首页 > 学术期刊知识库 > 高中数学建模教学案例研究论文

高中数学建模教学案例研究论文

发布时间:

高中数学建模教学案例研究论文

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

数学建模论文1阅读人数:3681人页数:6页马勇19740603论文关键词:数学建模 数学应用意识 数学建模教学论文摘要:高中数学人教A版数学Ⅲ学生要学习算法初步、统计、概率。算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活 的许多方面,算法思想已经成为现代人应具备的一种数学素养,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供 依据。概率是研究随机现象的科学它为人们认识客观世界提供了重要 的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。高中数学人教A版数学Ⅲ学生要学习算法初步、统计、概率。算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活 的许多方面,算法思想已经成为现代人应具备的一种数学素养,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供 依据。概率是研究随机现象的科学它为人们认识客观世界提供了重要 的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性"; "数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表重磅推荐:百度阅读APP,免费看书神器!1/6达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。

高等数学建模案例论文模板

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

数学教学案例研究论文

数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,关于初中数学教学你有什么独到的看法呢?本文是我为大家整理的初中数学教学论文 范文 ,欢迎阅读! 初中数学教学论文范文篇一:初中数学智能教学研究 一、初中生智能 智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维—— 逻辑思维 ,对前人 总结 的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段 教育 ,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。 二、发展智能是初中数学教学的重要任务 数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。 三、初中生的智能开发 开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。 初中数学教学论文范文篇二:初中数学教学中数学思维培养 一、数学思维的特点 任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。 1.数学思维具有严谨性 数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。 2.数学思维具有抽象性 所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。 二、培养初中生良好思维方式的 方法 具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。 1.不断拓展学生的思维 在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。 2.运用正确的引导方式和教学方式 教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。 3.培养学生的学习兴趣 学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。 4.运用现代教学方式和技术进行课堂教学 随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。 三、结束语 数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。 初中数学教学论文范文篇三:初中数学教学课堂小结研究 一、进行课堂小结的方式 1.梳理课堂知识.一种常见的课堂小结方式,就是把整堂课的知识用简短的话从头到尾梳理一遍,这种梳理不是通篇的叙述,而是有重点的、分层次的总结.例如,在讲“点和圆,直线和圆的位置关系”时,课堂小结就主要是把点与圆的三种位置关系、直线与圆的三种位置关系,结合黑板上的图例再次梳理一遍.这种总结方式,可以让学生全面地复习一遍所讲内容,对新知识有整体了解,同时可以让学生形成对知识的网络式记忆,把知识延伸到整个学习系统中. 2.概括课堂知识.教师还可以对课堂内容进行几句话的概括总结,这种概括要涉及新课内容的关键点,通常用于新课内容有多个重要知识的情况下. 3.联系以前知识.有些新课的内容是在以前所学知识的基础上进一步扩展而来,或者是新课与所学知识有着一定的相似度.在课堂小结的时候,教师可以将两者进行联系,进行对照解读.这样的课堂小结,可以让学生具体形象地理解所学内容.当然,当遇到新课与旧知识有着明显反差的时候,教师也可以拿来对比解读,以避免学生对新知识和旧知识产生混淆.这样一来,学生心中的知识脉络就会更加清晰. 4.和学生共同回想课堂知识.数学教师在讲课时往往是单方面讲授课堂内容给学生,而很少有和学生进行互动的,这都是因为学科的特性和课堂时间的紧迫,而缺乏互动可能导致学生和课堂的融入度不够,容易造成开小差的现象.教师在进行课堂总结时可以有意地和学生进行互动,共同复习整堂课的知识.可以是对学生进行课堂关键内容的提问,也可以是向学生询问他们所认为的难点内容来再一次讲解以答疑和强化记忆.这样,不仅活跃了课堂气氛,拉近了教师与学生的距离,让学生更亲近课堂,让教师更了解学生的学习现状,同时让学生对难点内容有了进一步的学习和消化. 二、进行课堂小结的注意点 课堂小结不是教师一味地总结讲课知识,这里的本体应该是学生自己,是学生来回味和消化课堂所学内容,不懂的地方提出疑问,教师起到串联和辅导作用.教师可以从学生的角度考虑如何总结,才能提高复习效果. 1.课堂小结的概括性.课堂小结要简单明了,用几句概括性的话语进行总结,不宜多次重复复杂内容,这样不仅起不到总结的效果,还会让学生更加混淆,对所学知识产生过多疑问.另外,课堂小结应该用最直接的语言讲述出课堂内容,不应该加以多少修饰,以避免所述内容的冗长,导致上课时间的不够. 2.课堂小结要有重点.有的人说,一堂课里有一半的时间讲重点内容就很难得,而学生只要把这些重点听明白,他们这堂课的收益就很大.课堂小结相对于课堂上的详细讲解而言,是为大部分学生整理的要点总结,不需要对整堂课的内容都重述一遍,而要对讲课内容的要点进行有针对性的重点回顾,这样可以帮助学生理清课堂的重点内容,进行重点练习和记忆. 3.课堂小结要能引导课外学习.课堂小结是一堂课的结尾总结,也是学生课外学习的一个开始.课堂小结要注重引导学生对所学知识进行深入探究.例如,在讲解例题后,可以让学生寻找课外相似的题目进行训练,充分利用学生的课外时间进行学习拓展.同时,能使课堂与课外连接起来,促进学生的课外学习.总之,课堂小结是初中数学教学中必不可少的环节之一.做好课堂的总结是每个教师的分内之事,它不是一个可有可无的环节.做好课堂小结,不仅能让学生的学习更加轻松有效率,而且能够帮助教师进行授课总结,从而提高教学效果.

