首页 > 学术期刊知识库 > 信息压缩编码的研究与实现论文

信息压缩编码的研究与实现论文

发布时间:

信息压缩编码的研究与实现论文

多媒体数据压缩方法分类数据的压缩实际上是一个编码过程,即把原始的数据进行编码压缩。数据的解压缩是数据压缩的逆过程,即把压缩的编码还原为原始数据。因此数据压缩方法也称为编码方法。目前数据压缩技术日臻恼,适应各种应用场合的编码方法不断产生。针对多媒体数据冗余类型的不同,相应地有不同的压缩方法。 按照压缩方法是否产生失真分类根据解码后数据与原始数据是否完全一致进行分类,压缩方法可被分为有失真编码和无失真编码两大类。 有失真压缩法会压缩了熵,会减少信息量,而损失的信息是不能再恢复的,因此这种压缩法是不可逆的。无失真压缩法掉或减少数据中的冗余,但这些冗余值是可以重新插入到数据中的,因此冗余压缩是可逆的过程。 无失真压缩是不会产生失真。从信息主义角度讲,无失真编码是泛指那种不考虑被压缩信息性质和压缩技术。它是基于平均信息量的技术,并把所有的数据当做比特序列,而不是根据压缩信息的类型来优化压缩。也就是说,平均信息量编码忽略被压缩信息主义内容。在多媒体技术中一般用于文本、数据的压缩,它能保证百分之百地恢复原始数据。但这种方法压缩比较低,如LZW编码、行程编码、霍夫曼(Huffman)编码的压缩比一般在2:1至5:1之间。 按照压缩方法的原理分类根据编码原理进行分类,大致有编码、变换编码、统计编码、分析-合成编码、混合编码和其他一些编码方法。其中统计编码是无失真的编码,其他编码方法基本上都是有失真的编码。 预测编码是针对空间冗余的压缩方法,其基本思想是利用已被编码的点的数据值,预测邻近的一个像素点的数据值。预测根据某个模型进行。如果模型选取得足够好的话,则只需存储和传输起始像素和模型参数就可代表全部数据了。按照模型的不同,预测编码又可分为线性预测、帧内预测和帧间预测。 变换编码也是针对空间冗余和时间冗余的压缩方法。其基本思想是将图像的光强矩阵(时域信号)变换到系统空间(频域)上,然后对系统进行编码压缩。在空间上具有强相关性的信号,反映在频域上是某些特定区域内的能量常常被集中在一起,或者是系数矩阵的发布具有某些规律。可以利用这些规律,分配频域上的量化比特数,从而达到压缩的目的。由于时域映射到频域总是通过某种变换进行的,因此称变换编码。因为正交变换的变换矩阵是可逆的,且逆矩阵与转换置矩阵相等,解码运算方便且保证有解,所以变换编码总是采用正交变换。 统计编码属于无失真编码。它是根据信息出现概率的分布而进行的压缩编码。编码时某种比特或字节模式的出现概率大,用较短的码字表示;出现概率小,用较长的码字表示。这样,可以保证总的平均码长最短。最常用的统计编码方法是哈夫曼编码方法。 分析-合成编码实质上都是通过对原始数据的分析,将其分解成一系列更适合于表示“基元”或从中提取若干具有更为本质意义的参数,编码仅对这些基本单元或特征参数进行。译码时则借助于一定的规则或模型,按一定的算法将这些基元或参数,“综合”成原数据的一个逼近。这种编码方法可能得到极高的数据压缩比。 混合编码综合两种以上的编码方法,这些编码方法必须针对不同的冗余进行压缩,使总的压缩性能得到加强。

《信息论与编码》,专业基础课,4学时/周;四届,180人 《信息论基础》,专业必修课,4学时/周;五届,1000人 《电子信息工程专业导论》,专业必修课,4学时/周;二届,400人 《信息论与编码》(研究生),专业必修课,4学时/周;五届,200人 《多媒体信息压缩与编码》(博士研究生),专业必修课,2学时/周;二届,12人 承担的实践性教学 本科课程设计,45人/年 本科生毕业设计,5人/年 硕士生毕业论文,6人/年 博士生毕业论文,2人/年 主持的教学研究课题 考试成绩评定方法研究,合肥工业大学教学研究项目,2005-2006,主持 信息安全专业的教学与实践研究,安徽省教育厅教学重点研究项目,2003-2006,第二主持 计算机科学与技术专业实践教学与创新体系研究,安徽省教育厅教学重点研究项目,2007-2009,主要参与 计算机科学与技术专业本科教学课程体系建设与改革研究,安徽省教育厅省级教学研究项目,2005-2007,主要参与 发表的教学相关论文培养具有高尚道德的拔尖人才,研究生教育,2001年 卷积编码原理的解释,电气电子教学学报,2007年 一种BCH/CRC混合差错控制编码方法,第17届计算机科学与技术应用学术会议论文集,2006年 一种改进的等范数最近邻码本矢量搜索算法,合肥工业大学学报(自然科学版),2007年 部分国外电子信息类教材编写特点,合肥工业大学学报(社会科学版),2007年 获得的教学表彰/奖励 安徽省教学名师,安徽省教育厅,2007年 安徽省优秀教师,安徽省教育厅,2004年 国家政府特殊津贴,国务院,1997年 第二届TI中国DSP大奖赛“特殊贡献奖”,竞赛组织委员会,2006年 第二届TI中国DSP大奖赛算法组一等奖的指导教师,2006年 第三届TI中国DSP大奖赛系统组一等奖的指导教师,2008年 第五届“挑战杯”全国大学生课外学术科技作品竞赛“园丁奖”,竞赛组织委员会,1997年 首届安徽省大学生挑战杯课外学术科技作品竞赛一等奖的指导教师,2005年 合肥工业大学本科毕业设计(论文)优秀指导教师,合肥工业大学,2006年

