首页 > 学术期刊知识库 > 因子分析论文写作方法

因子分析论文写作方法

发布时间:

因子分析论文写作方法

论文的变量是自己在写论文的时候确定的变量参数一般是实证分析的时候要使用到的,也就是自己在写论文的时候是已经确定了要研究哪些数量或者指标之间的关系,所以在具体分析的时候就应该根据实际情况去控制相应的变量。

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

不难。硕士论文因子分析法配合使用excel,简便的通过连环替代的方法找出各个因子对财务风险的影响因素,还是比较简单的。硕士论文是硕士研究生所撰写的学术论文,具有一定的理论深度和更高的学术水平。

论文的变量是自己在写论文的时候确定的变量参数一般是实证分析的时候要使用到的,也就是自己在写论文的时候是已经确定了要研究哪些数量或者指标之间的关系,所以在具体分析的时候就应该根据实际情况去控制相应的变量

因子分析法毕业论文

用是肯定可以用的,我发表的论文也是用AHP作为模型,因子分析嘛,不是很熟,但是SPASS作为统计分析软件是十分好用的,只要你对它的操作流程熟悉,一般的模型构建都可以用到它。因子分析法和主成分分析法的区别与联系是什么?联系:因子分析法和主成分分析法都是统计分析方法,都要对变量标准化,并找出相关矩阵。区别:在主成分分析中,最终确定的新变量是原始变量的线性组合,因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系。1.因子分析法通过正交变换,将一组可能具有相关性的变量转换为一组线性不相关的变量,称为主成分。它主要用于市场研究领域。在市场研究中,研究人员关注一些研究指标的整合或组合。这些概念通常通过分数来衡量。人口学、数量地理学、分子动力学模拟、数学建模、数学分析等学科。因子分析和主成分分析都是统计分析方法,都需要对变量进行标准化,找出相关矩阵。2.因子分析可以在许多变量中发现隐藏的代表性因素。主成分分析的原理是尝试将原始变量重新组合成一组新的独立综合变量。因子分析在主成分分析的基础上增加了一个旋转函数。这种轮换的目的是更容易地命名和解释因素的含义。如果研究的重点是指标与分析项目之间的对应关系,或者想要对得到的指标进行命名,建议使用因子分析。

将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)。因子分析(探索性因子分析)用于探索分析项应该分成几个因子,比如20个量表题项应该分成几个方面较为合适。因子分析通常有三个步骤:第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。因子分析应用举例:1、案例当前有一份数据,共有12个量表题,希望将此12个量表题使用因子分析浓缩成几个维度,用于探索企业员工满意度的维度情况。研究人员在研究前预期分析项可分为4个维度(也可不事先假定),当然有可能个别项与因子对应关系并不合适,因此有可能对其进行删除处理。2、操作步骤将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)得到的分析结果如下:第一步:首先判断是否适合进行因子分析KMO和Bartlett检验结果SPSSAU对结果进行智能分析第二步:判断提取的因子个数第三步:是因子与题项对应关系判断因子与题项对应关系判断:假设预期为4个因子(变量),分析题项为12个;因子与题项交叉共得到48个数字,此数字称作”因子载荷系数”(因子载荷系数值表示分析项与因子之间的相关程度);针对每个因子(变量),对应12个”因子载荷系数”,针对每个分析项,则有4个”因子载荷系数值”(比如),选出3个数字绝对值大于的那个值(),如果其对应因子1,则说明此题项应该划分在因子1下面。第四步:对因子进行命名本次研究员工满意量表共提取出4个因子,此4个因子对应的题项分别为4个、3个和2个,对4个因子分别进行命名,分别为福利待遇因子、管理及制度因子、员工自主性因子和工作性质因子。

