首页 > 学术期刊知识库 > 机器视觉论文期刊

机器视觉论文期刊

发布时间:

机器视觉论文期刊

是不是专业性比较高,可以上悠悠期刊看看编辑是不是有相关的介绍。

我知道 工搜网上有类似的,资料,应该是在资料文库频道 的 机器视觉标签,国外关于机器视觉的期刊 其实挺少的,感觉这个站上的资料,还行,免费请求,可以找找看

以下是几个顶级会议的列表(不完整的,但基本覆盖)(1)机器学习顶级会议:NIPS, ICML, UAI, AISTATS; (期刊:JMLR, ML, Trends in ML, IEEE T-NN)计算机视觉和图像识别:ICCV, CVPR, ECCV; (期刊:IEEE T-PAMI, IJCV, IEEE T-IP)人工智能:IJCAI, AAAI; (期刊AI)另外相关的还有SIGRAPH, KDD, ACL, SIGIR, WWW等。特别是,如果做机器学习,必须地,把近4年的NIPS, ICML翻几遍;如果做计算机视觉,要把近4年的ICCV, CVPR, NIPS, ICML翻几遍。(2)另外补充一下:大部分顶级会议的论文都能从网上免费下载到。(3)说些自己的感受。对计算机视觉和计算神经科学领域,从方法和模型的角度看,统计模型(包括probabilistic graphical model和statistical learning theory)是主流也是非常有影响力的方法。有个非常明显的趋势:重要的方法和模型最先在NIPS或ICML出现,然后应用到CV,IR和MM。虽然具体问题和应用也很重要,但多关注和结合这些方法也很有意义。

机器视觉方面的期刊

我知道 工搜网上有类似的,资料,应该是在资料文库频道 的 机器视觉标签,国外关于机器视觉的期刊 其实挺少的,感觉这个站上的资料,还行,免费请求,可以找找看

《视觉系统设计》(Vision Systems Design China)

机器视觉国内论文期刊

中国视觉网

以下是几个顶级会议的列表(不完整的,但基本覆盖)(1)机器学习顶级会议:NIPS, ICML, UAI, AISTATS; (期刊:JMLR, ML, Trends in ML, IEEE T-NN)计算机视觉和图像识别:ICCV, CVPR, ECCV; (期刊:IEEE T-PAMI, IJCV, IEEE T-IP)人工智能:IJCAI, AAAI; (期刊AI)另外相关的还有SIGRAPH, KDD, ACL, SIGIR, WWW等。特别是,如果做机器学习,必须地,把近4年的NIPS, ICML翻几遍;如果做计算机视觉,要把近4年的ICCV, CVPR, NIPS, ICML翻几遍。(2)另外补充一下:大部分顶级会议的论文都能从网上免费下载到。(3)说些自己的感受。对计算机视觉和计算神经科学领域,从方法和模型的角度看,统计模型(包括probabilistic graphical model和statistical learning theory)是主流也是非常有影响力的方法。有个非常明显的趋势:重要的方法和模型最先在NIPS或ICML出现,然后应用到CV,IR和MM。虽然具体问题和应用也很重要,但多关注和结合这些方法也很有意义。