信息论与编码结课论文

摘要:香农于1948年10月发表于《贝尔系统技术学报》上的论文《A Mathematical Theory of Communication》(通信的数学理论)作为现代信息论研究的开端。1984年贝尔研究所的香农在题为《通讯的数学理论》的论文中系统地提出了关于信息的论述,创立了信息论。信息论主要研究信息的本质和度量方法。它是系统论和控制论的理论基础,也是信息科学的理论基础。关键字:信息概念,熵,美国数学家香农参考书目:1。《信息论》 南丰公益书院; 2.《安全科学技术百科全书》(中国劳动社会保障出版社,2003年6月出版);3.《安全工程大辞典》(化学工业出版社,1995年11月出版)(安全文化网);4.部分资料摘取自互联网。(一)信息的内涵1948—1949年,美国数学家香农()发表了《通信的数学理论》和《在噪声中的通信》两篇论文,提出了度量信息的数学公式,标志着信息论这门学科的诞生。信息论主要研究信息的本质和度量方法。它是系统论和控制论的理论基础,也是信息科学的理论基础。它是关于事物运动状态的规律的表征,其特点是: (1)信息源于物质运动,又不是物质和运动;(2)信息具有知识的秉性,是任何一个系统的组织程度和有序程度的标志;(3)只有变化着的事物和运动着的客体才会有信息,孤立静止的客体或永不改变的事物不会有信息;(4)信息不遵守物质和能量的“守恒与转化定律”, 同样的信息,大家可以共同使用,信息不会减少,相同的信息,能够用不同物质载体进行传播,同一种物质,也可以携带不同的信息,信息不会变化。信息论是一门研究信息传输和信息处理系统中一般规律的学科。香农在他的《通讯的数学理论》中明确提出:“通讯的基本问题是在通讯的一端精确地或近似地复现另一端所挑选的消息。”信息是“人们在选择一条消息时选择的自由度的量度”。消息所带的信息可以解释为负熵,即概率的负对数。威沃尔指出,‘信息’一词在此理论中只在一种专门的意义上加以使用,我们一定不要把它和其通常用法混淆起来”。也就是说,这里的信息不是我们通常使用的概念(各种消息、情报和资料的总称),而是一个变量,它表示信息量的大小。而信息量则是某种不确定性趋向确定的一种量度,消息的可能性越大,信息就越少。如果一个系统是有序的,它不具有很高的混乱度或选择度,其信息(或熵)是低的。信息论是一门用数理统计方法来研究信息的度量、传递和变换规律的科学。它主要是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。 信息论的研究范围极为广阔。一般把信息论分成三种不同类型: (1)狭义信息论是一门应用数理统计方法来研究信息处理和信息传递的科学。它研究存在于通讯和控制系统中普遍存在着的信息传递的共同规律,以及如何提高各信息传输系统的有效性和可靠性的一门通讯理论。 (2)一般信息论主要是研究通讯问题,但还包括噪声理论、信号滤波与预测、调制与信息处理等问题。(3)广义信息论不仅包括狭义信息论和一般信息论的问题,而且还包括所有与信息有关的领域,如心理学、语言学、神经心理学、语义学等。信息有以下性质:客观性、广泛性、完整性、专一性。首先,信息是客观存在的,它不是由意志所决定的,但它与人类思想有着必然联系。同时,信息又是广泛存在的,四维空间被大量信息子所充斥。信息的一个重要性质是完整性,每个信息子不能决定任何事件,须有两个或两个以上的信息子规则排布为完整的信息,其释放的能量才足以使确定事件发生。信息还有专一性,每个信息决定一个确定事件,但相似事件的信息也有相似之处,其原因的解释需要信息子种类与排布密码理论的进一步发现。信息论是一门具有高度概括性、综合性,应用广泛的边缘学科。信息论是信息科学的理论基础,它是一门应用数理统计方法研究信息传输和信息处理的科学,是利用数学方法来研究信息的计量、传递、交换和储存的科学。随着科学技术的发展,信息论研究范围远远超出了通信及类似的学科,已延伸到生物学、生理学、人类学、物理学、化学、电子学、语言学、经济学和管理学等学科。(二)信息论发展历史香农被称为是“信息论之父”。人们通常将香农于1948年10月发表于《贝尔系统技术学报》上的论文《A Mathematical Theory of Communication》(通信的数学理论)作为现代信息论研究的开端。1984年贝尔研究所的香农在题为《通讯的数学理论》的论文中系统地提出了关于信息的论述,创立了信息论。维纳提出的关于度量信息量的数学公式开辟了信息论的广泛应用前景。1951年美国无线电工程学会承认信息论这门学科,此后得到迅速发展。20世纪50年代是信息论向各门学科冲击的时期,60年代信息论不是重大的创新时期,而是一个消化、理解的时期,是在已有的基础上进行重大建设的时期。研究重点是信息和信源编码问题。到70年代,由于数字计算机的广泛应用,通讯系统的能力也有很大提高,如何更有效地利用和处理信息,成为日益迫切的问题。人们越来越认识到信息的重要性,认识到信息可以作为与材料和能源一样的资源而加以充分利用和共享。信息的概念和方法已广泛渗透到各个科学领域,它迫切要求突破香农信息论的狭隘范围,以便使它能成为人类各种活动中所碰到的信息问题的基础理论,从而推动其他许多新兴学科进一步发展。目前,人们已把早先建立的有关信息的规律与理论广泛应用于物理学、化学、生物学等学科中去。一门研究信息的产生、获取、变换、传输、存储、处理、显示、识别和利用的信息科学正在形成。香农把“熵”这个概念引入信息的度量。1965年法国物理学家克劳修斯首次提出这一概念,后来这一概念由19世纪奥地利物理学家L.玻尔茨曼正式提出。信息论和控制论又赋予了“熵”更新更宽的含义。 熵是一个系统的不确定性或无序的程度,系统的紊乱程度越高,熵就越大;反之,系统越有序,熵就越小。控制论创始人维纳曾说:“一个系统的熵就是它的无组织程度的度量。”熵这个概念与信息联系在一起后,获得这样的思路:信息的获得永远意味着熵的减少,要使紊乱的系统(熵大的系统)有序化(减少熵)就需要有信息,当一个系统获得信息后,无序状态减少或消除(熵减少);而如果信息丢失了,则系统的紊乱程度增加。一个系统有序程度越高,则熵就越小,所含信息量就越大,反之无序程度越高,则熵越大,信息量就越小,信息与熵是互补的,信息就是负熵,两者互为负值。 信息量=系统状态原有的熵-系统状态确定后的熵 电讯系统不存在功能性因素,即人的主观能动因素,因此不能照搬,但对计算社会信息的量,仍有参考价值。如研究新闻的信息量时就非常有意义。一则新闻讯息中所含信息量的大小是不确定程度的大小决定的,能够最大限度地消除人们对新闻事件认识上的不确定性的讯息,信息量就大,而不能减少受众对新闻事件的认识的不确定的,信息量就小,这与讯息的长度、字数和篇幅无关,不是版面大小、字数多寡、“本报讯”多少就能说明信息的大小的。信息科学是人们在对信息的认识与利用不断扩大的过程中,在信息论、电子学、计算机科学、人工智能、系统工程学、自动化技术等多学科基础上发展起来的一门边缘性新学科。它的任务主要是研究信息的性质,研究机器、生物和人类关于各种信息的获取、变换、传输、处理、利用和控制的一般规律,设计和研制各种信息机器和控制设备,实现操作自动化,以便尽可能地把人脑从自然力的束缚下解放出来,提高人类认识世界和改造世界的能力。信息科学在安全问题的研究中也有着重要应用。1949年,香农和韦弗提出了有关传播的数学模式。 信源—>消息—>编码—>信号—>信道—>信号+噪声—>译码—>消息—>信宿 噪声—>信道 对上图的概念解释如下: 信源:信源就是信息的来源,可以是人、机器、自然界的物体等等。信源发出信息的时候,一般以某种讯息的方式表现出来,可以是符号,如文字、语言等,也可以是信号,如图像、声响等等。 编码:编码就是把信息变换成讯息的过程,这是按一定的符号、信号规则进行的。按规则将信息的意义用符码编排起来的过程就是编码过程,这种编码通常被认为是编码的第一部分。编码的第二部分则是针对传播的信道,把编制好的符码又变换成适于信道中传输的信号序列,以便于在信道中传递,如声音信号、电信号、光信号等等。如信息源产生的原始讯息是一篇文章,用电报传递的时候,就要经过编码,转换成电报密码的信号,然后才能经过信道传播。 信道:就是信息传递的通道,是将信号进行传输、存储和处理的媒介。信道的关键问题是它的容量大小,要求以最大的速率传送最大的信息量。 噪音:是指信息传递中的干扰,将对信息的发送与接受产生影响,使两者的信息意义发生改变。 译码:是对信息进行与编码过程相反的变换过程,就是把信号转换为讯息,如文字、语言等,这是第一步。第二步译码则是指将讯息还原为信息意义的过程。 信宿:是信息的接受者,可以是人也可以是机器,如收音机、电视机等。作为方法论,香农的这一信息系统模式可以被适用于许多系统,如通信系统、管理系统、社会系统等。传播学学者对这一模式进行改造之后,成为表述人类信息传播的基本模式之一,成为传播学领域最基本的研究范式,而信源、编码、译码、信宿等概念也成为传播学研究的基本概念。 香农的信息论为传播学领域提供了基本的范式,它使以前模糊的信息概念变得在数学上可以操纵。香农的信息论与维纳的控制论是相互影响的,维纳也是最早认识信息论价值的学者,并与香农共同发明了有关信息的熵度量法则。