数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。把数学教学与生活联系起来,使学生在不知不觉中感悟数学的真谛。下面是我为大家整理的小学 六年级数学 教学论文,希望对大家有所帮助! 小学六年级数学教学论文篇1:培养数学应用意识及实践 培养学生的数学应用意识和实践能力 《数学课程标准》指出:“数学教学,应从学生已有的知识 经验 出发,让学生亲身经历参与特定的教学活动,获得一些体验,并且通过自主探索,合作交流,将实际问题抽象成数学模型,并对此进行解释和应用。”基于此认识,我认为在新教材的教学中,应体现以下几点: 一、 源于生活,创设轻松愉快的学习情境 苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。 数学离不开生活,生活中处处有数学。在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。 现实的学习情境,可以激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。如教学“认位置”,以学生眼前的教室为情境,为学生提供了一个观察生活中人与人、人与物、物与物之间位置关系的场景,让学生在从指定观察到自由观察、换位观察的过程中不断加深对知识的认识和理解,使他们不光会表述物体间的位置关系,还能感受到物体间位置关系的相对性,从而使学习变成一种主动探索的过程。 心理学研究表明:比起现实情境来,幻想的情境更能激发学生丰富的情感,给他们带来深刻的内心体验。 儿童 最富于想象和幻想,儿童的世界最是千奇百怪、色彩斑澜。儿童感兴趣的“现实生活”,成人常常不可理喻,就像教材中的“小兔采蘑菇”、“青蛙跳伞”、“小蜜蜂采蜜”等,我们认为不合逻辑常理,孩子们却兴趣盎然。因此,我们需要保有一颗纯真的童心,善于从儿童的生活经验和心理特点出发,努力避免成人化的说教,这样,才能捕捉到一幅幅令他们心动的画面,设计出一个个可亲可近的情境。 例如教学“比一比”通过学生喜爱的卡通形象――蓝猫邀请大家参观客厅来导入新课,学生兴趣盎然;引导学生发现猫大哥客厅里的数学秘密,学生兴趣高涨。又如教学“统计”,借助媒体创设大象过生日的情境,并以此为线索展开学习活动,提高学生的学习兴趣。 二、 用于生活,培养学生的应用意识和实践能力 新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。 数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。 如在教学“比一比”时,通过找教室周围的物体的长短高矮的比较,使学生学会用数学的眼光观察周围事物。 如在学习“认位置”后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,和小伙伴交流。 又如在学习了“统计”后,问学生你准备统计什么?这一环节充分利用学生已有的生活经验,把所学的知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,从而使学生体会到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到了最好的体现。 使学生感受数学与生活的密切联系,能运用生活经验对有关的数字信息作出解释并初步学会用具体的数描述现实世界中的简单现象,是课程标准中规定的第一学段的教学目标之一。一年级的小孩子正如他们在课堂上所说的那样,“我把我的书包分类清理好了”、“我学会了数数,上次家里来了好多客人,我就知道摆多少双筷子了”、“我学了加减法,就可以帮助妈妈上街买菜,不会算错钱了”,也就像家长说的那样,“我的孩子回家把他的玩具和他书包里的书都分类收拾好了,真不错!”“我的孩子现在都会自己看钟去上学了”。可见,新教材在培养学生数感和应用意识,培养学生的自理能力和劳动意识,体现学习有价值的数学等方面取得了初步的成效。 总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。 小学六年级数学教学论文篇2:浅谈数学的创造性学习 什么是数? 开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。” 数进入数学体系就成为它的最基本概念之一,数的概念是随着人类的生产和生活实践的不断发展而逐渐形成的,并且永无止境地发展着。从古至今,以自然数为开端,接着是有理数与无理数、正数与负数、实数与虚数,直至复数,共同构成数的概念不断拓展的系列。每一次拓展都是一次创造思维的跃升。 什么是数学? 数学是研究现实世界的空间形式和数量关系的科学。古时候,人类在生产和生活实践中便获得了数的概念和一些简单几何形体的概念。自此开始,到16世纪,创立了包括算术、初等代数、初等几何和三角的初等数学。17世纪引入变量概念是数学发展史中的转折点,这使得运动和辩证法进入数学,开始研究变化中的量与量之间相互制约关系和图形间的相互变换。近年来,由于数学在自然科学和技术领域的广泛应用,又由于计算技术的迅猛发展,数学对人类认识自然和改造自然的重要作用也显示得更加清楚了。至今,现代数学已经形成了包括数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计、计算数学及边缘学科运筹学、控制论等在内的庞大体系。 与数的发展一样,数学发展史也是创造思维不断发展的历史。 数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。 一.驴唇怎能对得上马嘴呢 阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗? (一)平地起风雪 话题是从一道浅显的代数题引发的。这是一个发生在某中学初一新生的一节数学课上的小 故事 。快下课时,老师出了一道题:“若a为自然数,说出a以后的7个连续自然数。”一个小女孩举手抢答:“a,b,c,d,e,f,g。”话音刚落,便引起哄堂大笑,老师也愕然了。