首页 > 学术期刊知识库 > 初等代数研究论文评论

初等代数研究论文评论

发布时间:

初等代数研究论文评论

数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!

代数 代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。 初等代数是更古老的算术的推广和发展。在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。 代数是由算术演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧。那么,这种“代数学”是在十六世纪才发展起来的。 如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更早的年代。西方人将公元前三世纪古希腊数学家刁藩都看作是代数学的鼻祖。而在中国,用文字来表达的代数问题出现的就更早了。 “代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。 初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。 要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。 在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。 有了有理数,初等代数能解决的问题就大大的扩充了。但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。 那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了。这就是代数里的一个著名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。 把上面分析过的内容综合起来,组成初等代数的基本内容就是: 三种数——有理数、无理数、复数 三种式——整式、分式、根式 中心内容是方程——整式方程、分式方程、根式方程和方程组。 初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。 初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。 这十条规则是: 五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律; 两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变; 三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数想乘;积的乘方等于乘方的积。 初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。

代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。初等基本内容三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、根式方程和方程组。初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。规则五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。(1)a-b=0,a=b(2)a+b=0,a=-b,b=-a(3)a*b=0,a=0 或 b=0(4)a-b) (a-b)=0,a=b高等研究对象高等代数是代数学发展到高级阶段的总称,它包括许多分支。大学里开设的高等代数,一般包括两部分:线性代数初步 、多项式代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。与线性代数的区别和联系很多人把高等代数和线性代数混为一谈,不明白其中的区别。高等代数是大学数学专业开设的专业课,线性代数是大学中除了数学专业以外的理科,工科和部分医科专业开设的课程