因子分析是什么研究方法论文

主要功能 多元分析处理的是多指标的问题。由于指标太多,使得分析的复杂性增加。观察指标的增加本来是为了使研究过程趋于完整,但反过来说,为使研究结果清晰明了而一味增加观察指标又让人陷入混乱不清。由于在实际工作中,指标间经常具备一定的相关性,故人们希望用较少的指标代替原来较多的指标,但依然能反映原有的全部信息,于是就产生了主成分分析、对应分析、典型相关分析和因子分析等方法。 调用Data Reduction菜单的Factor过程命令项,可对多指标或多因素资料进行因子分析。因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量,这与上一章的聚类分析不同),以较少的几个因子反映原资料的大部分信息。

因子分析法是指研究从变量群中提取共性因子的统计技术。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。在市场调研中,研究人员关心的是一些研究指标的集成或者组合,这些概念通常是通过等级评分问题来测量的,如利用李克特量表取得的变量。每一个指标的集合(或一组相关联的指标)就是一个因子,指标概念等级得分就是因子得分。因子分析在市场调研中有着广泛的应用,主要包括:(1)消费者习惯和态度研究(U&A)(2) 品牌形象和特性研究(3)服务质量调查(4) 个性测试(5)形象调查(6) 市场划分识别(7)顾客、产品和行为分类在实际应用中,通过因子得分可以得出不同因子的重要性指标,而管理者则可根据这些指标的重要性来决定首先要解决的市场问题或产品问题。

因子分析法属于实证研究法。

实证是相对于理论而言的,凡是涉及到数据和统计分析的,都可以叫实证,而因子分析只是众多统计分析方法中的一个而已,自然就不是必须的了。都属于统计学科,或者计量经济学。都可以用各种统计软件实现,模糊层次分析法需要专门软件。

隐性变量

因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量 (latent variable, latent factor)。比如,如果要测量学生的学习积极性(motivation),课堂中的积极参与,作业完成情况,以及课外阅读时间可以用来反应积极性。而学习成绩可以用期中,期末成绩来反应。

将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)。因子分析(探索性因子分析)用于探索分析项应该分成几个因子,比如20个量表题项应该分成几个方面较为合适。因子分析通常有三个步骤:第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。因子分析应用举例:1、案例当前有一份数据,共有12个量表题,希望将此12个量表题使用因子分析浓缩成几个维度,用于探索企业员工满意度的维度情况。研究人员在研究前预期分析项可分为4个维度(也可不事先假定),当然有可能个别项与因子对应关系并不合适,因此有可能对其进行删除处理。2、操作步骤将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)得到的分析结果如下:第一步:首先判断是否适合进行因子分析KMO和Bartlett检验结果SPSSAU对结果进行智能分析第二步:判断提取的因子个数第三步:是因子与题项对应关系判断因子与题项对应关系判断:假设预期为4个因子(变量),分析题项为12个;因子与题项交叉共得到48个数字,此数字称作”因子载荷系数”(因子载荷系数值表示分析项与因子之间的相关程度);针对每个因子(变量),对应12个”因子载荷系数”,针对每个分析项,则有4个”因子载荷系数值”(比如),选出3个数字绝对值大于的那个值(),如果其对应因子1,则说明此题项应该划分在因子1下面。第四步:对因子进行命名本次研究员工满意量表共提取出4个因子,此4个因子对应的题项分别为4个、3个和2个,对4个因子分别进行命名,分别为福利待遇因子、管理及制度因子、员工自主性因子和工作性质因子。

论文写作方法案例分析法

案例分析法在开题报告中写:

写案例分析报告的时候要分析背景和目标、基本情况、分析所用的理论介绍、分析过程、相关问题讨论和对策探讨、进一步的思考。所有报告均应为对实际案例的分析论证。

1、案由。即对案例提供内容的高度概括。

2、案情。案情材料应当事实完整、要素齐备、行文简洁、层次清晰,涉及个人隐私的,须进行必要的技术处理,不得使用与案件原始材料相同的当事人名称、地名等具有明确指向性的内容(案件原始材料应当附随报告提交,并注明案件来源或被调查的单位和个人)。