计算机、自动化类期刊

机器人视觉传感器论文

机器人控制技术论文篇二 智能控制在机器人技术中的应用 摘要:机器人的智能从无到有、从低级到高级,随着科学技术的进步而不断深人发展。计算机技术、 网络技术 、人工智能、新材料和MEMS技术的发展,智能化、网络化、微型化发展趋势凸显出来。本文主要探讨智能控制在机器人技术中的应用。 关键词:智能控制 机器人 技术 1、引言 工业机器人是一个复杂的非线性、强耦合、多变量的动态系统,运行时常具有不确定性,而用现有的机器人动力学模型的先验知识常常难以建立其精确的数学模型,即使建立某种模型,也很复杂、计算量大,不能满足机器人实时控制的要求。智能控制的出现为解决机器人控制中存在的一些问题提供了新的途径。由于智能控制具有整体优化,不依赖对象模型,自学习和自适应等特性,用它解决机器人等复杂控制问题,可以取得良好效果。 2、智能机器人的概述 提起智能机器人,很容易让人联想到人工智能。人工智能有生物学模拟学派、心理学派和行为主义学派三种不同的学派。在20世纪50年代中期,行为主义学派一直占统治地位。行为主义学派的学者们认为人类的大部分知识是不能用数学方法精确描述的,提出了用符号在计算机上表达知识的符号推理系统,即专家系统。专家系统用规则或语义网来表示知识规则。但人类的某些知识并不能用显式规则来描述,因此,专家系统曾一度陷人困境。近年来神经网络技术取得一定突破,使生物模拟学派活跃起来。智能机器人是人工智能研究的载体,但两者之间存在很大的差异。例如,对于智能装配机器人而言,要求它通过视觉系统获取图纸上的装配信息,通过分析,发现并找到所需工件,按正确的装配顺序把工件一一装配上。因此,智能机器人需要具备知识的表达与获取技术,要为装配做出规划。同时,在发现和寻找工件时需要利用模式识别技术,找到图样上的工件。装配是一个复杂的工艺,它可能要采用力与位置的混合控制技术,还可能为机器人的本体装上柔性手腕,才能完成任务,这又是机构学问题。智能机器人涉及的面广,技术要求高,是高新技术的综合体。那么,到底什么是智能机器人呢?到目前为止,国际上对智能机器人仍没有统一的定义。一般认为,智能机器人是具有感知、思维和动作的机器。所谓感知,即指发现、认识和描述外部环境和自身状态的能力。如装配作业,它要能找到和识别所要的工件,需要利用视觉传感器来感知工件。同时,为了接近工件,智能机器人需要在非结构化的环境中,认识瘴碍物并实现避障移动。这些都依赖于智能机器人的感觉系统,即各种各样的传感器。所谓思维,是指机器人自身具有解决问题的能力。比如,装配机器人可以根据设计要求,为一个复杂机器找到零件的装配办法及顺序,指挥执行机构,即动作部分去装配完成这个机器,动作是指机器人具有可以完成作业的机构和驱动装置。因此,智能机器人是一个复杂的软件、硬件的综合体。虽然对智能机器人没有统一的定义,但通过对具体智能机器人的考察,还是有一个感性认识的。 3、智能机器人的体系结构 智能机器人的体系结构主要包括硬件系统和软件系统两 个方面。由于智能机器人的使用目的不同,硬件系统的构成也不尽相同。结构是以人为原型设计的。系统主要包括视觉系统、行走机构、机械手、控制系统和人机接口。如图1所示: 视觉系统 智能机器人利用人工视觉系统来模拟人的眼睛。视觉系统可分为图像获取、图像处理、图像理解3个部分。视觉传感器是将景物的光信号转换成电信号的器件。