女孩觉察到,自己的答案,驴唇不对马嘴。出了笑话,落个满脸通红。 接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。 事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。 那么,这件事是否到此就算了结了呢? 请思考10分钟,然后,发表你的见解。 单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。 焦小敏——如果说没有了结,那就是老师还得 教育 同学们,不要把这事当成奚落那位小姑娘的笑柄。 张娟——还有,班上的同学也有义务鼓励那位小姑娘。 赵老师——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老师与那个小姑娘的任务是找出原因,避免再错。如若不然,再遇类似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚” 呢。 肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于找到自己的错误原因。 韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足部分,如果真有,我现在还未想出。 赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自然数合得上。 曹博——这么说来,错误答案中的合理因素,可不止这一个。题目要求“a以后”,按照英语字母表由b到g都在a以后。 姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。 祝越——7个符号都可以表示自然数。这一点。也是符合题目要求的。 李河——这么说来,“a以后”、“7个”、 “连续”、“自然数”4大要素都合乎题目要求,错在哪里呢? 讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误的答案,现在却找不到一点破绽了。 (二)罕见的对话 正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。 下课后主任与老师讨论,老师认为“a+1”到“a+7”是唯一正确的答案,全班已懂,教学任务已告完成。主任又去问学生。大家说那个小女孩在小学时,特别喜欢英语。主任领悟了:小学时只是在 英语学习 中才见到过a,题目似乎要求写出“a以后的7个”来,自然,a,b,c,d,e,f,g”在头脑中出现了,又在口中说出了。这正是心理学上所说的副定势起了作用。 尔后,主任将女孩找到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。 “那题明白了吗?” “明白了。” “你的答案呢?” “全错了。” “一点对的地方也没有?” “没有。” “一丁点儿都没有?” “没有。” “真的吗?” “我没想过。”(唉!没有想过就坚定地认为自已全错了!) “现在想想看。” “想不出。” “b,c,d,e,f,g,不是在a以后吗?” “是”。 “字母不是说了7个吗?” “是”。 “7个字母,排列有序,为什么不跳着说呢。” “题目上说……” “你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?” “咦,怎么没有错的地方了呢?” 最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。 找出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,找到了与众不同的答案:若a为自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。 就是这样,正确与错误之间,只有一小撇之差。 还应指出,运用这种灵活变通的 思维方式 ,求解此题,正确答案是无穷尽的。即使是“甲、乙、丙、丁、戊、己、庚”,只要将其赋予符合题意的数学含义,也能成为正确答案。这么看来,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正确答案,失之于思维呆板,并且导致片面性和绝对化。 (三)深刻的启示 中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。 这样的改错方式给我们的启示是深刻的,是多方面的。 1.在变通性的动态思考中更深刻地掌握数学新原理 掌握数学概念和原理,运用相关概念、原理解答数学问题,从而获得系统的数学知识,提高思维能力,这是数学学习的基本任务。 用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多种多样的数学含义。用符号表示数的课题,是代数起始课的重点和难点。上面的题,正是为了使学生掌握这个代数原理而设计的。 两种改错方式对理解原理的作用是不同的。先看一般方式: a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7 再看变通方式: a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g 后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中间增加两步推导,都运用了“符号表示数”的原理。这样,也就加深了对这一原理的理解。 总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。 2.创造思维能力在运用中得到增长 运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。 变通性改错方式,加大了思维难度,是进行 发散思维 而获得的结果。当然,这也不是唯一的结果。更为重要的是:原来被认为解法唯一,现在变成无穷了。这就启发我们提出问题: (1)数学概念和数学原理统统都是永恒不变的吗?