strided convolution与低分辨率图进行元素加操作,在经过1*1卷积使通道翻倍(1024->2048),全局平均池化后送入分类器。 应用领域:目标检测 方法:HRNetV2p:将HRNetV2拼接后的特征图经过不同尺度的平均池化操作产生不同级别的特征表示,经过1*1的卷积后形成特征金字塔 参考: [1] 关于HRNet的简介 [2] [论文阅读]HRNetV1,HRNetV2,HRNetV2p
身边的图像识别、人脸识别、文字识别应用案例,还有网络延迟方面的改进或创新之处。 1、金融领域。人脸识别当前在金融领域的应用最为广泛,当前国内金融领域监管要求严格
主要是你怎么选择了,大哥帮
1 KM-1 键混器的设计 1 Sw3204V监控器的设计 1 基于射频遥控型(单片机)交通灯的设计1 Sw802V视频切换器的设计 1 无线数控多
淘宝上有付费翻译的,你去看看。
那你在网上找找(人工智能与机器人研究)吧~~看看别人的是怎么写的~