早期智能机器人使用光导摄像机作为机器人的视觉传感器。近年来,固态视觉传感器,如电荷耦合器件CCD、金属氧化物半导体CMOS器件。同电视摄像机相比,固体视觉传感器体积小、质量轻,因此得到广泛的应用。视觉传感器得到的电信号经过A/D转换成数字信号,即数字图像。单个视觉传感器只能获取平面图像,无法获取深度或距离信息。目前正在研究用双目立体视觉或距离传感.器来获取三维立体视觉信息。但至今还没有一种简单实用的装置。数字图像经过处理,提取特征,然后由图像理解部分识别外界的景物。 行走机构 智能机器人的行走机构有轮式、履带式或爬行式以及类人型的两足式。目前大多数智能机器人.采用轮式、履带式或爬行式行走机构,实现起来简单方便。1987年开始出现两足机器人,随后相继研制了四足、六足机器人。让机器人像人类一样行走,是科学家一直追求的梦想。 机械手 智能机器人可以借用工业机器人的机械手结构。但手的自由度需要增加,而且还要配备触觉、压觉、力觉和滑觉等传感器以便产生柔软、.灵活、可靠的动作,完成复杂作业。 控制系统 智能机器人多传感器信息的融合、运动规划、环境建模、智能推理等需要大量的内存和高速、实时处理能力。现在的冯?诺曼结构作为智能机器人的控制器仍然力不从心。随着光子计算机和并行处理结构的出现,智能机器人的处理能力会更高。机器人会出现更高的钾能。 人机接口 智能机器人的人机接口包括机器人会说、会听以及网络接日、话筒、扬声器、语音合成和识别系统,使机器人能够听懂人类的指令,能与人以自然语言进行交流。机器人还需要具有网络接n,人可以通过网络和通讯技术对机器.人进行控制和操作。 随着智能机器人研究的不断深入、越来越多的各种各样的传感器被使用,信息融合、规划,问题求解,运动学与动力学计算等单元技术不断提高,使智能机器人整体智能能力不断增强,同时也使其系统结构变得复杂。智能机器人是一个多CPU的复杂系统,它必然是分成若干模块或分层递阶结构。在这个结构中,功能如何分解、时间关系如何确定、空间资源如何分配等问题,都是直接影响整个系统智能能力的关键问题。同时为了保证智能系统的扩展,便于技术的更新,要求系统的结构具有一定开放性,从而保证智能能力不断增强,新的或更多传感器可以进入,各种算法可以组合使用口这便使体系结构本身变成了一个要研究解决的复杂问题。智能机器人的体系结构是定义一个智能机器人系统各部分之间相互关系和功能分配,确定一个智能机器人或多个智能机器人系统的信息流通关系和逻辑上的计算结构。对于一个具体的机器人而言,可以说就是这个机器人信息处理和控制系统的总体结构,它不包括这个机器人的机械结构内容。事实上,任何一个机器人都有自己的体系结构。目前,大多数工业机器人的控制系统为两层结构,上层负责运动学计算和人机交互,下层负责对各个关节进行伺服控制。 参考文献: [1]左敏,曾广平. 基于平行进化的机器人智能控制研究[J]. 计算机仿真,2011,08:15-16. [2]陈赜,司匡书. 全自主类人机器人的智能控制系统设计[J]. 伺服控制,2009,02:76-78. [3]康雅微. 移动机器人马达的智能控制[J]. 装备制造技术,:102-103. 看了“机器人控制技术论文”的人还看: 1. 搬运机器人技术论文 2. 机电控制技术论文 3. 关于机器人的科技论文 4. 工业机器人技术论文范文(2) 5. 机器人科技论文