其表述方式是唯一的吗? (2)被认为只有一种解答 方法 的数学题是统统都不会有第2、第3种解决方法吗? 当我们对这两个问题得出“不见得”的结论时,那么对今后的数学学习产生的影响,也就在其中了。即不以固定方式掌握数学概念、原理和题目解法为满足,而还要运用创造思维的发散性、灵活性,对每一个数学课题予以审视,积极发掘可能蕴含着的新内容、新方法、新的推理和新的表达方式。 这样坚持下去,就会收到数学学习能力与创造思维能力同步超常增长的效果。 小学六年级数学教学论文篇3:小学数学活动课的开设原则 原则之一 小学数学活动课,必须以小学生的个性要素得到发展为宗旨,设计教学目标、教学内容与教学 方法。《课程方案》对小学阶段的教育提出了明确的培养目标,这个培养目标包括两方面内容:一方面是为体 现小学阶段性质和任务而设计的国家要求,也就是国家关于知识和能力的质量标准;另一方面是为体现小学生 身心发展规律的个性发展要求。落实到小学数学课,国家质量标准就是要求小学生具有初步的运算技能、逻辑 思维能力和空间观念,以及运用所学数学知识解决一些简单的实际问题的能力这四项,这个任务主要由小学数 学的学科课(或者叫必修课)来担当。至于发展小学生个性的要求,《课程方案》明确提出主要由活动课来担 当,其教学目标就是“增强兴趣,拓宽知识,增长才干,发展特长”。有人会提出,这个要求在学科课所包含 的实际活动中就能做到,或者开展课外活动就可以实现。我认为这是误解。诚然,小学数学学科课所包含的实 际活动,诸如观察、实验、练习等,也能培养学生某些个性要素,但它服务的目的不同,它只是为学科课的教 学目标而服务的一种教学手段,是学科课教学活动的一部分,没有具体教学时间的界限;而小学数学活动课应 是以发展学生个性要素为首要目标的课型,每节课教学时间与学科课的教学时间相配合。还有,活动课也不同 于课外活动:①活动课属于课程的范畴,课外活动则是“在教学大纲范围之外由学生自愿参加的各种教育活动 的总称”,它不属于课程的范畴;②活动课有一定的结构性,它有特定的教学目标、内容和活动方式,而且教 学内容的广度和深度随着年级的上升而具有层次性,而课外活动则没有这种有序的要求;③活动课的设计和实 施要具有一定的规范,那就是活动课必须有教学纲要和活动课指导书,并严格按此规范实施教学进程,而课外 活动则不具备这个要求。 原则之二 小学数学活动课,必须淡化选拔教育,做到“人人受益”。小学阶段的教育是义务教育的初级 阶段的教育,国家教委副主任柳斌同志指出:“义务教育是国民教育,普及教育,平等教育,应当强调其普及 性,淡化其选拔性。”这个要求不仅在小学阶段的教育活动中要落实,更要在各科的教学活动中落实。学科类 课程的教学活动做到人人受益,比较好操作,因为学科类课程所担负的国家关于知识和能力的各项规定,由统 一的大纲和教材所列举,由国家规范的教学、考查等计划予以落实和检查。而活动课是以培养个性特征为标志 的新课型,系统的操作硬件尚在建立之中,有一定的难处。但是,我们应当这样理解:小学数学活动课所说的 “人人受益”,不应当以分数、成绩的提高来理解,应当从学生的个性要素得到发展予以解释。从活动课参予 程度讲,不要像组织数学课外活动小组那样,只允许少数数学 爱好 者参加,而应要求每个学生都参加。从活动 课的课程设计讲,在学科课为每个学生打好共同基础的条件下,为发展学生的个性特长、 兴趣爱好 提供发展空 间;从活动课的教学效果讲,通过小学数学活动课,有的学生数学知识、能力和爱好都得到提高,这是受益。 通过小学数学活动课,有的学生数学知识和能力提高不甚明显,但是通过数学的橱窗对观察课外天地,观察实 际生活的兴趣产生了,这也是受益。更有甚者,通过小学数学活动课,虽然没有引起学习数学的兴趣,但这种 活动课教学尝试在学生记忆中留下思维印象,能成为今后处理问题的一种思维参考,这也应该说是受益。纵或 阻塞了他们对数学的爱好,但通过小学数学活动课促使他们去爱好 其它 学科,也同样属于受益之列。一言以蔽 之,小学数学活动课的受益,就是指小学生的个性要素,主要指兴趣和情感,通过数学的载体而得到发展。 原则之三 小学数学活动课,必须注意小学生身心发展的特点,充分保护“童心”。小学生的年龄阶段( 6~11、12岁), 在心理学上称为儿童期(或称学龄早期)。这一阶段,小学生不但身体发育进入了一个相对 平稳阶段,而且由于从一个备受家庭保护的幼儿变成必须独立完成学习任务、承担一定社会义务的小学生,这 就促使儿童心理特征产生质的飞跃,概括起来,就是产生了在幼儿期没有的“好奇、好动、好胜”的“童心” 。这三个“好”只有“好奇”“好动”充分得到发展,“好胜”的儿童价值特征才能得以建立。但是要注意, 要使“好奇”“好动”的心理状态健康成长,就必须从以下两个方面予以控制:①调控环境,促使小学生总是 保持向上振奋的心理状态。小学生向上振奋的心理状态的形成是立足于好奇感,而好奇感的永恒程度又依赖于 环境(包含教学环境)对小学生接受知识是否有一种愉快感。因此建立一种愉快接受教育的氛围是调控环境的 关键。小学数学活动课基于数学学科的抽象特点,愉快教育氛围的建立,特别要注意杜绝成人期望值的强加与 过量过高数学材料的灌输。就是说,不要设想通过小学数学活动课的教学,个个都成为数学神童;也不要认为 ,实施小学数学活动课教学,就是灌输小学数学之外使小学生难以接受的成人处理数学的材料。②树立模仿典 型,促使小学生形成稳固的知识、能力体系和健康的行为与习惯。小学生的“好动”,是建立在模仿基础上的 好动,通过模仿,一旦成为小学生稳定的心理成分,就左右小学生健康心理的形成。因此为了促使小学生形成 稳固的知识、能力体系和健康的行为习惯,我们的教学活动就应当提供学生认为有趣的、益于拓广知识的模仿 典型。小学数学活动课所提供的模仿典型,就是根据数学的特征以及小学生的知识、能力条件,通过游戏、观 察、拼图、制作、不完全归纳等思维及操作办法,让学生得到学科课内所没有的、又能激发学生求知兴趣的数 和形的一些结论(但是不要证明)。这些结论,要求学生都记住它是次要的,掌握得到的过程则是教会模仿的 本意。只有这样,“好动”的心理特点才可以说在数学活动课里得到健康地培育。 原则之四