数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。这样的例子在数学史上不胜枚举。在此奋斗的过程中所蕴涵的深刻的哲理,也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出的数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。由此可见,数学史并不是单纯的数学成就的编年记录。 那么是不是只有研究数学的人才需要了解数学史呢?或者说了解了数学史只是对学习和研究数学的人才有好处呢? 数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。著名的哲学家在批评以往思想史家们忽视数学的地位时,曾打了一个比喻来说明数学是人类思想史的要素之一。他说:“假如有人说:编著一部思想史而不深刻研究每一个时代的数学概念,就等于是在《哈姆雷特》这一剧本中去掉了哈姆雷特这一角色,这一说法也许太过分了,我不愿说的这样过火。但这样做却肯定地等于是把奥菲莉这一角色去掉了。奥菲莉对整个剧情来说,是非常重要的[2]。”他仅是就思想史而言。实际上我们可以说:不了解数学史,就不可能全面了解整个人类文明史。 研究数学史对数学自身的发展所起的作用也是不可估量的。众所周知,2000年荣获首届国家最高科学技术奖的吴文俊院士是数学机械化研究的倡导者。他在示性类和示嵌类研究中取得了根本重要性的结果,在多种问题中被广泛应用。他提出的用计算机证明几何定理的方法,与常用的基于数理逻辑的方法根本不同,显现了无比的优越性,改变了国际上自动推理研究的面貌,被称为自动推论领域的先驱性工作,并因此获得Herbrand自动推论杰出成就奖。吴文俊教授在分析所取得的成绩时指出,“我们是遵循我国古代机械化数学的启示,把几何代数化,把非机械化的几何定理证明转化为多项式方程的处理,从而实现了几何定理的机器证明。”像这样认真研究数学思想将之用以指导数学研究并取得重大成绩的例子不胜枚举。即使对于高等数学的教学来说,数学史所起的作用也是不可低估的。 如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。由此体现出了微积分的重要性以及它和各科之间的关系。因此,《微积分》总是作为高等院校理工类的一门重要的必修课。一般制订为两学期教学计划。它包含了微分学,积分学,空间解析几何,无穷级数和常微分方程的基础知识。我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。并由于受传统教学课时和内容上的安排的影响,高等数学的教学往往存在课时少,内容多的矛盾。所以,广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注意进行数学知识的传授,忽视了数学的思想性和趣味性。当代著名数学家Courant曾指出:“微积分,或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。遗憾的是,微积分的教学方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶。” 作为高等数学的教师,我们也有过这样的经验,虽然仔细备课全面讲解下来,却发现教学效果并不理想,对一些抽象的概念难以理解,普遍反映听不懂。长此以往,个别同学甚至失去了能学好高等数学的信心,对学习失去了兴趣。经过几代人对高等数学教学方法的不断研究,数学史在高等数学教学中的所起的作用已被大家所认可。那些认为在教学中讲述数学史是华而不实的多余之举,是在浪费时间,任为应该多把“宝贵的时间”用在习题训练上的思想已经成为过去。在教师教学里,引进与主题相关的数学史题材,对学生的学习会有很正面的意义,不仅能调动了同学们的学习热情,尤其能协助学生将抽象观念具体化。因为不论在科技应用层面或思想突破方面,数学重要概念的演进确有其实用面的意义,因此具有启发性的数学史方面的教学实属必要。 基于以上的认识,近来,关于这方面已经取得了不少的研究成果。国内,国际上的交流活动也日益频繁。在一些学校已经将数学史设为一门选修课。系统的介绍数学的起源与发展。这对高等数学的教学起到了很好的辅助作用。但是由于这方面人材的短缺,也有一些学校并不能开出这门选修课。再者作为一门单独的选修课,它要系统的体现出数学的起源与发展,并不能做到与高等数学所授内容适时匹配。所以,这就要求我们广大教授高等数学的教师在平时高等数学的教学中就应该做到与数学史的有机结合。 怎样才能在繁重的教学任务和紧张的课堂教学时间里将数学知识的传授和数学史的介绍有机的结合起来呢?怎样才能在有限的课堂时间里既做到保证了教学任务的完成又做到通过数学史的介绍提升了大家的学习兴趣,传递了数学思想呢? 综观历史发展的长河,重要思想的诞生离不开重要的人物。对数学的发展也是如此。德国著名数学家说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。”由此可见,研究数学人物在数学史的研究中的重要性。 在高等数学的教材中我们会接触到一些根本重要性的定理和概念。如“牛顿——莱布尼兹定理”、“拉格朗日中值定理”、“富里叶三角级数等等。”这些定理和概念的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是及其必要的。它们是微积分的精华,是高等数学教学的必讲内容。这些定理和概念大都是以重要数学人物的名字命名的。他们也恰恰是微积分的创立者和先驱们。这就提醒了广大教师,在课堂教学过程中适当的加入先驱们的生平和业绩的介绍就不仅能在有限的时间里完成我们的教学任务还可以起到提升大家的学习兴趣,传递了数学思想的作用。对我们的课堂教学起到了画龙点睛的作用。 牛顿[3](1642~1727)是英国数学家、物理学家、天文学家。他出身于农民家庭。1661年考入剑桥大学三一学院。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明,微积分,万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著里。在《运用无穷多项方程的分析学》这一著作里,他给出了求瞬时变化率的普遍方法,阐明了求变化率和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。在《流数术和无穷级数》里,牛顿对他的微积分理论作出了更加广泛而深入的说明。例如,他改变了过去静止的观点,认为变量是由点、线、面连续运动而产生的。而在《求曲边形的面积》这一篇研究可积曲线的经典文献里,牛顿试图排除由“无穷小”造成的混乱局面。把求极限的思想方法作为微积分的基础在这里已出露端倪。牛顿还曾说过:“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。” 莱布尼兹[3](1646~1746)是德国数学家、自然主义哲学家、自然科学家。他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。他也是历史上最伟大的符号学家。他曾说:“要发明,就得挑选恰当的符号,要做到这一点,就要用包义简明的少量符号来表达或比较忠实地描绘事物的内在本质,从而最大限度减少人的思维劳动。”例如,dx、dy、∫、log等等,都是他创立的。他的优越的符号为以后分析学的发展带来了极大的方便。 以上只是我们在浩瀚的数学人物的海洋中,采摘的两颗最耀眼的明珠,对他们的生平与业绩只进行了一些简介。这些内容的介绍在课堂上占用不了多少“宝贵”的时间,然而通过这些,使我们活生生的看到了数学的发展是曲折的,一个重要概念的产生是离不开实际问题的,只有对实际问题进行精力的思索,就可以找出问题的本质,抽象出数学思想。还有作者在解决实际问题时频繁运用的“无穷小”、“流数”等概念,使我们体会到正确、熟练掌握基本概念对于理解数学思想的重要性。对于平时我们视为枯燥的数学符号,却正是它是最直接、最简练表达数学思维的工具。并且从先驱们的言行里我们能感受到科学家的治学态度和对知识的执着追求,这往往能激发大家刻苦钻研,勇往直前的奋斗精神。 最后,我们相信,作为高等数学的教师,我们的目的不仅是为大家传授数学知识,更重要的是使大家在学习数学知识的过程中掌握数学思想,提高大家的数学素养。将数学史与数学知识的传授有机地结合起来就能很好地达到以上的目的。经过多年的教学实践,在高等数学的教学中适时地加入数学人物的介绍就能对高等数学的教学起到很好的辅助作用。我们相信,对于高等数学的教师,如果熟悉了数学人物的生平、业绩、治学态度、治学方法、趣闻轶事等等,对高等数学的教学来说有百利而无一害,一定会把高等数学讲授得更生动、有趣和富有哲理。而对于很多正在学习高等数学的学生,一旦了解了这些数坛前辈们的学术成就和道德风范,也必将从中受到鼓舞,继而提高学习兴趣,做出更大的成绩。