数字化家庭是未来智能小区系统的基本单元。所谓“数字化家庭”就是基于家庭内部提供覆盖整个家庭的智能化服务,包括数据通信、家庭娱乐和信息家电控制功能。数字化家庭设计的一项主要内容是通信功能的实现,包括家庭与外界的通信及家庭内部相关设施之间的通信。从现在的发展来看,外部的通信主要通过宽带接入。intenet,而家庭内部的通信,笔者采用目前比较具有竞争力的蓝牙(bluetootlh)无线接入技术。传统的数字化家庭采用pc进行总体控制,缺乏人性化。笔者根据人工情感的思想设计一种配备多种外部传感器的智能机器人,将此智能机器人视作家庭成员,通过它实现对数字化家庭的控制。本文主要就智能机器人在数字化家庭医疗保健方面的应用进行模型设计,在智能机器人与医疗仪器和控制pc的通信采用蓝牙技术。整个系统的成本较低,功能较为全面,扩展应用非常广阔,具有极大的市场潜力。2 智能机器人的总体设计2.1 智能机器人的多传感器系统机器人智能技术中最为重要的相关领域是机器人的多感觉系统和多传感信息的集成与融合[1],统称为智能系统的硬件和软件部分。视觉、听觉、力觉、触觉等外部传感器和机器人各关节的内部传感器信息融合使用,可使机器人完成实时图像传输、语音识别、景物辨别、定位、自动避障、目标物探测等重要功能;给机器人加上相关的医疗模块(ccd、camera、立体麦克风、图像采集卡等)和专用医疗传感器部件,再加上医疗专家系统就可以实现医疗保健和远程医疗监护功能。智能机器人的多传感器系统框图如图1所示。2.2 智能机器人控制系统机器人控制系统包含2部分:一是上位机,一般采用pc,它完成机器人的运动轨迹规划、传感器信息融合控制算法、视觉处理、人机接口及远程处理等任务;二是下位机,一般采用多单片机系统或dsp等作为控制器的核心部件,完成电机伺服控制、反馈处理、图像处理、语音识别和通信接口等功能。如果采用多单片机系统作为下位机,每个处理器完成单一任务,通过信息交换和相互协调完成总体系统功能,但其在信号处理能力上明显有所欠缺。由于dsp擅长对信号的处理,而且对此智能机器人来说经常需要信号处理、图像处理和语音识别,所以采用dsp作为智能机器人控制系统的控制器[2]。控制系统以dsp(tms320c54x)为核心部件,由蓝牙无线通信、gsm无线通信(支持gprs)、电机驱动、数字罗盘、感觉功能传感器(视觉和听觉等)、医疗传感器和多选一串口通信(rs-232)模块等组成,控制系统框图如图2所示。 (1)系统通过驱动电机和转向电机控制机器人的运动,转向电机利用数字罗盘的信息作为反馈量进行pid控制。(2)采用爱立信(ericsson)公司的rokl01007型电路作为蓝牙无线通信模块,实现智能机器人与上位机pc的通信和与其他基于蓝牙模块的医疗保健仪器的通信。(3)支持gprs的gsm无线通信模块支持数据、语音、短信息和传真服务,采用手机通信方式与远端医疗监控中心通信。(4)由于tms320c54x只有1个串行口,而蓝牙模块、gsm无线模块、数字罗盘和视觉听觉等感觉功能传感器模块都是采用rs一232异步串行通信,所以必须设计1个多选一串口通信模块进行转换处理。当tms320c54x需要蓝牙无线通信模块的数据时通过电路选通;当t~ms320c54x需要某个传感器模块的数据时,关断上次无线通信模块的选通,同时选通该次传感器模块。这样,各个模块就完成了与1~ms320c54x的串口通信。3 主要医疗保健功能的实现智能机器人对于数字化家庭的医疗保健可以提供如下的服务:(1)医疗监护通过集成有蓝牙模块的医疗传感器对家庭成员的主要生理参数如心电、血压、体温、呼吸和血氧饱和度等进行实时检测,通过机器人的处理系统提供本地结果。(2)远程诊断和会诊通过机器人的视觉和听觉等感觉功能,将采集的视频、音频等数据结合各项生理参数数据传给远程医疗中心,由医疗中心的专家进行远程监控,结合医疗专家系统对家庭成员的健康状况进行会诊,即提供望(视频)、闻、问(音频)、切(各项生理参数)的服务[3]。3.1机器人视觉与视频信号的传输机器人采集的视频信号有2种作用:提供机器人视觉;将采集到的家庭成员的静态图像和动态画面传给远程医疗中心。机器人视觉的作用是从3维环境图像中获得所需的信息并构造出环境对象的明确而有意义的描述。视觉包括3个过程:(1)图像获取。通过视觉传感器(立体影像的ccd camera)将3维环境图像转换为电信号。(2)图像处理。图像到图像的变换,如特征提取。(3)图像理解。在处理的基础上给出环境描述。通过视频信号的传输,远程医疗中心的医生可以实时了解家庭成员的身体状况和精神状态。