We propose a new learning paradigm, Local to Global Learning (LGL), for Deep Neural Networks (DNNs) to improve the performance of classification problems. The core of LGL is to learn a DNN model from fewer categories (local) to more categories (global) gradually within the entire training set. LGL is most related to the Self-Paced Learning (SPL) algorithm but its formulation is different from trains its data from simple to complex, while LGL from local to global. In this paper, we incorporate the idea of LGL into the learning objective of DNNs and explain why LGL works better from an information-theoretic perspective. Experiments on the toy data, CIFAR-10, CIFAR-100,and ImageNet dataset show that LGL outperforms the baseline and SPL-based algorithms. 我们为深度神经网络(DNN)提出了一种新的学习范式,即从局部到全局学习(LGL),以提高分类问题的性能。LGL的核心是在整个培训集中逐步从更少的类别(本地)学习更多的类别(全局)DNN模型。LGL与自定进度学习(SPL)算法最相关,但其形式与SPL不同。SPL将数据从简单训练到复杂,而将LGL从本地训练到全局。在本文中,我们将LGL的思想纳入了DNN的学习目标,并从信息论的角度解释了LGL为什么表现更好。对玩具数据,CIFAR-10,CIFAR-100和ImageNet数据集的实验表明,LGL优于基线和基于SPL的算法。 Researchers have spent decades to develop the theory and techniques of Deep Neural Networks (DNNs). Now DNNs are very popular in many areas including speech recognition [9], computer vision [16, 20], natural language processing [30] etc. Some techniques have been proved to be effective, such as data augmentation [32, 29] and identity mapping between layers [10, 11]. Recently, some researchers have focused on how to improve the performance of DNNs by selecting training data in a certain order, such as curriculum learning [3] and self-paced learning [17]. Curriculum learning (CL) was first introduced in 2009 by Bengio et al [3]. CL is inspired by human and animal learning which suggests that a model should learn samples gradually from a simple level to a complex level. However, the curriculum often involves prior man-made knowledge that is independent of the subsequent learning process. To alleviate the issues of CL, Self-Paced Learning (SPL) [17] was proposed to automatically generate the curriculum during the training process. SPL assigns a binary weight to each training sample. Whether or not to choose a sample is decided based on the sample’s loss at each iteration of training. Since [17], many modifications of the basic SPL algorithm have emerged. Moreover, [13] introduces a new regularization term incorporating both easiness and diversity in learning. [12] designs soft weighting (instead of binary weight) methods such as linear soft weighting and logarithmic soft weighting. [14] proposes a framework called self-paced curriculum learning (SPCL) which can exploit both prior knowledge before the training and information extracted dynamically during the training. 研究人员花费了数十年的时间来开发深度神经网络(DNN)的理论和技术。现在,DNN在很多领域都非常流行,包括语音识别[9],计算机视觉[16、20],自然语言处理[30]等。一些技术已被证明是有效的,例如数据增强[32、29]和层之间的身份映射[10,11]。近来,一些研究人员致力于通过按特定顺序选择训练数据来提高DNN的性能,例如课程学习[3]和自定进度学习[17]。课程学习(CL)由Bengio等人于2009年首次提出[3]。CL受人类和动物学习的启发,这表明模型应该从简单的层次逐步学习到复杂的层次。但是,课程通常涉及先前的人造知识,而这些知识与后续的学习过程无关,为了缓解CL的问题,提出了自定进度学习(SPL)[17]在培训过程中自动生成课程表。SPL将二进制权重分配给每个训练样本。是否选择样本取决于每次训练迭代时样本的损失。自[17]以来,已经出现了对基本SPL算法的许多修改。此外,[13]引入了一个新的正规化术语,在学习中兼顾了易用性和多样性。[12]设计了软加权(而不是二进制加权)方法,例如线性软加权和对数软加权。[14]提出了一种称为自定进度课程学习(SPCL)的框架,该框架可以利用训练之前的先验知识和训练期间动态提取的信息。 However, some SPL-based challenges still remain: 1) It is hard to define simple and complex levels. CL defines these levels according to prior knowledge, which needs to be annotated by human. This process is extremely complicated and time consuming, especially when the number of categories is large. Another solution is to choose simple samples according to the loss like SPL. However, the samples’ losses are related to the choice of different models and hyper-parameters, since it is likely that the loss of a sample is large for one model but small for another; 2) SPL4748 based algorithms always bring additional hyper-parameters. One must tune hyper-parameters very carefully to generate a good curriculum, which increases the difficulty of training the model. 但是,仍然存在一些基于SPL的挑战:1)很难定义简单和复杂的级别。CL根据需要由人类注释的先验知识定义这些级别。此过程极其复杂且耗时,尤其是类别数量很大时。另一种解决方案是根据损耗(如SPL)选择简单样本。但是,样本损失与选择不同的模型和超参数有关,因为一个模型的样本损失可能很大,而另一模型的损失却很小。2)基于SPL4748的算法总是带来附加的超参数。必须非常仔细地调整超参数以生成好的课程表,这增加了训练模型的难度。 To address the above two problems, we propose a new learning paradigm called Local to Global Learning (LGL). LGL learns the neural network model from fewer categories (local) to more categories (global) gradually within the entire training set, which brings only one hyper-parameter ( inverse proportional to how many classes to add at each time) to DNN. This new hyper-parameter is also easy to be tuned. Generally, we can improve the performance of DNN by increasing the value of the new hyper-parameter. The intuition behind LGL is that the network is usually better to memorize fewer categories1 and then gradually learns from more categories, which is consistent with the way people learn. The formulation of LGL can be better understood by comparing it with transfer learning shown in Figure 1. In transfer learning, the initial weights of DNNs are transferred from another dataset. But in LGL, the initial weights of DNNs are transferred from the self-domain without knowledge of other datasets. The traditional methods randomly initialize the weights, which do not consider the distributions of the training data and may end up with a bad local minimum; whereas LGL initializes the weights which capture the distributions of the trained data. So LGL can be also seen as an initialization strategy of DNNs. In this paper, we explain the methodology of LGL from the mathematical formulation in detail. Instead of concentrating on sample loss (as in SPL), we pay attention to training DNN effectively by continually adding a new class to DNN. There are three main contributions from this paper: 为了解决上述两个问题,我们提出了一种新的学习范式,称为本地到全球学习(LGL)。LGL在整个训练集中逐渐从较少的类别(局部)到更多的类别(全局)学习神经网络模型,这仅给DNN带来一个超参数(与每次添加多少个类成反比)。这个新的超参数也很容易调整。通常,我们可以通过增加新的超参数的值来提高DNN的性能。LGL的直觉是,网络通常可以更好地记住较少的类别1,然后逐渐从更多的类别中学习,这与人们的学习方式是一致的。通过将LGL的公式与图1所示的转移学习进行比较,可以更好地理解LGL的公式。在转移学习中,DNN的初始权重是从另一个数据集中转移的。但是在LGL中,DNN的初始权重是在不了解其他数据集的情况下从自域传递的。传统方法是随机初始化权重,这些权重不考虑训练数据的分布,最终可能会导致不良的局部最小值。而LGL会初始化权重,以捕获训练数据的分布。因此,LGL也可以视为DNN的初始化策略。在本文中,我们将从数学公式详细解释LGL的方法。我们不专注于样本丢失(如SPL),而是通过不断向DNN添加新类来关注有效地训练DNN。本文主要有三点贡献: We propose a new learning paradigm called Local to Global Learning (LGL) and incorporate the idea of LGL into the learning objective of DNN. Unlike SPL, LGL guides DNN to learn from fewer categories (local) to more categories (global) gradually within the entire training set. • From an information-theoretic perspective (conditional entropy), we confirm that LGL can make DNN more stable to train from the beginning. • We perform the LGL algorithm on the toy data, CIFAR-10, CIFAR-100, and ImageNet dataset. The experiments on toy data show that the loss curve of LGL is more stable and the algorithm converges faster than the SPL algorithm when the model or data distributions vary. The experiments on CIFAR-10, CIFAR100 and ImageNet show that the classification accuracy of LGL outperforms the baseline and SPL-based algorithms. 