案例分析论文来源

案例素材必须是学生亲身经历(如通过本人所从事的工作或深入实际的调查研究课题等)获得;案例素材所涉及的单位,建议原则上为某一企业,对特别有现实意义的案例,也可以是针对某一行业、某一科研院所、高等学校或政府的某一经济主管部门;案例素材应真实可靠,应取得所在单位负责人的支持与同意。应不违反有关的法律或损害所在单位的利益。必要时可对该单位的名称、有关人物的真实身份及姓名、相关数据等进行掩饰性处理。

案例分析类型的论文是一种常见的论文研究方法,我们经常能从一些法律专业、教育专业甚至mba方向的论文里看到这种写法。常见的模式为:介绍案例通过案例找到要研究的问题分析问题出现的原因提出解决问题的对策,按照这个模式,论文的基本框架就出来了。本文从写作内容和格式着手,对案例分析类型的论文写作进行介绍。

1、案例分析论文来源

案例素材必须是学生亲身经历(如通过本人所从事的工作或深入实际的调查研究课题等)获得;案例素材所涉及的单位,建议原则上为某一企业,对特别有现实意义的案例,也可以是针对某一行业、某一科研院所、高等学校或政府的某一经济主管部门;案例素材应真实可靠,应取得所在单位负责人的支持与同意。应不违反有关的法律或损害所在单位的利益。必要时可对该单位的名称、有关人物的真实身份及姓名、相关数据等进行掩饰性处理。

2、案例分析报告内容组成

(1)情景描述--分析给出的案例中的情景(企业介绍,案情介绍)

(2)原因分析--分析出现该问题的原因(企业现状问题,案情形成原因)

(3)提出备选方案--分析问题的解决方法并提出可行的备选方案

(4)评估并加以选择--进行备选方案的评估及选择

3、案例正文

案例正文是案例主体部分的核心,应介绍案例的人物、组织以及事件的经过。可以按照时间顺序或事情发展的逻辑顺序组织案例的主要内容。尽量加入一些数字和图表,以加深读者对案例的理解。

(1)案例正文的叙述,要做到全面、周密、客观,避免加大作者的主观分析评价。同时,还要注重情节的真实感和生动性

(2)案例正文中涉及的组织、人物和统计数据等,可以作适当的技术性处理。例如,隐去组织和人物的真实名称而采用化名,对真实的统计数据作同比放大(或缩小)处理。

(3)案例正文中的内容也可根据编写需要进行适当标注。

4、进行案例分析

案例分析是在案例介绍完以后,对案例进行系统且深入的分析。分析报告是只针对案例正文的,这就要求我们案例中出现的重要内容,需要在分析报告里得到充分的体现;分析报告中出现的素材,也必须是案例正文里包含的。在探讨案例中问题的过程中,不能脱离案例本身,不能过度地引申。

论文研究方法因素分析法

写论文的常见研究方法:

1、归纳方法与演绎方法:归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。

门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。

2、分析方法与综合方法:分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。

分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。

研究过程

1、确定调查课题确定题目时要注意选题是否具有研究的必要性和可能性,同时要注意选题切忌太大,也要避免无意义的重复劳动。

2、制定调查计划要明确调查课题、调查目的、调查对象、调查范围、调查手段、调查步骤、时间安排。

3、收集材料收集材料时要尽可能保持材料的客观性,尽可能采取多种手段或途径。

4、整理材料将收集到的材料进行整理,以便后续总结归纳、形成结论。

5、总结研究对整理完的材料进行分析、总结、归纳,得出一般性的结论。

因素分析法。该分析法又称连环替代法.是人们在经济分析活动中经常使用的一种分析因素变动后对结果影响程度的一种方法。就是将影响一个整体变量的因素进行因式分解,找出每一个因素对整体变量的影响程度的一种分析方法。

  • 索引序列
  • 因子分析论文写作方法
  • 因子分析法毕业论文
  • 因子分析是什么研究方法论文
  • 论文写作方法案例分析法
  • 论文研究方法因素分析法
  • 返回顶部