智能机器人根据医生的需要捕捉适合医疗保健和诊断需求的图像,有选择地传输高分辨率和低分辨率的图像。在医疗保健的过程中,对于图像传送有2种不同条件的需求:(1)医生观察家庭成员的皮肤、嘴唇、舌面、指甲和面部表情的颜色时,需要传送静态高清晰度彩色图像;采用的方法是间隔一段时间(例如5分钟)传送1幅高清晰度静态图像。(2)医生借助动态画面查看家庭成员的身体移动能力时,可以传送分辨率较低和尺寸较小的图像,采用的方法是进行合理的压缩和恢复以保证实时性。3.2机器人听觉与音频信号的传输机器人采集的音频信号也有2种作用:一是提供机器人听觉;二是借助于音频信号,家庭成员可以和医生进行沟通,医生可以了解家庭成员的健康状况和心态。音频信号的传输为医生对家庭成员进行医疗保健提供了语言交流的途径。机器人听觉是语音识别技术,医疗保健智能机器人带有各种声交互系统,能够按照家庭成员的命令进行医疗测试和监护,还可以按照家庭成员的命令做家务、控制数字化家电和照看病人等。声音的获取采用多个立体麦克风。由于声音的频率范围大约是300hz一3400hz,过高或过低频率的声音在一般情况下是不需要传输的,所以只用传送频率范围在1000hz-3000hz的声音,医生和家庭成员就可以进行正常的交流,从而可以降低传输音频信号所占用的带宽,再采用合适的通信音频压缩协议即可满足实时音频的要求。智能机器人的听觉系统如图3所示。3.3各项生理信息的采集与传输传统检测设备通过有线方式连到人体上进行生理信息的采集,各种连线容易使病人心情紧张,从而导致检测到的数据不准确。使用蓝牙技术可以很好地解决这个问题,带有蓝牙模块的医疗微型传感器安置在家庭成员身上,尽量使其不对人体正常活动产生干扰,再通过蓝牙技术将采集的数据传输到接收设备并对其进行处理。在智能机器人上安装1个带有蓝牙模块的探测器作为接收设备,各种医疗传感器将采集到的生理信息数据通过蓝牙模块传输到探测器,探测器有2种工作方式:一是将数据交给智能机器人处理,提供本地结果;二是与internet连接(也可以通过gsm无线模块直接发回),通过将数据传输到远程医疗中心,达到医疗保健与远程监护的目的。视频和音频数据的传输也采用这种方式。智能机器人的数据传输系统如图4所示。4 蓝牙模块的应用4.1蓝牙技术概况蓝牙技术[4]是用于替代电缆或连线的短距离无线通信技术。它的载波选用全球公用的2.4ghz(实际射频通道为f=2402 k×1mhz,k=0,1,2,…,78)ism频带,并采用跳频方式来扩展频带,跳频速率为1600跳/s。可得到79个1mhz带宽的信道。蓝牙设备采用gfsk调制技术,通信速率为1mbit/s,实际有效速率最高可达721kbit/s,通信距离为10m,发射功率为1mw;当发射功率为100mw时,通信距离可达100m,可以满足数字化家庭的需要。4.2蓝牙模块rokl01007型蓝牙模块[5]是爱立信公司推出的适合于短距离通信的无线基带模块。它的集成度高、功耗小(射频功率为1mw),支持所有的蓝牙协议,可嵌入任何需要蓝牙功能的设备中。该模块包括基带控制器、无线收发器、闪存、电源管理模块和时钟5个功能模块,可提供高至hci(主机控制接口)层的功能。单个蓝牙模块的结构如图5所示。4.3主,从设备硬件组成蓝牙技术支持点到点ppp(point-t0-point pro-tocol)和点对多点的通信,用无线方式将若干蓝牙设备连接成1个微微网[6]。每个微微网由1个主设备(master)和若干个从设备(slave)组成,从设备最多为7台。主设备负责通信协议的动作,mac地址用3位来表示,即在1个微微网内可寻址8个设备(互联的设备数量实际是没有限制的,只不过在同一时刻只能激活8个,其中1个为主,7个为从)。从设备受控于主设备。所有设备单元均采用同一跳频序列。将带有蓝牙模块的微型医疗传感器作为从设备,将智能机器人上的带有蓝牙模块的探测器作为主设备。主从设备的硬件主要包括天线单元、功率放大模块、蓝牙模块、嵌入式微处理器系统、接口电路及一些辅助电路。主设备是整个蓝牙的核心部分,要完成各种不同通信协议之间的转换和信息共享,以及同外部通信之间的数据交换功能,同时还负责对各个从设备的管理和控制。5 结束语随着社会的进步,经济的发展和人民生活水平的提高,越来越多的人需要家庭医疗保健服务。文中提出的应用于数字化家庭医疗保健服务的智能机器人系统的功能较为全面,且在家用智能机器人、基于蓝牙技术的智能家居和数字化医院等方面的拓展应用非常广阔,具有极大的市场潜力。