数学教学绝不是简单的知识传授,教师要认识到教学过程是一个创造过程,每个教师都要研究教与学的相互作用,将教学过程视为师生共在的探索真理的过程。本文是我为大家整理的数学教研论文 范文 ,欢迎阅读! 数学教研论文范文篇一:中专数学教学的研究与思考 一、中专数学教学的现状分析 由于中专 教育 主要是面向社会为社会培养人才,因此,在实际的教学中,教师需要对学生进行实践教学,但是,在中专数学教学中,教师主要进行理论知识的教学,实践教学课非常的少,这样就导致学生虽然具备一定的数学理论知识,但是却不能很好的进行实际的应用.由此可见,中专数学理论教学与实际操作的脱节,不利于学生的长远发展. 二、进一步优化数学教学的 措施 分析 1.明确教学目标 在中专数学教学中,教师应该明确教学的目标.教师进行数学教学的主要目的就是通过对学生进行系统的数学教育,使学生具有一定的数学能力,使学生通过数学的学习,能够解决生活中的实际问题,提高学生的生活能力.另外,在生活中,很多生活中的问题都需要数学知识进行解决,因此,教师对学生进行数学的教学,主要就是为了更好的培养学生的生活能力,促进学生的不断发展[2].例如,在进行函数教学的时候,教师在课堂教学的开始,就应该告知学生学习函数能够解决生活中的哪些问题,函数在生活中用途非常的广泛,函数能够解决纳税问题,票价问题,销售利润问题等. 2.更新教材内容 随着社会经济的发展和科学技术的不断进步,数学知识也在不断的发展,很多前沿的知识学生在中专数学课堂的学习中无法学到,由于中专教材不是一年一更新,需要五年到十年左右更新一次[3].因此,很多前沿的知识无法在教材上体现,因此,教师应该不断的对教材内容进行更新,将最先进的数学知识加入到教材中去,使学生能够学习到最前沿的知识,促进学生的不断发展和进步. 3.提高教师教学水平 在中专数学教学中,应该不断的提高教师的教学水平,不断的加强师资队伍建设,中专学校应该拥有一批专业知识过硬,专业技能扎实,教学水平高,具有创新精神的数学教师,教师在教学中能够及时的发现教学中不适于学生发展的因素,并且通过创新,提出合理化的建议,不断的促进学生学习上的进步.另外,中专数学教师还应该多参加培训和学习,提高自身的专业素质,为学生的学习提供最好的师资保证. 4.教学中注重激发学生的学习兴趣 教师只有在教学中不断的激发学生的学习兴趣,才能够收到最好的教学效果.传统的 教学 方法 主要就是教师在课堂上对学生进行提问,学生通过思考完成教师的提问,在这个过程中,由于学生无法提起学习的兴趣,在课堂上的暂时性记忆也随着时间淡忘,无法收到满意的教学效果,课堂教学效率不高,学生的学习水平也无法全面的提高.因此,教师应该采取相应的教学策略,激发学生的学习兴趣,使学生能够主动去学习,爱上学习,进而收获知识.在数学教学课堂上,教师可以从学生的兴趣出发,在列举教学案例的时候,教师可以列举一些学生感兴趣的教学案例,激发起学生学习的积极性,提高学生的课堂效率,促进学生学习上的进步.例如,在进行函数教学的时候,由于函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心.因此,教师在教学中,学生在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.并且在教学过程中努力做到生生对话、师生对话,在对话之后重视体会、 总结 、 反思 ,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法,并且不断的激发学生的学习兴趣.总之,在教学中,教师应该树立正确的教学目标,掌握有效的教学方法,并且在教学中注意运用多种教学策略,才能够不断的提高学生的学习水平,培养学生的学习能力,促进学生的全面进步. 作者:张丽 工作单位:南京市玄武中等专业学校 数学教研论文范文篇二:高校数学信息技术整合方法研究 一、高校数学教学中使用多媒体的优势 有利于促使高校数学课堂教学实现因材施教。多媒体辅助高校数学教学过程中所使用的课件与传统教学中所使用的板书有本质的区别,在高校数学教学中以板书为核心的教学需要学生花费很大的精力做笔记,而多媒体辅助高校数学教学中的课件通过下载就能够查阅和利用,并且不会出现传统教学中因为笔记不全而难以顺利巩固和复习知识的情况。在此过程中,教师也可以根据实际的教学效果对课件进行进一步的合理化与完善化并提供给学生,学生可以完全摆脱课程设置的限制并按照自身数学实际水平找出学习侧重点并自主安排学习进度,所以多媒体辅助高校数学教学与传统高校数学教学相比具有更强的教学针对性,对落实因材施教的教学理念具有重要的意义。 二、现代教育技术与高校数学教学整合的方法 与传统的高校数学课堂教学相比,多媒体辅助高校数学教学拥有很大的优势,但是如果在高校数学课堂教学中不能对多媒体进行合理利用,则容易产生事倍功半的效果,所以在多媒体辅助高校数学教学的优化过程中,教师要处理好多媒体辅助高校数学教学中的几种关系,从而在正确利用多媒体技术开展高校数学教学的基础上最大限度地发挥多媒体技术对高校数学教学质量提高所具有的推动作用。 1.确保教学手段与教学目的关系的协调。新课程理念下的高校数学教学的目的在于通过高校数学教育使学生具备良好的人文素质、创新精神、科学素养、思维能力等,所以多媒体辅助高校数学教学活动的目的在于通过对多媒体辅助教学技术的利用,使学生的智力以及思维能力得到良好的发展并实现高校数学教学的目标。在此目的的指导下,教师必须在多媒体辅助高校数学教学的过程中,以新课程教学目标为核心开展教学过程。而在实际教学中,一些教师由于不能做到合理使用多媒体教学技术而导致了事倍功半的效果,针对这一问题,教师首先要突出教学目的在教学过程中的主线作用,让多媒体辅助教学技术为教学目标的实现服务,如果二者存在冲突则应当舍弃这种教学手段;其次教师要以教学和学生的需求为依据对多媒体的表现手段做合理选择。如多媒体的表现手段包括声音、动画等,在高校数学教学中需要有针对性地选取高效率的表现手段,这里所说的针对性包括教学内容的针对性以及教学目标的针对性。 2.确保多媒体演示与教师讲授关系的协调。在高校数学课堂教学中,多媒体辅助教学有明显的优势,它能够提高学生自主学习、合作学习、探究性学习等方面的能力,同时也有利于课堂情境的塑造。但是在高校数学课堂教学过程中,师生之间的互动以及学生与学生之间的互动是不能舍弃的,所以有必要将多媒体演示和教师讲授良好地结合起来,让多媒体辅助教学技术发挥辅助教师授课的作用。在现代的教学理论中,高校数学教师被认为是高校数学教学活动中的主导,学生是高校数学教学活动中的主体,而多媒体是高校数学教学活动中的辅助工具,其中教师本身主导地位不容忽视的原因主要体现在两个方面:一是高校数学教学活动开展的过程也是学生与教师交流的过程,通过这种交流,教师可以向学生传授高校数学知识,也可以利用自身人格魅力影响学生以提高学生的综合素质,尤其是道德品质素质,教师的这一作用是多媒体教学技术不可取代的;二是多媒体辅助高校数学教学活动的开展依赖教师的操作,无论是可见设计,还是教学演示,都需要教师进行,所以教师的主导地位实质上没有变化。 3.确保情感交流与知识传授关系的协调。在高校数学课堂教学中,学生和教师的交流是双向的互动关系,这个过程既是传授知识和反馈信息的过程,也是情感交流的过程,而教师、学生与多媒体之间是单向的没有情感的交流,所以人际之间的交流是无法发挥与师生交流同等作用的。这就要求在多媒体辅助高校数学教学中教师首先要控制多媒体辅助教学技术的使用时间,从而突出教师在知识传授中的主导地位;其次要选择合理的多媒体辅助教学技术使用的时机和方式,从而突出学生在整个教学过程中的主体地位;最后教师要善于利用自身的激情调动学生学习的热情,通过充满情感的体态和话语将自己的情感体验传达给学生,在关注学生情绪变化的基础上对学生在体验教学内容中的情感和思想进行合理地引导。 