初等数学研究代数论文

晕,初中就写论文了?还是数学的,有什么用啊

没什么格式,就像写作文一样。如题目:数学数学,数理人生 数学是这样一种东西:她提醒你有无形的灵魂,她赋予她发现的真理以生命;她唤起心神、澄清智慧;她给我们的内心思想增添光辉;她涤尽我们有生以来的蒙昧和无知。 数学方法的万能性与广泛性使它能够处理种类众多的问题,如空间的和运动的,机会的和概率的,统计的和社会科学的,艺术的和文学的,逻辑的和哲学的,音乐的和建筑的,政治的和战争的,食品的和医药的,遗传的和变异的,人类思维的和电脑的。 数学文化是是人类文明中的精华部分。数学提供了理性思维的范式,它可以使人的思维条理化和敏捷化。数学提供了完善的方法论,可以使人严密化、客观化,排除感情和偏见的介入,从而做出正确的判断。1.数学与对知识的探求。 我们首先问,有独立于人的物理世界存在吗?答案历来有两种。唯物主义认为,存在;而唯心主义认为,不存在。我们是唯物主义者,认为存在一个独立于人的客观世界。这正是我们研究的起点和探索的对象。 其次,自然要问,我们如何获取关于外部世界的知识呢?为了获取关于外部世界的知识,每一个人都不得不依靠自己的感官知觉。人类共有几种知觉?五种:视觉、听觉、触觉、味觉和嗅觉。亚里士多德认为,知识是感觉的结果。他说:“如果我们不能感觉任何事情,我们将不能学会或弄懂任何事情;无论我们何时何地思考什么事情,我们的头脑必然是在同一时间使用着那件事情的概念。”他还说:“感觉和感官经验是科学知识的基础。”那么,通过感官获取的知识正确吗?精确吗?要回答这两个问题,就要对我们日常的经验做些认真的考察了。因为我们日常的生活都是在经验的指导下进行的,也并没有出多少错。但是,当我们依着较高原则的标准,来推论,来思考,来反省事物的本性时,我们就会发现问题了。把一根棒的一部分放在水里,我们看到什么?我们将看到一根弯曲的棒。如果把一根直棒放在水里,也把一根弯棒放在水里,恐怕你很难辨别哪一个是直的吧?这说明,感官具有粗糙性,有时还具有欺性。更令人遗憾的是,许多重大的物理现象根本不是感官所能知觉到的: 有谁感到地球在自转,而且还绕太阳公转? 有谁感到行星受到太阳的引力,而绕太阳公转? 有谁感到电磁波的存在? 既然重大的物理现象不是感官所能知觉到的,那么人类是如何发现这些现象的呢?答案是借助数学这一强大的工具。在探索宇宙的奥秘中,数学是一个本质的、关键的、具有穿透力的工具。事实上,数学方法的运用是科学和前科学的分水岭。例如,静电吸引的现象,虽然古人早就知道,但是直到库仑定律发表的时候,电学才进入科学的行列。2. 数学的精神。正如克莱因所指出的:“数学是一种精神,一种理性精神。正是这种精神激发、促进、鼓舞并驱使人类的思维运转到最完善的程度,也正是这种精神试图决定性地影响人类的物质、道德和社会生活;试图回答人类自身提出的问题:努力去理解和控制自然;尽力去探求和确立已经获得的知识的最深刻和最完美的内涵”。因此,充分认识数学精神及其价值,实现数学与人文的结合是当前素质教育的首要目标。现在,我们对数学本身作些考察。因为,如果对数学本身的认识不本质、不全面、不系统,我们不可能学好和教好数学。3.五个质不同的时期。 数学史大致可以分为五个质不同的时期。精确地区分这些阶段是不可能的,因为每一个阶段的本质特征都是在前一阶段中酝酿形成的。 第一个时期——数学形成时期.这是人类建立最基本的数学概念的时期.人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最简单的几何形式,逐步地形成了理论与证明之间的逻辑关系的“纯粹”数学.算术与几何还没有分开,彼此紧密地交织着.� 第二个时期称为初等数学,即常量数学的时期.这个时期的最基本的、最简单的成果构成现在中学数学的主要内容.它从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年,逐渐形成了初等数学的主要分支: 算术、几何、代数、三角. 