汀汀20082008
勾股定理 勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²,即α*α+b*b=c*c推广:把指数改为n时,等号变为小于号.1.勾股定理的由来据考证,人类对这条定理的认识,少说也超过 4000 年!中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。) 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 2.勾股定理的验证一、【《《周髀算经》】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。如下:解:勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,a²+b²=c²说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。举例:如直角三角形的两个直角边分别为3、4,则斜边c2= a2+b2=9+16=25则说明斜边为5。 第一章 勾股定理一、 勾股定理的内容,勾股定理是怎样得到的,从定理的证明过程中你得到了什么启示?练习:如图字母B所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 194 1、在△ABC中,∠C =Rt∠. (1) 若a =2,b =3则以c为边的正方形面积 = (2) 若a =5,c =13.则b = . (3) 若c =61,b =11.则a = . (4) 若a∶c =3∶5且c =20则 b = . (5) 若∠A =60°且AC =7cm则AB = cm,BC 2 = cm2. 2、直角三角形一条直角边与斜边分别为8cm和10cm.则斜边上的高等于 cm. 3、等腰三角形的周长是20cm,底边上的高是6cm,则底边的长为 cm. 4、△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD = cm. 5、已知:△ABC中,∠ACB=90°,CD⊥AB于D,BC= ,DB=2cm ,则BC cm, AB= cm, AC= cm. 6、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为_______。 7、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高________米。8、已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A、25 B、14 C、7 D、7或259、小丰妈妈买了一部29英寸(74cm)电视机,下列对29英寸的说法中正确的是 A. 小丰认为指的是屏幕的长度; B. 小丰的妈妈认为指的是屏幕的宽度;C. 小丰的爸爸认为指的是屏幕的周长; D. 售货员认为指的是屏幕对角线的长度10、二、 你有几种证明一个三角形是直角三角形的方法?练习:三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形.1、在ΔABC中,若AB2 + BC2 = AC2,则∠A + ∠C= °。2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是( )(A) 直角三角形 (B)锐角三角形 (B) (C)钝角三角形 (D)以上答案都不对已知三角形的三边长分别是2n+1,2n +2n, 2n +2n+1(n为正整数)则最大角等于_________度.3、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。阅读材料:三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。下图的证明方法,据说是L•达•芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:(AC)2=2△JAB=2△CAD=ADKL。同理,(BC)2=KEBL所以(AC)2+(BC)2=ADKL+KEBL=(BC)2 印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有c/b=b/m,c/a=a/n,cm=b2cn=a2两边相加得a2+b2=c(m+n)=c2这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。有几位美国总统与数学有着微妙联系。G•华盛顿曾经是一个著名的测量员。T•杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得即a2+2ab+b2=2ab+c2a2+b2=c2这种证法,在中学生学习几何时往往感兴趣。关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。过C引CM‖BD,交AB于L,连接BC,CE。因为AB=AE,AC=AG ∠CAE=∠BAG,所以 △ACE≌△AGBSAEML=SACFG (1)同法可证SBLMD=SBKHC (2)(1)+(2)得SABDE=SACFG+SBKHC,即 c2=a2+b2证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。SCFGH=SABED+4×SABC,所以 a2+b2=c2证法3 如图26-4(梅文鼎图)。在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设五边形ACKDE的面积=S一方面,S=正方形ABDE面积+2倍△ABC面积=c2+ab (1)另一方面,S=正方形ACGF面积+正方形DHGK面积+2倍△ABC面积=b2+a2+ab. (2)由(1),(2)得c2=a2+b2证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。设五边形EKJBD的面积为S。一方面S=SABDE+2SABC=c2+ab (1)另一方面,S=SBEFG+2•S△ABC+SGHFK=b2+ab+a2由(1),(2)得出论证都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见 【各具特色的证明方法】 勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”: 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”: 勾3股4 勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。 这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。
西兰花007
论文的摘要是对整篇论文的概括和总结,摘要里要表现出你的主要论点,简单概括你的论证过程,写出你的主要结论,最好列出你的论文的创新点,让读者对整篇论文有大致理解。我给你一篇本人写的。
猫咪抱抱
勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,接下来我为你整理了数学勾股定理小论文,一起来看看吧。
“兴趣是最好的老师。”在勾股定理的日常教学中,我们要注重学生兴趣的激发。
首先,老师在授课导入时可以给学生讲一下勾股定理的背景资料,如勾股定理的发展历史、勾股定理在日常生活中的运用和勾股定理的相关故事等。这样不仅可以让学生了解勾股定理的文化知识,更可以调动学生学习的好奇心和学习兴趣。其次,教师在具体授课中可以设计一些贴近生活的题目。《义务教育数学课程标准》(实验稿)指出:“勾股定理的教学目标是让学生体验勾股定理的探索过程,会运用勾股定理解决简单的问题”。这也能让学生主动地参与到课堂中去,能起到激发学习兴趣的作用。
光有兴趣是不行的,还需要教师有好的教学方法。
一、教师教学方法的设计要结合学生基本特征
在教学勾股定理时,教师要知道:初二学生已经对三角形及实数等一些知识有了些了解,初步具备了简单的分析和解决问题的基本技能;有了一些形象和抽象的思维能力;对勾股定理有所耳闻,但不具体。
二、设置勾股定理的教学情景
问题1:你们能求出我们常见的边长为单位1的正方形的对角线是多长吗?问题2:a2+a2=b2这个式子中,你们知道a2、b2在几何中有什么意义吗?