作者:朱彦生 工作单位:吉林农业工程职业技术学院 数学教研论文范文篇三:高等数学教学现状探讨 1高等数学教学中渗透数学史的提出 数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与 文化 本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。 高等数学教学中渗透数学史的提出背景 数学史主要是对数学概念、数学方法和数学思想的起源与发展进行研究,并且与社会政治、经济和一般文化相联系的一门科学。数学史首先对于揭示数学知识的现实来源和应用有一定的意义;其次,对于引导学生体会真正的数学思维过程,激发学生对数学的兴趣,培养探索精神有一定的意义;最后,对于揭示数学在文化史和科学进步史上的地位与影响,进而揭示其人文价值也有重要意义。对于高等数学教师来说,在教学过程中渗透数学史的内容,是一种极有意义的方法。数学史有很强的教育功能,将数学史融入高等数学的教学过程是必然的趋势。 高等数学教学中渗透数学史的存在意义 渗透数学史的科学意义 数学史既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,因此我们无法割裂科学现实与科学史之间的联系。诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究 热点 ,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用。总之,数学传统与数学史材料可以在现实的数学研究中获得发展。 数学史的文化意义 美国数学史家M.克莱因曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显。”[1]毫不夸张地说,数学史可以从一个侧面反映人类的文化史。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。例如,罗马数学史告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。而古希腊数学家则强调严密的推理并由此得出的结论,这就十分容易理解,古希腊具有很难为后世超越的优美文学、极端理性化的哲学[2]。 数学史的教育意义 了解数学史的人,自然会有这样的感觉:数学发展的实际情况与我们今日所学的数学书不是很一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学学习的大部分内容则是17—18世纪的高等数学。这些数学课本已经过千锤百炼,它们是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、演化历程以及导致其发展的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,而弥补这方面不足的最好途径就是进行数学史的学习。 2高等数学教学中渗透数学史的几点做法 通过数学史的渗透加深学生对数学的理解 数学史的渗入可以丰富我们的教学内容,为学生提供新的学习途径。因为历史上的问题是真实的,因而更有趣;历史知识的介绍一般都非常自然,它或者揭示了实质性的数学思想方法,或者直接提供了相应数学内容的现实背景,这对于学生理解数学内容和方法都是重要的,所以在教学上要有所创新。在教学中,适时结合数学史内容进行教学,可以帮助学生了解数学知识是怎样形成的,可以极大地调动学生学习数学的积极性,有的同学甚至自己去找数学家的 故事 书看;有的同学通过对数学史的了解,不仅更好地理解了数学知识,而且转变了学习数学的态度,对问题的探讨由不耐烦到独立解决,喜欢对问题追根究底。 通过数学史的渗透培养学生正确的数学 思维方式 首先,将数学家们获得重大发现的思想活动的历史记录以及经历的百感交集的体验引入课堂,是培养学生思维能力的最好教材;其次,还可以结合历史环境介绍一些数学史中的反例,让学生了解数学的发展并不是一帆风顺的,历史上任何一项数学成果的取得都是经历了重重曲折的;介绍数学的发展史,让学生了解数学家的思维方式,以此影响自己的思维方式。 通过数学史的渗透激发学生学习数学的兴趣 高等数学以其抽象的内容、广泛的应用、严谨的结构、连续的发展而别于其他学科;实际教学中,学生在学习高等数学时只注重字母、公式的记忆,对概念、定理的产生缺乏正确的认识,知识死记硬背,因而,乏味、枯燥、难理解成为学生对数学这门学科的印象,看不到活的数学,更不用说对这门学科产生浓厚的兴趣了,再加上学习过程中随着对理解和接受数学知识要求的不断提高,从而也加大了学生学习高数的难度,学习兴趣不可避免会受到影响,学习效果当然会大打折扣。如果教师在教学过程中能够把抽象的概念同具体的 历史故事 、数学人物有机结合起来,适时地穿插一些学生感兴趣又有知识性的历史事件或名人故事,充分调节课堂气氛、诱发学生学习兴致,增强数学的吸引力,就可以使枯燥的教学变得生动,消除学生对数学的恐惧感,从而有助于提高学生学习的兴趣和积极性。 通过数学史的渗透使学生以史为鉴 目前,德育教育不仅是政治、语文、历史学科的事了,数学史内容的加入使数学具有更强大的德育教育功能,通过介绍数学史让学生们以史为鉴。首先,通过数学史可以对学生进行爱国主义教育。现行的教材既有国外的数学成就,也有我国在数学史上的贡献,比如数学书中有:刘徽的“割圆术”、鸡兔同笼问题、秦九韶算法、更相减损之术等数学问题,还有我国的祖冲之、祖暅、秦九韶等一批优秀的数学家[3],还有很多具有世界影响力的数学成就,在我国很多问题的研究甚至比国外早很多年。在课程的要求下,除了增强学生的民族自豪感外,还可以培养学生的“国际意识”,了解更多的世界名家,就是让学生认识到爱国主义不是“以己之长,说人之短”,而是全人类互相借鉴、互 相学 习、共同提高。其次,通过介绍著名数学家的成长史和研究史,让学生学习数学家的优秀品质。数学家们的精神令人钦佩,他们坚持真理、不畏权威、努力追求的精神,很多人甚至付出毕生的精力。数学家的可贵精神对那些在平时学习中遇到稍微烦琐的计算和稍微复杂的证明就打退堂鼓的学生来说,是一个很好的榜样,对他们养成良好的数学品质有积极的作用。 3对高等数学教学过程中渗透数学史的启示 因为在高等数学中渗透数学史,有如此重大的意义,所以要求教师应加强数学史的学习与研究。然而,经研究发现大部分教师的实践效果并不是很好,原因并不是教师们不接受新的教育理念,也不是不愿意承认数学史的融入、落实文化渗透的理念,而是由于数学史的知识匮乏导致理念难以落实,因此数学教师应注意多方学习数学史知识,多方研究数学史。在数学史融入高等数学教学的行动研究中,发现对数学史的学习研究可以分为以下三个层次:了解性学习、掌握性学习、研究性学习。第一层次要求知道数学史的发展概况,了解起过重要作用的数学家,影响深远的数学思想、方法等。第二层次可以从数学史中适当提取相关内容,用于数学研究、教学、学习之中。第三个层次以文献资料为线索,研究不同时期的数学发展,数学家活动,数学思想、方法的进展等,并对数学的发展趋势提出预见性分析。 4结束语 总而言之,数学史在中学数学教学中的作用是非常重要的。因此我们需要把数学史融入高等数学教学中,并将文化理念落实于课堂教学。所以要把数学史融入课堂教学看成一种教学现象,用行动研究的理论来研究这种教育现象。在研究的过程中,要坚持学习行动研究的理论,并用行动研究的理论指导对数学史融入课堂教学的实践,在实践的过程,积累大量的问题,通过这些问题的解决,促进对行动研究理论的重新认识,提高对教育理论的应用。 作者:刘菊芬 吴芳 工作单位:铜仁学院教育科学系