论文自动降重:论文自动降重机器人是一款能够解决论文重复度高,自动降重的RPA机器人。

机器视觉检测论文

机器人是由计算机控制的通过编程具有可以变更的多功能的自动机械,下面是我整理的机器人技术论文,希望你能从中得到感悟!

刍议智能机器人及其关键技术

【摘 要】文章介绍了机器人的定义,阐述了智能机器人研究领域的关键技术,最后展望了智能机器人今后的发展趋势。

【关键词】智能机器人;信息融合;智能控制

一、机器人的定义

自机器人问世以来,人们就很难对机器人下一个准确的定义,欧美国家认为机器人应该是“由计算机控制的通过编程具有可以变更的多功能的自动机械”;日本学者认为“机器人就是任何高级的自动机械”,我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”目前国际上对机器人的概念已经渐趋一致,联合国标准化组织采纳了美国机器人协会(RIA:Robot Institute of America)于1979 年给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”概括说来,机器人是靠自身动和控制能力来实现各种功能的一种机器。

二、智能机器人关键技术

随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。智能机器人所处的环境往往是未知的、难以预测的,在研究这类机器人的过程中,主要涉及到以下关键技术:

(1)多传感器信息融合。多传感器信息融合技术是近年来十分热门的研究课题,它与控制理论、信号处理、人工智能、概率和统计相结合,为机器人在各种复杂、动态、不确定和未知的环境中执行任务提供了一种技术解决途径。机器人所用的传感器有很多种,根据不同用途分为内部测量传感器和外部测量传感器两大类。内部测量传感器用来检测机器人组成部件的内部状态,包括:特定位置、角度传感器;任意位置、角度传感器;速度、角度传感器;加速度传感器;倾斜角传感器;方位角传感器等。外部传感器包括:视觉(测量、认识传感器)、触觉(接触、压觉、滑动觉传感器)、力觉(力、力矩传感器)、接近觉(接近觉、距离传感器)以及角度传感器(倾斜、方向、姿式传感器)。多传感器信息融合就是指综合来自多个传感器的感知数据,以产生更可靠、更准确或更全面的信息。经过融合的多传感器系统能够更加完善、精确地反映检测对象的特性,消除信息的不确定性,提高信息的可靠性。融合后的多传感器信息具有以下特性:冗余性、互补性、实时性和低成本性。目前多传感器信息融合方法主要有贝叶斯估计、卡尔曼滤波、神经网络、小波变换等。

(2)导航与定位。在机器人系统中,自主导航是一项核心技术,是机器人研究领域的重点和难点问题。导航的基本任务有3点:一是基于环境理解的全局定位:通过环境中景物的理解,识别人为路标或具体的实物,以完成对机器人的定位,为路径规划提供素材;二是目标识别和障碍物检测:实时对障碍物或特定目标进行检测和识别,提高控制系统的稳定性;三是安全保护:能对机器人工作环境中出现的障碍和移动物体作出分析并避免对机器人造成的损伤。机器人有多种导航方式,根据环境信息的完整程度、导航指示信号类型等因素的不同,可以分为基于地图的导航、基于创建地图的导航和无地图的导航3类。根据导航采用的硬件的不同,可将导航系统分为视觉导航和非视觉传感器组合导航。视觉导航是利用摄像头进行环境探测和辨识,以获取场景中绝大部分信息。目前视觉导航信息处理的内容主要包括:视觉信息的压缩和滤波、路面检测和障碍物检测、环境特定标志的识别、三维信息感知与处理。非视觉传感器导航是指采用多种传感器共同工作,如探针式、电容式、电感式、力学传感器、雷达传感器、光电传感器等,用来探测环境,对机器人的位置、姿态、速度和系统内部状态等进行监控,感知机器人所处工作环境的静态和动态信息,使得机器人相应的工作顺序和操作内容能自然地适应工作环境的变化,有效地获取内外部信息。

(3)路径规划。路径规划技术是机器人研究领域的一个重要分支。最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在机器人工作空间中找到一条从起始状态到目标状态、可以避开障碍物的最优路径。路径规划方法大致可以分为传统方法和智能方法两种。传统路径规划方法主要有以下几种:自由空间法、图搜索法、栅格解耦法、人工势场法。大部分机器人路径规划中的全局规划都是基于上述几种方法进行的,但这些方法在路径搜索效率及路径优化方面有待于进一步改善。人工势场法是传统算法中较成熟且高效的规划方法,它通过环境势场模型进行路径规划,但是没有考察路径是否最优。智能路径规划方法是将遗传算法、模糊逻辑以及神经网络等人工智能方法应用到路径规划中,来提高机器人路径规划的避障精度,加快规划速度,满足实际应用的需要。其中应用较多的算法主要有模糊方法、神经网络、遗传算法、Q学习及混合算法等,这些方法在障碍物环境已知或未知情况下均已取得一定的研究成果。