这时的几何学以现实世界中的形的关系为主要研究对象。它的主要成果就是欧几里得的《几何原本》及其延续。《几何原本》把几何学的研究推到了高度系统化和理论化的境界,使得人们对于空间的认识和理解在深度上和广度上都大大前进了一步,这是整个人类文明发展史上最辉煌的一页。代数学则研究数的运算。这里的数指自然数、有理数、无理数,并开始包含虚数。解方程的学问在这个时期的代数学中居中心地位。 第三个时期是变量数学的时期.从17世纪开始的数学的新时期——变量数学时期,可以定义为数学分析出现与发展的时期.变量数学建立的第一个决定性步骤出现在1637年笛卡儿的著作《几何学》.这本书奠定了解析几何的基础,它一出现,变量就进入了数学,从而运动进入了数学.恩格斯指出:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了……”在这个转折以前,数学中占统治地位的是常量,而在这之后,数学转向研究变量了.变量数学发展的第二个决定性步骤是牛顿和莱布尼茨在17世纪后半叶建立了微积分. 第四个时期为公理化数学时期.19世纪初,数学发生了质的变化,开始了从变量的数学向公理化数学的过渡。主要体现在下面几个方面:数学的研究对象发生了质的变化。在19世纪之前,数学本质上只涉及两个常识性的概念:数和形。此后数学的研究范围大大地扩展了,数学不必把自己限制于数和形,数学可以有效地研究任何事物,例如,向量、矩阵、变换、运动等,而这些事物常常以某种方式与数和形发生关联。数学与现实世界的关系也发生了质的变化。这之前,经验是公理的唯一来源,实际上,当时只有一套公理体系——欧氏几何学的公理体系;这之后,数学开始有意识地背离经验。这之前,数学研究经验世界,那时只存在一种几何学—欧氏几何学;这之后,数学研究可能世界,出现了多种几何学:欧氏几何学、双曲几何学;椭圆几何学、拓扑学等。人类的思维可以自由创造新的公理体系。数学的抽象程度进入更高的阶段。数学常常被看作逻辑过程,并不与哪个特别的事物相关。这就引出了20世纪初罗素的数学定义:数学可以定义为这样一门学科:我们不知道在其中我们说的是什么,也不知道我们说的是否正确。数学家不知道自己所说的是什么,因为纯数学与实际意义无关;数学家不知道自己所说的是否正确,因为作为一个数学家,他不去证实一个定理是否与物质世界相符,他只问推理是否正确。 第五个时期为信息时代的数学。计算机的诞生和广泛使用使数学进入了一个新的时代。几乎同时,信息论和控制论也诞生了,数学迎来了一个新高潮。信息时代,就是以计算机来代替原来由人来从事的信息加工的时代。由于计算机的应用,需要数学更加自觉,更加广泛地深入到人类活动的一切领域。“数学工作”的含义已经发生深刻的变化。信息加工时代的数学工作包括 数学研究工作,数学工程工作和数学生产工作。 数学研究工作有了新的含义。它研究的领域大大扩大了。数学模型具有更大的意义。 数学工程是指需要有数学知识、数学训练的人来从事的信息工程。计算机的软件工程就是一类数学工程,但不限于此,机器证明也属于数学工程。数学生产是实现数学工程,形成产品的工作,就是软件生产。由于数学工程和数学生产的发展,建立数学模型的工作有了更为广泛的需要。并且,离散数学处于更加重要的地位。4.四个高峰期。从前面的论述可以看出,在整个数学史上出现了四个高蜂期。1) 欧几里得《几何原本》的诞生。数学从经验的积累变成了一门理论科学,数学科学形成了。2) 解析几何与微积分的诞生。这使人们在认识和利用自然规律方面大大地前进一步,使力学、物理学有了强有力的工具。引起了整个科学的繁荣。3) 公理化的数学诞生于19世纪末与20世纪初,数学进入成熟期:巩固了自身的基础,并发现了自身的局限性。4) 与计算机结合的当代数学进入更加广阔的领域,并影响到人类文明的一切领域,数学进入新的黄金时代。