数学建模案例分析论文

1. 数学建模有趣小知识(数学建模可以用来做哪些有趣的事) 数学建模有趣小知识(数学建模可以用来做哪些有趣的事) 1.数学建模可以用来做哪些有趣的事 数学建模可以用来分析任何事,但是有没有效要看你的模怎么建。后面有例子有解释。 现在几乎所有工科,还有一些人文社科,如果你读到博士,就会发现里面有各种数学模型。例如 1. 人口增长模型。本来我们只是观察到一个村落,没有外界影响,人会慢慢变多。那只是最粗略的观察。后来发现人的增长速度大致跟人的基数有关系,就可以用常微分方程描述成一个动态系统。我们就可以知道人口会成指数增长。后来又发现不完全对,当人口到达一定水平,资源不够,人的增长就会受到限制,于是给我们的模型添一项修正,再研究新模型发现,噢,原来如果受到资源限制,最终人口会停在某个水平。随着我们观察到更多,我们可以把观察到的翻译成数学语言“添”到旧模型,就可以得到更多数学结果,翻译回来,我们对人口增长这个问题就能得到更多认识。2. 德州扑克(或者其他扑克游戏)。这个涉及多个玩家,每个玩家都要最大化自己利润,所以可以模拟成game(博弈)。而由于翻牌的时候带有不确定性(不知道下一张翻出来的牌是什么),所以这是一个随机的过程。现在大家都用马尔科夫博弈来建模。建完模能怎样?赚钱算不算一个用处?现在已经有很多德州扑克的软件很牛。有软件可以确保在一对一的时候打败人类,但是多人局还不行,计算需要的时间还太长。 3. 怀孕预测。Target在美国是家大超市,他们有所有消费者的记录。通过一些统计分析,他们发现某个女孩极可能最近刚怀孕,于是给她推销相关产品。数学模型在哪里?这里的模型就是女孩怀孕概率和各项女孩的消费行为的定量关系。 4. 扑克牌相关的一些魔术。经常会有人通过扑克牌来表演魔术,而有些魔术不需要手快,不需要障眼法,不需要道具,只需要数学(或者说概率)。通过某些步骤,有些人可以让下一张翻出的牌是你想要的牌的概率极高。Berkeley有个数学教授就专门研究这个,cool爆了! 5. 音频处理。前一阵子不是老在聊“我是歌手”和“中国好声音”的修音问题吗?修音也跟数学建模有关系。一段音乐可以被看成一段信号,有频率,有振幅。我们可以把它model成一些波的叠加。这样建模以后我们就可以很方便地做一些音乐修改了。例如低音太难听了,要把它去掉,那就弄走低频的一些波。要再加入一段伴奏,那就在原来的波上再叠加一段新的代表伴奏的波。 这里蜻蜓点水写了几个。其实还有挺多好玩的,开个专栏都可以了。By the way,现在还有不少人用数学研究神学和哲学,你们可以到coursera网络课程上搜到。 数学建模其实就是用数学语言把现实问题“翻译”成数学问题,后续步骤做得好的话还可以把分析结果“翻译”回来从而让我们对现实世界认识更深。欢迎讨论! 2.大学生数学建模大赛要掌握那些知识 大学生数学建模竞赛简介 1、数模竞赛的起源与历史 数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。 我国大学生数学建模竞赛是由教育部高教司和中国工业与数学学会主办、面向全国高等院校的、每年一届的通讯竞赛。其宗旨是:创新意 识、团队精神、重在参与、公平竞争。 1992载在中国创办,自从创办以来,得到了教育部高教司和中国工业与应用数学协会的得力支持和关心,呈现出迅速的发展发展势头,就2003年来说,报名阶段须然受到“非典”影响,但是全国30个省(市、自治区)及香港的637所院校就有5406队参赛,在职业技术学院增加更快,参赛高校由2002年的1067所上升到了2003年的1410所。可以说:数学建模已经成为全国高校规模最大课外科技活动。 2、什么是数学建模 数学建模(Mathematical Modelling)是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。 顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模 的创造又带有一定的艺术的特点。而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。 3、竞赛的内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。 参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 4、竞赛的步骤 建模是一种十分复杂的创造性劳动,现实世界中的事物形形 *** ,五花八门,不可能用一些条条框 框规定出各种模型如何具体建立,这里只是大致归纳一下建模的一般步骤和原则: 1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息. 2)模型假设:为了利用数学方法,通常要对问题做必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系把问题化 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。 为数学问题,注意要尽量采用简单的数学工具。 5)模型分析:对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定。 6)模型检验:分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果不够理想,应该修改、补充假设,或重新建模,不断完善。 7)模型应用:所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完善。 5、模型的分类 按模型的应用领域分类 生物数学模型 医学数学模型 地质数学模型 数量经济学模型 数学社会学模型 按是否考虑随机因素分类 确定性模型 随机性模型 按是否考虑模型的变化分类 静态模型 动态模型 按应用离散方法或连续方法 离散模型 连续模型 按建立模型的数学方法分类 几何模型 微分方程模型 图论模型 规划论模型 马氏链模型 按人们对事物发展过程的了解程度分类 白箱模型: 指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。 灰箱模型: 指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。 如气象学、生态学经济学等领域的模型。 黑箱模型: 指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。 但由于因素众多、关系复杂,也可简化为灰箱模型来研究。 6、数学建模应用 今天,在国民经济和社会活动的以下诸多方面,数学建模都有着非常具体的应用。 分析与设计 例如描述药物浓度在人体内的变化规律以分析药物的疗效;建立跨音速空气流和激波的数学模型,用数值模拟设计新的飞机翼型。 预报与决策 生产过程中产品质量指标的预报、气象预报、人口预报、经济增长预报等等,都要有预报模型。 使经济效益最大的价格策略、使费用最少的设备维修方案,是决策模型的例子。 控制与优化 电力、化工生产过程的最优控制、零件设计中的参数优化,要以数学模型为前提。 建立大系统控制与优化的数学模型,是迫切需要和十分棘手的课题。 规划与管理 生产计划、资源配置、运输网络规划、水库优化调度,以及排队策略、物资管理等,都可以用运筹学模型解决。 3.学习数学建模所需的知识 1. 什么是数学建模? 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象 比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物 理学家,生物学家,经济学家甚至心理学家等等的过程。 2. 什么是数学模型? 数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物 的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等 等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是 数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际 物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 3. 为什么要建立数学模型? 在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化 着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述 解释,预计或分析出与实际事物相关的规律。 4.参加数学建模需要哪些必备的数学知识 首先是数学建模方面的知识,大师级的一些优秀书籍必须是要看几本的: (1) 数学模型 姜启源、谢金星、叶俊 高等教育出版社 (2) 数学建模案例选集 姜启源、谢金星 高等教育出版社 (3) 实用运筹学:模型、方法与计算 韩中庚 主编/2007年12月/清华大学出版社 模型的求解方面,需要用到Matlab、lingo等数学软件, 现在Matlab书籍很多,适合数学建模的,下面几本还不错: (1) MATLAB 从入门到精通(修订版) 刘保柱,苏彦华,张宏林 编著/2010年05月/人民邮电出版社 (2) 优化建模LINDO/LINGO软件 谢金星,薛毅 编著/2005年07月/清华大学出版社 还有一本新书,觉得对参加数学建模竞赛还是很给力的: matlab在数学建模中的应用 卓金武,魏永生,秦健,李必文编著 北航出版社出版 这几位作者都是参加过建模竞赛的,书中有经验介绍,有很多实际建模竞赛中开发的Matlab源程序,还有原版的获奖论文,觉得对参加数学建模竞赛的应该还是很有启发的。 5.学习数模需要具备哪些知识 参加数学建模竞赛需知道的内容 一、全国大学生数学建模竞赛 二、数学建模的方法及一般步骤 三、重要的数学模型及相应案例分析 1、线性规划模型及经济模型案例分析 2、层次分析模型及管理模型案例分析 3、统计回归模型及案例分析 4、图论模型及案例分析 5、微分方程模型及案例分析 四、相关软件 1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。 五、数模十大常用算法 1. 蒙特卡罗算法。2. 数据拟合、参数估计抄、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。 六、如何查阅资料 七、如何写作论文 八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。 九、如何才能获奖:比较完整,有几处创新点。 十、如何信息处理:WORD、LaTeX,飞秋、zhidaoQQ。 其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要