(4)机器人视觉。视觉系统是自主机器人的重要组成部分,一般由摄像机、图像采集卡和计算机组成。机器人视觉系统的工作包括图像的获取、图像的处理和分析、输出和显示,核心任务是特征提取、图像分割和图像辨识。而如何精确高效的处理视觉信息是视觉系统的关键问题。目前视觉信息处理逐步细化,包括视觉信息的压缩和滤波、环境和障碍物检测、特定环境标志的识别、三维信息感知与处理等。其中环境和障碍物检测是视觉信息处理中最重要、也是最困难的过程。机器人视觉是其智能化最重要的标志之一,对机器人智能及控制都具有非常重要的意义。目前国内外都在大力研究,并且已经有一些系统投入使用。

(5)智能控制。随着机器人技术的发展,对于无法精确解析建模的物理对象以及信息不足的病态过程,传统控制理论暴露出缺点,近年来许多学者提出了各种不同的机器人智能控制系统。机器人的智能控制方法有模糊控制、神经网络控制、智能控制技术的融合(模糊控制和变结构控制的融合;神经网络和变结构控制的融合;模糊控制和神经网络控制的融合;智能融合技术还包括基于遗传算法的模糊控制方法)等。近几年,机器人智能控制在理论和应用方面都有较大的进展。在模糊控制方面,等人论证了模糊系统的逼近特性,首次将模糊理论用于一台实际机器人。模糊系统在机器人的建模控制、对柔性臂的控制、模糊补偿控制以及移动机器人路径规划等各个领域都得到了广泛的应用。在机器人神经网络控制方面,CMCA(Cere-bella Model Controller Articulation)应用较早的一种控制方法,其最大特点是实时性强,尤其适用于多自由度操作臂的控制。

(6)人机接口技术。智能机器人的研究目标并不是完全取代人,复杂的智能机器人系统仅仅依靠计算机来控制目前是有一定困难的,即使可以做到,也由于缺乏对环境的适应能力而并不实用。智能机器人系统还不能完全排斥人的作用,而是需要借助人机协调来实现系统控制。因此,设计良好的人机接口就成为智能机器人研究的重点问题之一。人机接口技术是研究如何使人方便自然地与计算机交流。为了实现这一目标,除了最基本的要求机器人控制器有1个友好的、灵活方便的人机界面之外,还要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,研究人机接口技术既有巨大的应用价值,又有基础理论意义。目前,人机接口技术已经取得了显著成果,文字识别、语音合成与识别、图像识别与处理、机器翻译等技术已经开始实用化。另外,人机接口装置和交互技术、监控技术、远程操作技术、通讯技术等也是人机接口技术的重要组成部分,其中远程操作技术是一个重要的研究方向。

三、总结与展望

机器人是自动化领域的主题之一,人们几十年来对机器人的开发和研究,使机器人技术取得了巨大的进步。随着人工智能、智能控制和计算机技术的发展,机器人的应用领域必将不断扩大,性能不断提高,在未来的生产、生活、科研当中会发挥更重要的作用。

参 考 文 献

[1]孙华,陈俊风,吴林.多传感器信息融合技术及其在机器人中的应用[J].传感器技术.2003,22(9):1~4

[2]王灏,毛宗源.机器人的智能控制方法[M].北京:国防工业出版社,2002

[3]金周英.关于我国智能机器人发展的几点思考[J].机器人技术与应用.2001(4):5~7

点击下页还有更多>>>机器人技术论文

ICCV论文是计算机视觉领域最高级别的会议论文

计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

CVPR录用标准

CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。

通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。

这样的主题论文还是比较好写的,首先必须要抓住论文的中心,确立文章的思想内涵,然后分几个不同的角度进行有效的论证。

  • 索引序列
  • 机器视觉论文期刊
  • 机器视觉方面的期刊
  • 机器视觉国内论文期刊
  • 机器人视觉传感器论文
  • 机器视觉检测论文
  • 返回顶部