我们提出了一种新的学习范式,称为本地到全球学习(LGL),并将LGL的思想纳入DNN的学习目标。与SPL不同,LGL指导DNN在整个培训集中逐步从较少的类别(本地)学习到更多的类别(全局)。•从信息理论的角度(条件熵),我们确认LGL可以使DNN从一开始就更稳定地进行训练。•我们对玩具数据,CIFAR-10,CIFAR-100和ImageNet数据集执行LGL算法。对玩具数据的实验表明,当模型或数据分布变化时,LGL的损失曲线更稳定,并且收敛速度比SPL算法快。在CIFAR-10,CIFAR100和ImageNet上进行的实验表明,LGL的分类精度优于基线和基于SPL的算法。 SPL has been applied to many research fields. [24] uses SPL for long-term tracking problems to automatically select right frames for the model to learn. [28] integrates the SPL method into multiple instances learning framework for selecting efficient training samples. [27] proposes multi-view SPL for clustering which overcomes the drawback of stuck in bad local minima during the optimization. [31] introduces a new matrix factorization framework by incorporating SPL methodology with traditional factorization methods. [8] proposes a framework named self-paced sparse coding by incorporating self-paced learning methodology with sparse coding as well as manifold regularization. The proposed method can effectively relieve the effect of nonconvexity. [21] designs a new co-training algorithm called self-paced co-training. The proposed algorithm differs from the standard co-training algorithm that does not remove false labelled instances from training. [18] brings the ideaof SPL into multi-task learning and proposes a frameworkthat learns the tasks by simultaneously taking into consideration the complexity of both tasks and instances per task. Recently, some researchers have combined SPL withmodern DNNs. [19] proposes self-paced convolutional network (SPCN) which improves CNNs with SPL for enhancing the learning robustness. In SPCN, each sample is assigned a weight to reflect the easiness of the sample. A dynamic self-paced function is incorporated into the learning objective of CNNs to jointly learn the parameters ofCNNs and latent weight variable. However, SPCN seemsto only work well on simple dataset like MNIST. [2] showsthat CNNs with the SPL strategy do not show actual improvement on the CIFAR dataset. [15] shows that whenthere are fewer layers in the CNN, an SPL-based algorithmmay work better on CIFAR. But when the number of layers increases, like for VGG [23], the SPL algorithm performs almost equal to that of traditional CNN training. [25]proposes a variant form of self-paced learning to improvethe performance of neural networks. However, the methodis complicated and can not be applied to large dataset likeImageNet. Based on the above analysis of SPL’s limitations, we develop a new data selection method for CNNscalled Local to Global Learning (LGL). LGL brings onlyone hyper-parameter (easy to be tuned) to the CNN and performs better than the SPL-based algorithms. SPL已应用于许多研究领域。[24]使用SPL解决长期跟踪问题,以自动选择合适的框架供模型学习。[28]将SPL方法集成到多个实例学习框架中,以选择有效的训练样本。[27]提出了一种用于聚类的多视图SPL,它克服了优化过程中卡在不良局部极小值中的缺点。[31]通过将SPL方法与传统因式分解方法相结合,引入了新的矩阵因式分解框架。文献[8]提出了一种框架,该框架通过将自定进度的学习方法与稀疏编码以及流形正则化相结合,提出了自定进度的稀疏编码。所提出的方法可以有效地缓解不凸性的影响。[21]设计了一种新的协同训练算法,称为自定步距协同训练。提出的算法与标准的协同训练算法不同,后者不会从训练中删除错误标记的实例。[18]将SPL的思想带入了多任务学习,并提出了一个通过同时考虑任务和每个任务实例的复杂性来学习任务的框架。 最近,一些研究人员将SPL与现代DNN相结合。文献[19]提出了一种自定速度的卷积网络(SPCN),它利用SPL改进了CNN,从而增强了学习的鲁棒性。在SPCN中,为每个样本分配了权重以反映样本的难易程度。动态自定步函数被纳入CNN的学习目标,以共同学习CNN的参数和潜在权重变量。但是,SPCN似乎只能在像MNIST这样的简单数据集上很好地工作。[2]显示,采用SPL策略的CNN在CIFAR数据集上并未显示出实际的改进。[15]表明,当CNN中的层数较少时,基于SPL的算法在CIFAR上可能会更好地工作。但是,当层数增加时,例如对于VGG [23],SPL算法的性能几乎与传统CNN训练的性能相同。[25]提出了一种自定进度学习的变体形式,以提高神经网络的性能。但是,该方法很复杂,不能应用于像ImageNet这样的大型数据集。基于以上对SPL局限性的分析,我们为CNN开发了一种新的数据选择方法,称为本地到全球学习(LGL)。LGL仅给CNN带来一个超参数(易于调整),并且比基于SPL的算法性能更好。 There are still two learning regimes similar to our workcalled Active Learning [6] and Co-training [4] which also select the data according to some strategies. But in active learning, the labels of all the samples are not known when the samples are chosen. Co-training deals with semisupervised learning in which some labels are missing. Thus,these two learning regimes differ in our setting where the labels of all the training data are known. 仍然有两种与我们的工作类似的学习方式称为主动学习[6]和联合训练[4],它们也根据某些策略选择数据。但是在主动学习中,选择样本时不知道所有样本的标签。联合培训涉及缺少某些标签的半监督学习。因此,这两种学习方式在我们设置所有训练数据的标签的环境中是不同的。 Learning Let us first briefly review SPL before introducing LGL. Let L(yi, g(xi, w)) denote the loss of the ground truth label yi and estimated label g(xi, w), where w represents theparameters of the model. The goal of SPL is to jointlylearn the model parameters w and latent variable v =[vi, . . . , vn]T by minimizing: 在介绍LGL之前,让我们首先简要回顾一下SPL。令L(yi,g(xi,w))表示地面真值标签yi和估计标签g(xi,w)的损失,其中w表示模型的参数。SPL的目标是共同学习模型参数w和潜在变量v = [vi,...,vn] T通过最小化: In the above, v denotes the weight variables reflecting the samples’ importance; λ is a parameter for controlling the learning pace; f is called the self-paced function which controls the learning scheme. SPL-based algorithms are about to modify f to automatically generate a good curriculum during the learning the original SPL algorithm [17], v ∈ {0, 1}^n, and fis chosen as: Another popular algorithm is called SPLD (self-paced learning with diversity) [13] which considers both ||v||1 and the sum of group-wise ||v||2. In SPLD, f is chosen as: In general, iterative methods like Alternate Convex Search (ACS) are used to solve (1), where w and v are optimized alternately. When v is fixed, we can use existing supervised learning methods to minimize the first term in (1) to obtain the optimal w∗. Then when w is fixed,and suppose f is adopted from (2), the global optimum v∗= [vi∗, . . . , vn*]T can be explicitly calculated as: 通常,使用迭代方法(如交替凸搜索(ACS))求解(1),其中w和v交替优化。当v固定时,我们可以使用现有的有监督学习方法来最小化(1)中的第一项,以获得最佳w ∗。然后,当w固定时,假设从(2)中采用f,则全局最优v ∗ = [v ∗ i,。。。,v ∗ n] T可以明确地计算为: From (4), λ is a parameter that determines the difficulty of sampling the training data: When λ is small, ‘easy’ samples with small losses are sent into the model to train; When we gradually increase λ, the ‘complex’ samples will be provided to the model until the entire training set is the above analysis, the key step in an SPL algorithm is to adjust the hyper-parameter λ at each iteration of training. In reality, however, we do not know the loss of each sample before training. Therefore sometimes one needs to run a baseline (a training algorithm without SPL) first to observe the average loss at each iteration and then set an empirical value for λ to increase. For more complex algorithms like SPLD from (3), researchers must control two parameters λ and γ, which makes the training difficult. To avoid the difficulty of tuning parameters in the SPL-based algorithms, we introduce our easy-to-train LGL algorithm. 从(4)中,λ是一个参数,它确定对训练数据进行采样的难度:当λ较小时,将损失较小的“简单”样本发送到模型中进行训练;当我们逐渐增加λ时,将向模型提供“复杂”样本,直到处理完整个训练集为止。根据以上分析,SPL算法中的关键步骤是在每次训练迭代时调整超参数λ。但是,实际上,我们不知道训练前每个样本的损失。因此,有时需要先运行基线(无SPL的训练算法)以观察每次迭代的平均损耗,然后为λ设置一个经验值以增加。对于(3)中的SPLD等更复杂的算法,研究人员必须控制两个参数λ和γ,这使训练变得困难。为了避免在基于SPL的算法中调整参数的困难,我们引入了易于训练的LGL算法。