5.六次飞跃。数学不只是算法和证明,它分出了层次。数学思想的发展,数学领域的扩大呈现了六次大的飞跃。从数字运算到符号运算的飞跃,这就是从算术到代数学的发展。发生在16到17世纪。数学符号的诞生到今天不到400年,但是它大大地促进了数学的发展。从常量数学到变量数学的飞跃,这就是微积分的诞生。出现在17世纪。微积分的诞生对科学技术的发展带来了根本性的影响。可以说是现代世界和古代世界的分水岭。最突出的是航天时代的到来和信息时代的到来。从研究运算到研究结构的飞跃。这主要体现在抽象代数学的诞生。发生在19世纪。这使得数学的研究对象超越了数和形的藩篱,从而研究更加广泛的对象。从必然性数学到或然性数学的飞跃。这就是概率论和统计学的诞生。虽然这两门学科诞生得相当早,但它们的成熟发展却是在20世纪。这个学科促使人们的思考方式发生了新的飞跃。使传统的一一对应的因果关系转变为以统计学作基础。这深刻地影响了理论与经验资料相互联系的方式。从线性到非线性的飞跃。非线性科学的诞生和发展是在20世纪。混沌学的诞生是一个重要标志。混沌是指,由定律支配的无定律状态。数学家梅在1976年说:“不仅学术界,而且在日常的政治学界和经济学界里,要是更多的人认识到,简单的系统不一定具有简单的动力学性质,我们的状况会更好些。“从明晰数学到模糊数学的飞跃。出现在20世纪。当我们综观数学思想这些飞跃发展的时候,我们会有沧海桑田之感。正象一个修仙人,若干年后回到自己的家乡,发现一切都变了:惟有门前鉴池水,春风不改旧时波。我们会感到,旧的课本合上了。我们在学校所学的知识,已经随着新的发明和发现而变得陈旧了。“科学所带来的最大变化是变化的激烈程度。科学所带来最新奇的事是它的新奇程度。”所以,我们面临的现实是,请君莫奏前朝曲,听唱新翻杨柳枝。6.数学的特点。数学区分于其它学科的明显特点有三个:第一是它的抽象性,第二是它的精确性,第三是它的应用的极端广泛性。抽象性。抽象不是数学独有的特性,任何一门科学都具有这一特性。因此,单是数学概念的抽象性还不足以说尽数学抽象的特点。数学抽象的特点在于:第一,在数学的抽象中只保留量的关系和空间形式而舍弃了其它一切;第二,数学的抽象是一级一级逐步提高的,它们所达到的抽象程度大大超过了其它学科中的一般抽象;第三,数学本身几乎完全周旋于抽象概念和它们的相互关系的圈子之中。如果自然科学家为了证明自己的论断常常求助于实验,那么数学家证明定理只需用推理和计算。这就是说,不仅数学的概念是抽象的、思辨的,而且数学的方法也是抽象的、思辨的。数学的抽象性帮助我们抓住事物的共性和本质。维钠说:“ 数学让人们抓住本质而忽略非本质的东西。数学也容许人们在不同的领域提出相同的问题,而不必囿于某一特定专业领域。对那些视野开阔、敏感严谨的数学家而言,数学无疑是发现和发明的工具。”关于抽象的作用,数学家辛富() 说:数学之所以能够以令人吃惊的程度深入到科学和技术的每一个分支中去,其原因在于数学的思想是纯粹抽象的,而抽象化正是科学和技术的主要动力。数学越是远离现实(即走向抽象),它就越靠近现实。因为不管它显得多么抽象,它归根到底还是从某些现实范围中抽象出来的,一定的本质特征的具体表现。数学的抽象性帮助我们抓住事物的共性和本质。正是数学的抽象性使得数学能够处理种类众多的问题,如空间的和运动的,机会的和概率的,艺术的和文学的,音乐的和建筑的,战争的和政治的,食物的和医药的,遗传的和继承的,人类思维的和电脑的等。数学的抽象性显示了思维的广阔性:越抽象的东西,应用的领域就越广。抽象的另一个作用是不断地对日益扩大的数学知识总体进行简化和统一化。数学的精确性表现在数学定义的准确性、推理和计算的逻辑严格性和数学结论的确定无疑与无可争辩性。当然,数学的严格性不是绝对的、一成不变的,而是相对的、发展着的,这正体现了人类认识逐渐深化的过程。数学中的严谨推理和一丝不苟的计算,使得每一个数学结论都是牢固的、不可动摇的。