最后,让学生尝试画出能表达式子的图形。这有利于学生打好基础,并建立数与形结合的概念。
三、改变过去填鸭式的教学,让学生学会自主合作探究
可以让学生分成小组用折纸的方法来进一步直观地感受勾股定理的证明。如图:
(a+b)2=■ab・4+c2
化简得:a2+b2=c2
四、学以致用
既然学习勾股定理,那么我们还要能对它进行灵活运用,但是在运用中一些学生会出现一些常见的错误,学生在审题时由于马虎会发现不了题目中的隐含条件。如:在直角△ABC中,a、b、c分别为三角形的三边,∠B为直角,如果a=6 cm,b=8 cm,求边c的长。错误解法:∵△ABC是直角三角形,∴a2+b2=c2,即62+82=c2,解得c=10 cm。分析原因:这是因为学生在审题时忽视了题目中∠B才是直角,也就是b才是斜边。所以,正确的应是:∵∠B是直角,∴a2+c2=b2,即62+c2=82,解得c=2■。当然学生有时还会在做题中忽略勾股定理成立的条件,对一些不是直角三角形的也运用勾股定理。我们在具体的做题中要让学生把好审题这一关。
总之,只要我们能在数学勾股定理的教学中充分调动学生的兴趣,改变陈旧的教学方法,就能让学生在探究勾股定理的道路上体会数学学习的乐趣。
何谓勾股定理?勾股定理又叫毕氏定理,即直角三角形两直角边的平方和等于斜边的平方。据考证,人类对这条定理的认识已经超过了4000年。据史料记载,世上有300多个对此定理的证明。勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了20多种精彩的证法。这是数学中任何定理都无法比拟的。
本文中仅介绍勾股定理的证明方法中最为精彩的两种证明方法,据说分别来源于中国和希腊。
1、中国方法:画两个边长为 的正方形,如图,其中 为直角边, 为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以 为边,右图剩下以 为边的正方形。 于是得 。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2、希腊方法:直接在直角三角形三边上画正方形。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。
值得指出的是,由于《几何原本》的广泛流传,欧几里得的证明是勾股定理所有证明中最为著名的。 为此,希腊人称之为“已婚妇女的定理”,法国人称之为“驴桥问题”,阿拉伯人称之为“新娘图”、“新娘的坐椅”。 在欧洲,又有人称之为“孔雀的尾巴”或“大风车”等,这些可能是从其几何图形得到的灵感吧
总之,在探究勾股定理的道路上,我们走向了数学殿堂,并且会越走越远……
自“科教兴国”战略实施多年以来,我国的教育体制已逐渐从应试教育向素质教育转变。然而,这种转变的有效性仍值得检验。素质教育的本质就是以培养、激发学生的创新思维为目的,以特色的教学模式为手段,调动学生的积极思维欲望,不拘一格地带动学生对知识敢想、多想,以达到学生更深层次地理解所学知识,使其真正转变为自己的知识,并能在以后的学习、生活中加以利用。就数学而言,数学课堂教学研究一直是国内外教育改革的焦点之一,课堂被认为是学生构建知识,老师组织学习最重要的现实环境,它被喻为“人世间最复杂的实验室之一”。作为一名初中数学教育工作者,如何能在课堂中带动学生的听课积极性,使学生对我们所教内容产生浓厚的兴趣,而不认为是教条式的填鸭,显得至关重要。勾股定理是中国几何的根源,是中华数学的精髓。在此,作者以初中二年级数学课程“勾股定理”作为课程实践案例,进行了一次简单尝试。
一、以历史故事开始,激发学生兴趣
笔者改变了以往“勾股定理”教学中照书念的本本模式,而是不惜用去10分钟时间给学生讲讲勾股定理的起源。在引领学生将书翻到勾股定理章节后,告诉学生,大家书本上看到的这位毕达哥拉斯,是公元前四百多年前发现了直角三角形的三边关系,而最早有关该定理的文字著作出自我国商朝约公元前200年左右的《周髀算经》,由商高发现。并在三国时代由赵爽对其做出详细注释,又给出了另外一个证明引,我们的祖先是不是也很智慧呢?此时,全班几乎所有学生目光都从书本移开,极为专注地看着笔者,眼神中带着强烈的求知欲望。笔者转而引导学生开始上课,每个孩子都带着浓厚的兴趣想要学好我们祖先发现的伟大定理。
二、数形结合,形象理解抽象概念