《信息论与编码》,专业基础课,4学时/周;四届,180人 《信息论基础》,专业必修课,4学时/周;五届,1000人 《电子信息工程专业导论》,专业必修课,4学时/周;二届,400人 《信息论与编码》(研究生),专业必修课,4学时/周;五届,200人 《多媒体信息压缩与编码》(博士研究生),专业必修课,2学时/周;二届,12人 承担的实践性教学 本科课程设计,45人/年 本科生毕业设计,5人/年 硕士生毕业论文,6人/年 博士生毕业论文,2人/年 主持的教学研究课题 考试成绩评定方法研究,合肥工业大学教学研究项目,2005-2006,主持 信息安全专业的教学与实践研究,安徽省教育厅教学重点研究项目,2003-2006,第二主持 计算机科学与技术专业实践教学与创新体系研究,安徽省教育厅教学重点研究项目,2007-2009,主要参与 计算机科学与技术专业本科教学课程体系建设与改革研究,安徽省教育厅省级教学研究项目,2005-2007,主要参与 发表的教学相关论文培养具有高尚道德的拔尖人才,研究生教育,2001年 卷积编码原理的解释,电气电子教学学报,2007年 一种BCH/CRC混合差错控制编码方法,第17届计算机科学与技术应用学术会议论文集,2006年 一种改进的等范数最近邻码本矢量搜索算法,合肥工业大学学报(自然科学版),2007年 部分国外电子信息类教材编写特点,合肥工业大学学报(社会科学版),2007年 获得的教学表彰/奖励 安徽省教学名师,安徽省教育厅,2007年 安徽省优秀教师,安徽省教育厅,2004年 国家政府特殊津贴,国务院,1997年 第二届TI中国DSP大奖赛“特殊贡献奖”,竞赛组织委员会,2006年 第二届TI中国DSP大奖赛算法组一等奖的指导教师,2006年 第三届TI中国DSP大奖赛系统组一等奖的指导教师,2008年 第五届“挑战杯”全国大学生课外学术科技作品竞赛“园丁奖”,竞赛组织委员会,1997年 首届安徽省大学生挑战杯课外学术科技作品竞赛一等奖的指导教师,2005年 合肥工业大学本科毕业设计(论文)优秀指导教师,合肥工业大学,2006年