这种思想方法不仅培养了科学家,而且它也有助于提高人的科学文化素质,它是全人类共同的精神财富。爱因斯坦说:“为什么数学比其它一切科学受到特殊的尊重?一个理由是,它的命题是绝对可靠的和无可争辩的,而其它一切科学的命题在某种程度上都是可争辩的,并且经常处于被新发现的事物推翻的危险之中。…数学之所以有高声誉,还有一个理由,那就是数学给精密自然科学以某种程度的可靠性,没有数学,这些科学是达不到这种可靠性的。”数学的精确性是思维严谨性的典范。数学应用的极其广泛性也是它的特点之一。正像已故著名数学家华罗庚教授曾指出的,宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,数学无处不在,凡是出现“量”的地方就少不了用数学,研究量的关系,量的变化,量的变化关系,量的关系的变化等现象都少不了数学。数学之为用贯穿到一切科学部门的深处,而成为它们的得力助手与工具,缺少了它就不能准确地刻画出客观事物的变化,更不能由已知数据推出其它数据,因而就减少了科学预见的。N.布特勒说:“现代数学,这个最令人惊叹的智力创造,已经使人类心灵的目光穿过无限的时间,使人类心灵的手延伸到了无边无际的空间。”数学应用的广泛性是思维广阔性的具体体现。7.数学的教育价值。首先,数学的抽象性使得数学问题的解决伴随着困难。在解决数学问题的过程中,使学生体验到挫折和失败,而这正是砥砺意志和打磨心理品质的绝好时机。愈挫愈奋,百折不挠的良好心理素质不会在温室中形成。如果学生在学校里没有尝尽为求解问题而奋斗的喜怒哀乐,那么数学教育就在一个重要的地方失败了。记住马克思的话:“在科学上是没有平坦大道可走的,只有在崎岖的攀登上不畏劳苦的人,才有希望达到光辉的顶点。”其次,数学的严密性和精确性可以使学生在将来的工作中减少随意性。英国律师至今要在大学中学习许多数学知识,并不是律师工作要多少数学,而是出于这样一种考虑:经过严格的数学训练可以使人养成一种独立思考而又客观公正的办事风格和严谨的学术品格。数学教育是培养学生诚信观念的重要渠道之一。在数学课上形成的诚信观是持久的,根深蒂固的。前苏联的数学家辛钦说:“数学教学一定会慢慢地培养青年人树立起一系列具有道德色彩的特性,这种特性中包括正直和诚实。”再次,数学是思想的体操。进行数学推导和演算是锻炼思维的智力操。这种锻炼能够增强思维本领,提高抽象能力、逻辑推理能力和辨证思维能力,培养思维的灵活性和批判性。思维的灵活性表现在不受思维定式的束缚,能迅速地调整思维方向,并善于从旧的或传统的思维轨道上跳出来,另辟蹊径。数学中的一题多解是培养思维灵活性的有效途径。思维的批判性指,对论证和解答提出自己的看法。数学中常用的反证法和构造反例是思维批判性的具体表现。数学不仅仅是一种工具,它更是一个人必备的素养。它会影响一个人的言行、思维方式等各个方面。一个人,如果他不是以数学为终生职业,那么他的数学素养并只不表现在他能解多难的题,解题有多快,数学能考多少分,关键在于他是否真正领会了数学的思想,数学的精神,是否将这些思想融会到他的日常生活和言行中去。日本的米山国藏说:“我搞了多年的数学教育,发现学生们在初中、高中接受的数学知识因毕业了进入社会后,几乎没有什么机会应用这些作为知识的数学,所以通常是出校门不到一、两年就很快忘掉了。然而,不管他们从事什么业务工作,惟有深深铭刻于头脑中的数学精神,数学的思维方法,研究方法和着眼点等,都随时随地发生作用,使他们受益终生。”数学还有另外的作用。数学家狄尔曼说:“数学能集中、强化人们的注意力,能够给人以发明创造的精细和谨慎的谦虚精神,能够激发人们追求真理的勇气和信心,…数学更能锻炼和发挥人们独立工作精神。”数学已成为现代人的基本素养。这是一篇标准的数学论文,你可以参造其中的论述方式。你可以像文稿中一样分条陈述,可以引用一些名句或例子来充实文章。至于叫我写,怕不如你意,慢慢来总会写好的。