通过带领学生从看图中快速计算正方形ABC、A’B’C’面积,并展开猜想,引出“勾股定理”的命题。随后,将学生分组,一组4人,给每组分发下去4个全等的直角三角形纸板,短直角边标有a(勾)字样,长直角边和斜边分别标有b(股)及c(弦)。让每一位同学都在仔细观察“赵爽弦图”的同时,用纸板摆出“赵爽弦图”,使学生对赵爽的证明过程有一个初步形象的直观认识,然后给学生做出赵爽对“勾股定理”的详细推导。学生们在小组参与弦图旋转、摆放的过程中,个个乐此不疲,相互提醒。虽然,教室中看似多了点吵闹,但笔者发现,在学生眼、手、口并用的实际操作中,勾股定理的学习少了许多课本填鸭式的枯燥,换之而来的是学生们积极的参与、激烈的讨论和更为浓厚的兴趣。
三、举一反三,调动思维
在定理证出后,笔者立即向学生提问:谁能给出快速说出更多的均以整数为边的勾股数的方法?底下同学开始议论,一位同学的回答引得全班哄堂大笑,上网!笔者也忍俊不禁,告诉他很会利用现代高科技工具,算是一项能力,但不是独立解决该问题的最佳办法。此时,已有学生说出6、8、10,9、12、15等等。笔者微笑点头肯定,整数勾股数三遍等量放大比例同样也是勾股数,三边不可约分的整数勾股数是以质数为最短边,并且只有一组以其为最短边的勾股数。至于原因,不过该内容已超纲,有兴趣的同学可以课下研究、探讨。
四、课后总结,课外拓展
重点内容“勾股定理”授课完毕,继而启发学生对“勾股定理”的实际应用。学生通过做门框、湖水等实际应用题对勾股定理的实用性有了更加现实的认识,也有了数学建模的简单概念。邻近下课时,给学生布置了家庭作业,让学生用一个礼拜的时间观察生活中有关勾股定理应用的现实例子,并加以简单介绍。之后腾出一节课给学生自由发挥,介绍自己对勾股定理的实践观察,学生们积极上台发言,表达欲望强烈,在其他同学获取知识的同时,讲述的同学也在大家肯定的掌声中增强了自信心,课外拓展取得了很好的效果。
五、结语
豪廷布艺
谈谈对勾股定理的认识 勾股定理是数学中极其重要的一个定理,它揭示了直角三角形中三条边之间的关系,而且应用十分广泛. 勾股定理是我国最早证明的几何定理之一,也是每年中考必考的重要知识点之一. 古今中外有不少数学家、物理学家,甚至有画家、政治家等都在寻求它的证明方法. 传说古希腊的毕达哥拉斯在找到一种证明方法后,欣喜若狂,便杀了100头牛来祭神,表示庆祝,所以勾股定理也被称为“百牛定理”. 勾股定理是几何证明方法最多的一个定理,现在已经找到400多种证明方法,其中我们聪明睿智的祖先找到的就有200多种. 因此,勾股定理被说成是中国几何学的根源. 中华数学的精髓,诸如开方术、方程术、天元术等技艺的诞生与发展,寻根探源都与勾股定理有密切的关系. 我国伟大的数学家华罗庚将勾股定理称为茫茫宇宙星际交流的“语言”,因为数学是一切有智慧生物的共同语言,所以我们有更多的理由要学好它. 学习《勾股定理》这一单元时,应抓住三大关键:一是勾股定理及其逆定理的证明方法;二是勾股定理及其逆定理的应用;三是怎样寻找勾股数. 对于第二个问题,又应抓住四个方面:一是勾股定理在几何计算中的应用;二是勾股定理在几何证明中的应用;三是勾股定理及其逆定理的综合应用;四是勾股定理在代数证题中的应用. 勾股定理是我国最早证明的几何定理之一,是中华数学的精髓. 几千年以来,有无数古今中外的学者对它进行了证明. 其中包括汉代的赵爽、魏晋时期的刘徽、美国总统伽菲尔德、著名画家达·芬奇…… 在初中数学学习过程中,我们常常说到数形结合思想,说到代数与几何的综合应用. 几何的勾股定理中有两个数的平方和,在代数的整式乘法中也有两个数的平方和,这两个公式中有相同的部分,能不能把它们结合到一起来使用?勾股定理能否与其它乘法公式结合使用?学习以后不妨考虑一下勾股定理和乘法公式有哪些结合? 在初中数学中常常提到的数学思想方法有:数形结合思想、分类讨论思想、转化思想、方程思想、整体思想. 在勾股定理的应用中,渗透了上述四种数学思想!中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。
勾股定理 勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之
学术论文题目是论文语篇不可缺少的一部分,在知识传播中起着非常重要的作用。下面是我带来的关于药学类毕业论文题目的内容,欢迎阅读参考! 1、新医改形势下的国家基本药
浅谈测绘新技术在房产测绘中的应用论文 1 引言 房产测绘是房屋管理工作的重要基础和依据之一,为房屋的产权、产籍管理提供房产及房屋用地的权属名称、界址范围、产权面
背景2001年1月,普华永道(priceWaterhouse&Coopers)发布了一份关于“不透明指数”(TheOpacityIndex)的调查报告。该报告以
论文支持一楼的~~!~~!~网络电视地址弄到手,搞个播放器~~OK,鱼鱼桌面秀有个网络电台,有代码,你参考下