信息论与编码技术毕业论文

你可以去中国月期刊网看看那里的文章挺多的,你可以去那参考一下:

摘 要:随着技术革新的不断发展,产业融合正日益成为产业经济发展中的重要现象。产业融合产生的前提是技术融合、业务融合、市场融合以及产业管制环境的变化。按照技术发展的方向,产业融合有产业渗透、产业交叉和产业重组三种形式。由于信息技术的渗透性、带动性、倍增性、网络性和系统性等特征,信息产业的产业融合呈现加速发展的趋势。

这个论文网不错的,推荐你看一下,但愿你可以找到想要的东西。

摘要:香农于1948年10月发表于《贝尔系统技术学报》上的论文《A Mathematical Theory of Communication》(通信的数学理论)作为现代信息论研究的开端。1984年贝尔研究所的香农在题为《通讯的数学理论》的论文中系统地提出了关于信息的论述,创立了信息论。信息论主要研究信息的本质和度量方法。它是系统论和控制论的理论基础,也是信息科学的理论基础。关键字:信息概念,熵,美国数学家香农参考书目:1。《信息论》 南丰公益书院; 2.《安全科学技术百科全书》(中国劳动社会保障出版社,2003年6月出版);3.《安全工程大辞典》(化学工业出版社,1995年11月出版)(安全文化网);4.部分资料摘取自互联网。(一)信息的内涵1948—1949年,美国数学家香农()发表了《通信的数学理论》和《在噪声中的通信》两篇论文,提出了度量信息的数学公式,标志着信息论这门学科的诞生。信息论主要研究信息的本质和度量方法。它是系统论和控制论的理论基础,也是信息科学的理论基础。它是关于事物运动状态的规律的表征,其特点是: (1)信息源于物质运动,又不是物质和运动;(2)信息具有知识的秉性,是任何一个系统的组织程度和有序程度的标志;(3)只有变化着的事物和运动着的客体才会有信息,孤立静止的客体或永不改变的事物不会有信息;(4)信息不遵守物质和能量的“守恒与转化定律”, 同样的信息,大家可以共同使用,信息不会减少,相同的信息,能够用不同物质载体进行传播,同一种物质,也可以携带不同的信息,信息不会变化。信息论是一门研究信息传输和信息处理系统中一般规律的学科。香农在他的《通讯的数学理论》中明确提出:“通讯的基本问题是在通讯的一端精确地或近似地复现另一端所挑选的消息。”信息是“人们在选择一条消息时选择的自由度的量度”。消息所带的信息可以解释为负熵,即概率的负对数。威沃尔指出,‘信息’一词在此理论中只在一种专门的意义上加以使用,我们一定不要把它和其通常用法混淆起来”。也就是说,这里的信息不是我们通常使用的概念(各种消息、情报和资料的总称),而是一个变量,它表示信息量的大小。而信息量则是某种不确定性趋向确定的一种量度,消息的可能性越大,信息就越少。如果一个系统是有序的,它不具有很高的混乱度或选择度,其信息(或熵)是低的。信息论是一门用数理统计方法来研究信息的度量、传递和变换规律的科学。它主要是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。 信息论的研究范围极为广阔。一般把信息论分成三种不同类型: (1)狭义信息论是一门应用数理统计方法来研究信息处理和信息传递的科学。它研究存在于通讯和控制系统中普遍存在着的信息传递的共同规律,以及如何提高各信息传输系统的有效性和可靠性的一门通讯理论。 (2)一般信息论主要是研究通讯问题,但还包括噪声理论、信号滤波与预测、调制与信息处理等问题。(3)广义信息论不仅包括狭义信息论和一般信息论的问题,而且还包括所有与信息有关的领域,如心理学、语言学、神经心理学、语义学等。信息有以下性质:客观性、广泛性、完整性、专一性。首先,信息是客观存在的,它不是由意志所决定的,但它与人类思想有着必然联系。同时,信息又是广泛存在的,四维空间被大量信息子所充斥。信息的一个重要性质是完整性,每个信息子不能决定任何事件,须有两个或两个以上的信息子规则排布为完整的信息,其释放的能量才足以使确定事件发生。信息还有专一性,每个信息决定一个确定事件,但相似事件的信息也有相似之处,其原因的解释需要信息子种类与排布密码理论的进一步发现。信息论是一门具有高度概括性、综合性,应用广泛的边缘学科。信息论是信息科学的理论基础,它是一门应用数理统计方法研究信息传输和信息处理的科学,是利用数学方法来研究信息的计量、传递、交换和储存的科学。随着科学技术的发展,信息论研究范围远远超出了通信及类似的学科,已延伸到生物学、生理学、人类学、物理学、化学、电子学、语言学、经济学和管理学等学科。(二)信息论发展历史香农被称为是“信息论之父”。人们通常将香农于1948年10月发表于《贝尔系统技术学报》上的论文《A Mathematical Theory of Communication》(通信的数学理论)作为现代信息论研究的开端。1984年贝尔研究所的香农在题为《通讯的数学理论》的论文中系统地提出了关于信息的论述,创立了信息论。维纳提出的关于度量信息量的数学公式开辟了信息论的广泛应用前景。1951年美国无线电工程学会承认信息论这门学科,此后得到迅速发展。20世纪50年代是信息论向各门学科冲击的时期,60年代信息论不是重大的创新时期,而是一个消化、理解的时期,是在已有的基础上进行重大建设的时期。研究重点是信息和信源编码问题。到70年代,由于数字计算机的广泛应用,通讯系统的能力也有很大提高,如何更有效地利用和处理信息,成为日益迫切的问题。人们越来越认识到信息的重要性,认识到信息可以作为与材料和能源一样的资源而加以充分利用和共享。信息的概念和方法已广泛渗透到各个科学领域,它迫切要求突破香农信息论的狭隘范围,以便使它能成为人类各种活动中所碰到的信息问题的基础理论,从而推动其他许多新兴学科进一步发展。目前,人们已把早先建立的有关信息的规律与理论广泛应用于物理学、化学、生物学等学科中去。一门研究信息的产生、获取、变换、传输、存储、处理、显示、识别和利用的信息科学正在形成。香农把“熵”这个概念引入信息的度量。1965年法国物理学家克劳修斯首次提出这一概念,后来这一概念由19世纪奥地利物理学家L.玻尔茨曼正式提出。信息论和控制论又赋予了“熵”更新更宽的含义。 熵是一个系统的不确定性或无序的程度,系统的紊乱程度越高,熵就越大;反之,系统越有序,熵就越小。控制论创始人维纳曾说:“一个系统的熵就是它的无组织程度的度量。”熵这个概念与信息联系在一起后,获得这样的思路:信息的获得永远意味着熵的减少,要使紊乱的系统(熵大的系统)有序化(减少熵)就需要有信息,当一个系统获得信息后,无序状态减少或消除(熵减少);而如果信息丢失了,则系统的紊乱程度增加。一个系统有序程度越高,则熵就越小,所含信息量就越大,反之无序程度越高,则熵越大,信息量就越小,信息与熵是互补的,信息就是负熵,两者互为负值。 信息量=系统状态原有的熵-系统状态确定后的熵 电讯系统不存在功能性因素,即人的主观能动因素,因此不能照搬,但对计算社会信息的量,仍有参考价值。如研究新闻的信息量时就非常有意义。一则新闻讯息中所含信息量的大小是不确定程度的大小决定的,能够最大限度地消除人们对新闻事件认识上的不确定性的讯息,信息量就大,而不能减少受众对新闻事件的认识的不确定的,信息量就小,这与讯息的长度、字数和篇幅无关,不是版面大小、字数多寡、“本报讯”多少就能说明信息的大小的。信息科学是人们在对信息的认识与利用不断扩大的过程中,在信息论、电子学、计算机科学、人工智能、系统工程学、自动化技术等多学科基础上发展起来的一门边缘性新学科。它的任务主要是研究信息的性质,研究机器、生物和人类关于各种信息的获取、变换、传输、处理、利用和控制的一般规律,设计和研制各种信息机器和控制设备,实现操作自动化,以便尽可能地把人脑从自然力的束缚下解放出来,提高人类认识世界和改造世界的能力。信息科学在安全问题的研究中也有着重要应用。1949年,香农和韦弗提出了有关传播的数学模式。 信源—>消息—>编码—>信号—>信道—>信号+噪声—>译码—>消息—>信宿 噪声—>信道 对上图的概念解释如下: 信源:信源就是信息的来源,可以是人、机器、自然界的物体等等。信源发出信息的时候,一般以某种讯息的方式表现出来,可以是符号,如文字、语言等,也可以是信号,如图像、声响等等。 编码:编码就是把信息变换成讯息的过程,这是按一定的符号、信号规则进行的。按规则将信息的意义用符码编排起来的过程就是编码过程,这种编码通常被认为是编码的第一部分。编码的第二部分则是针对传播的信道,把编制好的符码又变换成适于信道中传输的信号序列,以便于在信道中传递,如声音信号、电信号、光信号等等。如信息源产生的原始讯息是一篇文章,用电报传递的时候,就要经过编码,转换成电报密码的信号,然后才能经过信道传播。 信道:就是信息传递的通道,是将信号进行传输、存储和处理的媒介。信道的关键问题是它的容量大小,要求以最大的速率传送最大的信息量。 噪音:是指信息传递中的干扰,将对信息的发送与接受产生影响,使两者的信息意义发生改变。 译码:是对信息进行与编码过程相反的变换过程,就是把信号转换为讯息,如文字、语言等,这是第一步。第二步译码则是指将讯息还原为信息意义的过程。 信宿:是信息的接受者,可以是人也可以是机器,如收音机、电视机等。作为方法论,香农的这一信息系统模式可以被适用于许多系统,如通信系统、管理系统、社会系统等。传播学学者对这一模式进行改造之后,成为表述人类信息传播的基本模式之一,成为传播学领域最基本的研究范式,而信源、编码、译码、信宿等概念也成为传播学研究的基本概念。 香农的信息论为传播学领域提供了基本的范式,它使以前模糊的信息概念变得在数学上可以操纵。香农的信息论与维纳的控制论是相互影响的,维纳也是最早认识信息论价值的学者,并与香农共同发明了有关信息的熵度量法则。

压缩机研究论文

空调压缩机过载保护的研究321前言空调器压缩机易受电压、制冷系统工况的影响,在不良的使用环境中,压缩机容易烧毁。作为空调器成本最高的部件,压缩机的保护技术成为空调技术领域必须关注的一个重要课题。在现有的压缩机的保护技术中使用最多的是用电流互感器或温度传感器检测技术,前者是利用电流互感器感应压缩机主电路的电流,通过电流的检测获知压缩机电流,当电流超过设定值时,通过软件的控制断开主回路保护压缩机,电流互感器可以装在室内机或室外机中;温度传感器检测技术是在压缩机的表面安装一个温度传感器,通过检测压缩机的温度来保护压缩机,由于压缩机线圈在内部,其表面与外部的温升相差甚远,温度测量误差较大,在瞬间的过流中,保护效果不理想。以上两种技术需要单片机控制,而且在室内机与室外机之间要增加一至两条连接线,制造成本较高。从有关的实验中发现,压缩机烧毁往往出现在缺少制冷剂并在恶劣的使用环境工况下,压缩机线圈温度与进气压力、制冷剂的数量有关。本文主要讨论在常用的空调器室内机的软件、硬件不变的情况下,利用压力开关作为压力检测器件,在室外机的闲置的空间增加一个检测的电控板,通过对压缩机的压力检测实现压缩机的过载保护。采用这种方案,无需对空调器的原有电路进行更改,通用性极强,可应用于不同型号的空调器,而且室内机无需变化。2控制方案及实现方法电路原理压缩机压力检测电路原理包括:在压缩机的进气管安装压力开关,以及在室外机安装一个电控板,电控板主要包含5个部分:阻容降压电路、压缩机延时电路、外风机转换电路、压力开关转换电路、三极管控制电路,利用压缩机、外风机、压力开关的信号,通过硬件电路自动实现压缩机进气压力过低等不正常的压力保护,在保护的过程中,不影响空调的启动和空调的除霜。图1为压缩机保护装置检测结构方框图,图2为压缩机保护装置电气原理图。阻容降压电路主要由电阻、电容、压敏电阻、稳压二极管组成,输入端与压缩机线相连接,其作用是将220V的交流电转为低压的12V直流电,作为各电路的供电电源,输出端的12V供给比较器及其偏图1压缩机保护装置检测结构方框原理图置电路、三极管、压力开关等器件,阻容降压电路省略了变压器,成本极低。压缩机延时电路。该电路是保证压缩机运行的前5分钟能正常运行,由于压缩机刚开启的头3分钟,进气管的压力偏低,压力开关打开,压力开关转换电路会出现低压保护信号。压缩机延时电路与压力开关转换电路为并联关系,图3为压缩机延时电路控制逻辑示意图。压缩机开启后,阻容降压电路输出12V供给压缩机延时电路,由于C 3 0 7正在充电,IC304A的2脚输出低电平,当压缩机得电后约5分钟,C307充满电,IC304A的2脚输出由低电平转为高电平,这样压缩机延时电路相当于一个延时5分钟的开关,在压缩机开启头5分钟闭合,超过5分钟后打开,这样保证了压缩机开启的头3分钟能正常运行。外风机转换电路:压缩机除霜时间一般为8至10分钟(如图2),大功率的压缩机除霜期间,进气口处于低压力的时间较长,致使压力开关打开,然而压缩机延时电路只能延时5分钟,这样会出现压缩机除霜超过5分钟后不能除霜的现象,所以需要加入一个外风机转换电路。以比较器芯片为主构成的外风机转换电路相当一个非门电路,图4为外风机转换电路控制逻辑示意图。当外风机线得电时,转换电路输出为高电平;反之转换电路输出为低电平。正常的制热或制冷工况下,外风机得电,IC303光耦PC817导通,IC305C的14脚为高电平;在除霜期间外风机关闭,IC303光耦PC817截止,IC305C的14脚为低电平,这时不论压力开关转换电路处于何种工作状态,压缩机仍可运。压力开关转换电路。将压力开关的进气孔和出气孔串接在压缩机低压的进气管路中,当制冷剂泄漏造成不足,且空调器运行在恶劣的环境工况中,造成压力过低时,压力开关打开,反之,压力开关闭合,有图与我索取全文免费