如何学写数学小论文 “ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 (1) 写什么 写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。 例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

浅谈数学的文化价值一、数学:打开科学大门的钥匙 科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。早在古代,希腊的毕达哥拉斯(Pythagoras)学派就把数看作万物之本源。享有“近代自然科学之父”尊称的伽利略(G. Galileo)认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。物理学家伦琴( @①ntgen)因发现了X射线而成为1910 年开始的诺贝尔物理奖的第一位获得者。当有人问这位卓越的实验物理学家科学家需要什么样的修养时,他的回答是:第一是数学,第二是数学,第三还是数学。对计算机的发展做出过重大贡献的冯·诺依曼( )认为“数学处于人类智能的中心领域”。他还指出:“数学方法渗透进支配着一切自然科学的理论分支,……它已愈来愈成为衡量成就的主要标志。” 科学家们如此重视教学,他们述说的这些切身经验和坚定的信念,如果从哲学的层次来理解,其实就是说,任何事物都是量和质的统一体,都有自身的量的方面的规律,不掌握量的规律,就不可能对各种事物的质获得明确清晰的认识。而数学正是一门研究“量”的科学,它不断地在总结和积累各种量的规律性,因而必然会成为人们认识世界的有力工具。 马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。 二、数学:科学的语言 有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔()就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克( )也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦()则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。) 一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。 数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J. C. Maxwell )的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann )几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W. K. Heisenberg)和狄拉克引起的物理学革命奠定了基础。 随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。 三、数学:思维的工具 数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。 其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。 第三,数学也是辩证的辅助工具和表现方式。这是恩格斯()对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿(I. Newton )—莱布尼兹(G. W. Leibniz )公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。 最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力

对初等代数研究的论文

可以这样:a-b>0左右都加上b不等式依然成立则: a>b后面两个一样

代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。初等基本内容三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、根式方程和方程组。初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。规则五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。(1)a-b=0,a=b(2)a+b=0,a=-b,b=-a(3)a*b=0,a=0 或 b=0(4)a-b) (a-b)=0,a=b高等研究对象高等代数是代数学发展到高级阶段的总称,它包括许多分支。大学里开设的高等代数,一般包括两部分:线性代数初步 、多项式代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。与线性代数的区别和联系很多人把高等代数和线性代数混为一谈,不明白其中的区别。高等代数是大学数学专业开设的专业课,线性代数是大学中除了数学专业以外的理科,工科和部分医科专业开设的课程

可以参阅兰道的《分析基础》,里面从5个皮亚诺公设出发严格证明了这些结论。

研究范围初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。有了有理数,初等代数能解决的问题就大大的扩充了。但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了。这就是代数里的一个著名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。把上面分析过的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、无理方程和方程组。初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。十条规则初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加(减)上一个数,等式不变;等式两边同时乘(除)以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方等于乘方的积。初等代数学进一步地向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。

初等代数研究的小论文

α,β是方程x²-3x+1=0的两根,则有α+β=3,αβ=1;1/β=αα²-3α+1=0,α²=3α-1∴ α^4=(α²)²=(3α-1)²=9α²-6α+1=9(3α-1)-6α+1=21α-83/β=3α∴α^4+3/β=(21α-8)+3α=8(3α-1)由方程解得 α=(3+√5)/2∴α^4+3/β=8(3α-1)=4(7+3√5)

一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r2,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r2=92∏+62∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r2=152∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。

可以这样:a-b>0左右都加上b不等式依然成立则: a>b后面两个一样

可以参阅兰道的《分析基础》,里面从5个皮亚诺公设出发严格证明了这些结论。

初等代数研究柯西不等式论文

【柯西不等式的简介】 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的"留数"问题时得到的.但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,并将这一不等式应用到近乎完善的地步。 柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。[编辑本段]【柯西不等式的证法】 柯西不等式的一般证法有以下几种: ■①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2. 我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。 ■②用向量来证. m=(a1,a2......an) n=(b1,b2......bn) mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2) 这就证明了不等式. 柯西不等式还有很多种,这里只取两种较常用的证法.[编辑本段]【柯西不等式的应用】 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。 ■巧拆常数: 例:设a、b、c 为正数且各不相等。 求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c) 分析:∵a 、b 、c 均为正数 ∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b) 又 9=(1+1+1)(1+1+1) 证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9 又 a、b 、c 各不相等,故等号不能成立 ∴原不等式成立。 像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献.[编辑本段]【柯西简介】 柯西1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。 他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方。 柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础。

分析:柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c) ∵a 、b 、c 均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b 、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。 函数的定义域为[5, 9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{ [√(x-5)] ^2 + [√(9-x)] ^2 }=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。[编辑本段]【柯西简介】柯西(Cauchy, Augustin-Louis, 1789-1857),法国数学家,8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。他在纯数学和应用数学的功底是相当深厚的,很多数学的定理、公式都以他的名字来称呼,如柯西不等式、柯西积分公式。在数学写作上,他被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,以《分析教程》(1821年)和《关于定积分理论的报告》(1827年)最为著名。不过并不是他所有的创作质量都很高,因此他还曾被人批评“高产而轻率”,这点倒是与数学王子相反。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础

柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题:1) 证明相关命题2) 证明不等式3) 解三角形的相关问题4) 求最值(或者范围)每个问题都有详细的例子这里不能打公式,没办法把例子弄出来,你可以到我的空间来看下有一篇文章专门研究 柯西不等式的。

  • 索引序列
  • 初等代数研究论文评论
  • 初等数学研究代数论文
  • 对初等代数研究的论文
  • 初等代数研究的小论文
  • 初等代数研究柯西不等式论文
  • 返回顶部