建议看看下面的资料网,在这里想要谁给现写一篇,可能不会有,因为z这里没人会为了这个区花费一些时间去写的,所以根据我搜集的一些网站来看,希望对你有所帮助,用心去做,不管毕业论文还是平时作业吗,我相信你都可以做好的。毕业论文以及毕业设计的,推荐一个网 这个网站的论文都是以words的形式原封不动的打包上传的,网上搜索不到的,对毕业论文的写作有很大的参考价值,希望对你有所帮助。 论文写作建议看看下面的资料网,在这里想要谁给现写一篇,可能不会有,因为z这里没人会为了这个区花费一些时间去写的,所以根据我搜集的一些网站来看,希望对你有所帮助,用心去做,不管毕业论文还是平时作业吗,我相信你都可以做好的。写作资料也很多,下面给你一些范文资料网: 如果你不是校园网的话,请在下面的网站找: 百万范文网: 分类很细 栏目很多 毕业论文网: 引文数据库: 社科类论文: 经济类论文: 论文之家: 范文网: 如果你是校园网,那就恭喜你了,期刊网里面很多资料 中国知网: 龙源数据库: 万方数据库: 优秀论文杂志 论文资料网 法律图书馆 法学论文资料库 中国总经理网论文集 职业经理人论坛 财经学位论文下载中心 公开发表论文_深圳证券交易所 中国路桥资讯网论文资料中心 论文商务中心 ' 法律帝国: 学术论文 论文统计

在写机械专业论文时,首先面临的问题就是题目如何拟定?题目的选择,关系着论文的成败,因此决定论文题目时,必须经过审慎的考虑。下面我给大家带来2021机械专业论文题目_机械论文题目选题,希望能帮助到大家!

机械论文题目

1、自主导航农业机械避障路径规划

2、煤矿机械电气设备自动化调试技术研究

3、机械加工中加工精度的影响因素与控制

4、三自由度机械臂式升降平台运动学建模及仿真

5、基于并联交错的起重机械节能装置设计研究

6、CNN和RNN融合法在旋转机械故障诊断中的应用

7、机械剪切剥离法制备石墨烯研究进展

8、机械压力机滚滑复合导轨结构设计研究

9、机械压力机曲轴、轴瓦温升自动控制设计技术

10、基于无线传感的机械冲压机振动监测分析

11、基于GNSS的农业机械定位与姿态获取系统

12、一种冗余机械臂多目标轨迹优化 方法

13、基于湍流模型的高速螺旋槽机械密封稳态性能研究

14、基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计

15、牵引变电站直流断路器机械状态监测与故障诊断研究

16、方钢管混凝土柱卡扣机械连接试验及有限元分析

17、机械电子工程与人工智能的关系

18、机械法与机械-酶消化法制备大鼠膈肌组织单细胞悬液的比较

19、机械制造工艺及精密加工技术研究

20、腐蚀减薄对X80钢管机械损伤凹陷过程中应力应变的影响

21、基于驻极体材料的机械天线式低频通信系统仿真研究

22、基于"J型锁芯"的机械锁芯结构创新分析

23、浅析我国烟草机械技术的发展现状和趋势

24、液滴分析仪的机械结构设计

25、化工机械密封件损伤数值模拟及维修对策探讨

26、一种镍基单晶高温合金的反相热机械疲劳行为

27、浅谈机械数控技术的应用现状和发展趋势

28、数控机械加工进刀工艺优化 措施 分析

29、基于STM32六自由度机械臂发展前景

30、机械工程自动化技术存在的问题及对策探析

31、机械设计制造的智能化发展趋势综述

32、RFID在机械加工中的应用探究

33、试论船舶机械设备维修保养中的常见故障及排除方法

34、探讨港口流动机械预防性维护保养

35、关于端盖零件机械加工工艺的设计要点分析

36、关于机械加工工艺对零件加工精度的影响研究

37、现代机械制造及加工技术分析

38、论机械设计加工中需要注意的问题

39、基于机械设计制造中零件毛坯选择的研究与应用

40、机械零件加工精度影响因素探析

41、机械制造加工设备的安全管理与维修探讨

42、机械设备的环保性能分析

43、探究机电一体化系统在机械工程中的应用

44、机械制造过程的绿色制造技术应用研究

45、浅析机械设计制造中机电一体化的应用

46、机械工程的可靠性优化设计分析

47、浅析机械设备焊接制作中注意事项与探讨

48、浅谈山西省农产品初加工机械发展现状

49、浅谈信息化教学在机械制图课程中的应用策略

50、基于OBE的机械原理课程设计项目式教学改革研究

机械专业 毕业 论文题目

1、新型机械设计方法研究

2、钢铁冶炼机械设备的故障诊断及处理措施研究

3、机械制造工艺的可靠性分析

4、浅谈影响机械加工表面质量的因素与应对措施

5、抛光介质对镁合金化学机械抛光的影响

6、机械设计制造及其自动化发展方向的研究

7、试论物流机械设备使用管理

8、起重机械节能技术的应用研究

9、机械传动系统扭转振动模式的有限元分析

10、齿轮加工技术发展动态

11、机电产品设计与腐蚀防护设计的关系

12、机械制造中数控技术应用分析

13、铜冶炼设备机械液压系统的污染与控制

14、柴油机齿轮室总成异响分析与改进

15、一种用于图书自动存取装置的设计

16、机械加工零件表面纹理缺陷检测技术与实践

17、圆柱齿轮的加工原理及误差分析

18、机械设计基础课程 教学方法 与手段的探讨

19、基于OBE工程 教育 理念的机械原理课程设计改革

20、基于复杂工程问题的机械产品设计制造综合实践研究

21、现代机械制造工艺的特点及发展趋势分析

22、浅谈大直径渐开线斜齿轮的修整加工

23、机械加工工艺对加工精度的影响分析

24、机械构建的自动控制阀门探究

25、浅谈绿色制造技术在机械制造领域的应用

26、试析高职“机械制图与CAD”课程教学改革与实践

27、某减速机齿轮崩齿失效分析

28、往复式压缩机能效优化分析

29、大型薄壁件多点定位的初始布局优化算法研究

30、轴向拉紧的圆弧端齿轴段扭转特性研究

31、平行轴渐开线变厚齿轮传动的几何设计与啮合特性分析

32、化工生产用减速机的常见问题与处理

33、强化工程能力培养的地方高校机械设计系列课程改革

34、机械优化设计理论方法研究综述

35、我国机械设计制造及其自动化发展方向研究

36、机械设计制造及其自动化的发展方向

37、基于小波包和样本熵的齿轮故障特征提取

38、LDP型电动单梁起重机双向防坠落安全钩设计

39、自平衡自定位节能型多段水泵的研究

40、往复运动机构的能耗特点及加入空气弹簧后的节能控制方法

41、考虑粗糙度和固体颗粒效应的直齿轮跑合瞬态热弹流润滑分析

42、超大型起重机桥架整体加工工艺及装备

43、数控车间供电质量缺陷及对策

44、浅谈机械加工工艺对零件加工精度的影响

45、基于弹流理论的深槽密封机制分析

46、管线球阀产品及监造质量控制概述

47、往复式压缩机组管线振动分析及改造

48、精制柴油泵机封泄漏原因浅析和改进措施

49、基于漂流提升区输送带优化改进

50、离心泵径向力预测方法研究

机械工程硕士论文题目

1、车载液压机械臂动态设计与研究

2、基于网络模型的复杂机电系统可靠性评估

3、螺纹联接自动装配系统的研究

4、轴承压装仿真与试验以及液力变矩器导轮的热装配变形分析研究

5、硫系自润滑钢中原位自生金属硫化物自润滑相的形成机制与控制方法

6、基于电动气旋流的吸附器的开发和特性研究

7、动圈式比例电磁铁关键技术研究

8、箱式风机管道法兰的柔性制造系统

9、六自由度运动平台优化设计及动态仿真研究

10、面向恶劣服役环境的工件抗缺陷结构优化设计方法及其应用

11、基于数字液压缸组的多浮力摆波能装置压力平衡研究

12、具有运动控制功能的电液比例阀控制器研究

13、微型轴承内圆磨削加工的质量监控系统研究

14、抗负载波动回转控制阀优化设计研究

15、气浮式无摩擦气缸静动态特性研究

16、模拟风力机载荷的电液加载装置的设计研究

17、用于扩散吸收式热变换器的气泡泵性能实验研究

18、脂肪醇聚氧乙烯醚与三乙醇胺硼酸酯水溶液的摩擦学性能研究

19、表面织构化固体润滑膜设计与制备技术研究

20、双压力角非对称齿轮承载能力的影响因素研究及参数优化

21、全电液式多路阀自动测试系统设计与实现

22、开关液压源系统研究分析及其试验系统的设计与搭建

23、飞轮储能系统电机与轴系设计

24、面向不完全数据的疲劳可靠性分析方法研究

25、树木移植机液压系统的设计研究

26、新型双输出摆线减速器的设计与分析

27、基于ARM9架构的工业喷码机研究与实现

28、超高压水射流破拆机器人液压系统设计与研究

29、考虑轴承影响的摆线针轮传动动力学研究

30、车辆传动装置供油系统设计方法研究

31、润滑油复合纳米粒子添加剂摩擦学性能的研究

32、高速气缸的缓冲结构研究

33、大长径比柔性对象自动送料关键技术研究

34、空间索杆铰接式伸展臂根部锁紧机构运动功能可靠性研究

35、基于能量梯度理论的离心压缩机固定元件性能改进研究

36、并联RCM机构构型综合及典型机构运动学分析

37、多自由度气动人工肌肉机械手指结构设计及控制

38、闸板位置对闸阀内部气固两相流及磨损的影响

39、电液伺服阀试验台测控系统的设计

40、多盘制动器加压装置典型结构设计及试验研究

41、重型多级离心泵穿杠螺母拧紧装置的设计

42、气动增压阀动态特性的仿真研究

43、小间隙下狭缝节流止推轴承特性研究

44、离心通风机的性能预测与叶片设计研究

45、基于有限元法的齿面修形设计

46、离心泵输送大颗粒时固液两相流场的数值计算

47、小流量工况下离心泵内部流动特性分析

48、双粗糙齿面接触时的弹流润滑数值分析

49、工程专用自卸车车架疲劳寿命分析

50、倾斜式带式输送机断带抓捕装置的研究

2021机械专业论文题目相关 文章 :

★ 优秀论文题目大全2021

2021毕业论文题目怎么定

★ 机械制造毕业论文范文参考

★ 机械类学术论文题目

★ 大学生论文题目大全2021

★ 优秀论文题目2021

★ 大学生论文题目参考2021

★ 2021机械毕业实习报告例文5篇

★ 机械类科技论文范文(2)

★ 2021建筑类专业论文题目

研究资料汇编论文缩写代码

参考文献类型及文献类型,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:专著M ; 报纸N ;期刊J ;专利文献P;汇编G ;古籍O;技术标准S ;学位论文D ;科技报告R;参考工具K ;检索工具W;档案B ;录音带A ;图表Q;唱片L;产品样本X;录相带V;会议录C;中译文T;乐谱I; 电影片Y;手稿H;微缩胶卷U ;幻灯片Z;微缩平片F;其他E。

参考文献类型主要以单字母方式标识:专著M、报纸N、专利文献P、汇编G、古籍O、技术标准S、文献期刊J、学位论文D、科技报告R、参考工具K、检索工具W、档案B、录音带A 、图表Q、唱片L、产品样本X、录相带V、会议录C、中译文T、乐谱I、电影片Y、手稿H、微缩胶卷U、幻灯片Z、其他E等。

例如:专著、论文集、学位论文、报告

[序号]主要责任者.文献题名[文献类型标识].出版地:出版者,出版年.起止页码(可选)

[1]刘国钧,陈绍业.图书馆目录[M].北京:高等教育出版社,.

扩展资料:

参考文献的数学格式:

2007年8月20日在清华大学召开的“综合性人文社会科学学术期刊编排规范研讨会”决定,2008年起开始部分刊物开始执行新的规范“综合性期刊文献引证技术规范”。该技术规范概括了文献引证的“注释”体例和“著者—出版年”体例。不再使用“参考文献”的说法。

这两类文献著录或引证规范在中国影响较大,后者主要在层次较高的人文社会科学学术期刊中得到了应用。

⑴文后参考文献的著录规则为GB/T 7714-2005《文后参考文献著录规则》,适用于“著者和编辑编录的文后参考文献,而不能作为图书馆员、文献目录编制者以及索引编辑者使用的文献著录规则”。

⑵顺序编码制的具体编排方式。参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。一种文献被反复引用者,在正文中用同一序号标示。一般来说,引用一次的文献的页码(或页码范围)在文后参考文献中列出。格式为著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围).”。

参考资料来源:百度百科-参考文献标准格式

参考资料来源:百度百科-参考文献

请准确描述你的问题

当提及的参考文献为文中直接说明时,其序号应该用小4号字与正文排齐,如“由文献[8,10~14]可知”。不得将引用文献标注置于各级标题处。文科学位论文可采用标注与脚注并行的原则。脚注编号用阿拉伯数字置于圆圈中,如”…成果①”,脚注作页下注,用小5号字体。 名词术语科技名词术语及设备、元件的名称,应采用国家标准或部颁标准中规定的术语或名称。标准中未规定的术语要采用行业通用术语或名称。全文名词术语必须统一。一些特殊名词或新名词应在适当位置加以说明或注解。采用英文缩写词时,除本行业广泛应用的通用缩写词外,文中第一次出现的缩写词应该用括号注明英文全文。 物理量名称、符号与计量单位(见附录6) 物理量的名称和符号物理量的名称和符号应符合GB3100~3102-86的规定。论文中某一量的名称和符号应统一。 物理量计量单位物理量计量单位及符号应按国务院1984年发布的《中华人民共和国法定计量单位》及GB3100~3102执行,不得使用非法定计量单位及符号。计量单位符号,除用人名命名的单位第一个字母用大写之外,一律用小写字母。非物理量单位(如件、台、人、元、次等)可以采用汉字与单位符号混写的方式,如”万t•km”。

  • 索引序列
  • 信息压缩编码的研究与实现论文
  • 信息论与编码结课论文
  • 信息论与编码技术毕业论文
  • 压缩机研究论文
  • 研究资料汇编论文缩写代码
  • 返回顶部