调整气象观测站问题问题的摘要本文基于所给出的数据,采用数据分析法,制定了一具体可行的调整方案。(其可靠性为95%)首先,对题中的12组数据,进行相关性分析,求出各观测站所测的年降水量间的相关系数r(如表(2)),找出|r|>(10-2)=观测站组合。然后,对这些组合作一元线性回归,得一元回归模型,并作F检验,判断此模型是否可以用来预测。在95%的可靠性下,可得3个回归模型:进行优化选择,可先去掉3,9,11三个观测站。再在一元回归的基础上,建立多元线性回归,同样可得出多元回归模型,并进行F检验,最终只可得一个多元回归模型:所以在满足足够大的信息量下,本模型可减少3,5,9,11四个观测站,而他们的信息可分别由7,8,6,6和10观测站来预测,可靠性为95%。二、问题的重述某地区内有几个气象观测站,根据10年来各观测站测得的年降雨量(如表1),由于经济原因,要适当减少气象站。如何设计一个方案:尽量减少观测站,而所得到的年降水量的信息量仍足够大。x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x121991 451 357 327 4231995 311 254 401 321 271 250 表(1)三、模型的假设预测的可靠性为95%不考虑异常的天气信息量足够大指经观测和预测后仍可知12个观测站的年降水量。四、符号的定义1、ri,j :指第i、j个观测站所测出的年降水量间的相关系数2、R : 多元线性回归的复相关系数3、xi(t): 第t年第i个观测站的年降水量五、问题分析本案例实质上是个典型的预测问题,即用较少的测站来预测12个站的年降水量,本模型的基本思想是:如果一测站的年降水量可用其它观测站的年降水量来线性回归的话,就可删去这一观测站。在删除的过程中遵循两个原则:①在线性相关的组合中,尽可能地留下可利用度大的观测站;②留下的观测站可用线性回归模型来预测减掉的观测站的年降水量。六、模型的建立与求解(一)相关性分析用EXCEL对12组数据进行相关性分析,可得如下相关系数表:站 1 列 2 列 3 列 4 列 5 列 6 列 7 列 8 列 9 列 10 列 11 列 12列 1 1列 2 1列 3 1列 4 1列 5 1列 6 1列 7 1列 8 1列 9 1列 10 1列 11 1列 12 1(表2)根据95%的可信度,查“检验相关系数ρ=0的临界(rα)表”,可得(10-2)=,从表(2)可查得,|ri,j|>的观测站组合:r3,7=, r6,11=, r8,9=.说明了这三个组合的线性相关性是显著的。(二)一元线性回归模型用EXCEL的数据分析软件,可得相关性显著的回归模型,以及F检验。经回归分析得,3和7间的线性回归模型:x3(t)=(t)方差分析:df SS MS F (1,8)回归分析 1 残差 8 总计 9 105452因为F>(1,8),所以本线性回归模型可用以预测。2.同理可得:8和9的线性回归模型:x9(t)=(t), F=>和6的线性回归模型: x11(t)=(t), F=>所以,可删除三个观测站的组合有8 种。(三) 多元线性回归模型因为在一元线性回归中,只考虑两者间的相关性,而没有考虑用多个观测站来预测一个站点的情况,因而我们须再进行多元线性回归分析。从表(2)的数据可知,一些|ri,j|较接近于,如:r5,6= , r5,10=,这时可通过多元分析,来确定是否可再减少一些站点。二元线性回归①、因为r5,6= , r5,10= ,所以先推测由6,10来确定5,进行二元线性回归分析,可得回归模型为:x5=, R=方差分析:df SS MS F (2,7)回归分析 2 残差 7 总计 9 因为 F>(2,7),所以本模型可用来预测。因而在两个删除原则的基础上,应保留6,以删除5观测站。②、同理,因为r8,12= , r7,12=,可得回归模型为: x12=, R=但:F=<(2,7)=,所以本模型不可用于预测。如上二元回归,可知在95%的可靠性下,不存在更多元线性回归模型。所以综上所得,可采用减少3,9,11,5四个观测站的方案,但年降水量的信息量仍足够大,而减少的观测站的信息由以下线性方程测知:x3(t)=(t)x9(t)=(t)x11(t)=(t)x5(t)=(t)+(t)七、误差分析因本案例是在95%的可靠性下进行的数据分析,对预测结果必然存在误差。接着对误差进行分析,被预值y0的95%置信区间为其中,t为自由度n-p-1的t分布双侧临界值(由表可查)。y0为欲预测值,n=10,p为p元回归数。为剩余标准差。, 。可得误差示意图如下:yx0 x从上式易知,当x0 离愈远,则估计的误差愈大。形成以为中心的喇叭口形。由于影响降水量的因素很多,如地形,地理位置等,因而在这些因数未知下,误差较大。若增加调查数据,可提高预测的精确度。八、模型的评价与推广本模型完全运用统计的数据分析法,采用线性回归,由一元到多元逐层深入的分析方法,制定一个较具体适用的调整方案,本模型简单易懂,层次清晰,且可用于其它领域的数据处理,如实验、调查数据整理。具有灵活性和适用性。但在没有计算机运算的情况下,人工运算量较大,故还有待于改进。在实际运用中,可根据需要的精确度,来改进模型,从而达到要求。

问题一:怎样学习数学建模 先学习高等数学,然后是运筹学,概率论与数理统计,数学建模用到的软件一般是LINGO,MATLAB,SPSS,你可以经常上建模的网站上面看看,这方面的网站数学中国不错,还有其他的,你可以自己找一下,上面有很多高手,有什么不懂的也都可以问,而且那里的资料也很多,你可以下载来看看。 问题二:数学建模怎么做啊? 刚参加完九月份的全国大学生数学建模竞赛。一份基本的的数学建模论文要包含以下几个方面: 摘要,问题的背景与提出,问题的分析,模型的假设,符号说明,模型的建立与求解,模型的评价与推广,参考文献。 正规的数学建模论文篇幅一般在20页以上。考虑到你读初三,老师的要求不会这么高,而且你的能力应该还有所欠缺。我的建议为你按照自己实际情况选择一个有一定挑战性的题目,题目的性质类似于应用题,但又和普通的应用题不同,可以没有确定答案,针对问题本身做一些分析和探讨,最好能和实际相结合。 要注意的是假设要合理,要有数学模型(包括一些方程,不等式等),要有分析思路,并且要对自己建立的模型进行优缺点评价,最好能做相应推广。 问题三:数学建模怎么学习? 可以啊!填报名表时写上三个人的名字就可以了,自己交报名费,什么指导老师之类的都是虚的,今年的比赛时间是9月9号8:00----9月12号8:00,早点准备哦! 问题四:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解. 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一. 数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法: 机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义. 测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识. 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法. 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下: 1、 实际问题通过抽象、简化、假设,确定变量、参数; 2、 建立数学模型并数学、数值地求解、确定参数; 3、 用实际问题的实测数据等来检验该数学模型; 4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模. 数学模型的分类: 1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等. 2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等. 数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等. 参加数学建模竞赛需知道的内容 一、全国大学生数学建模竞赛 二、数学建模的方法及一般步骤 三、重要的数学模型及相应案例分析 1、线性规划模型及经济模型案例分析 2、层次分析模型及管理模型案例分析 3、统计回归模型及案例分析 4、图论模型及案例分析 5、微分方程模型及案例分析 四、相关软件 1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。 五、数模十大常用算法 1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。 六、如何查阅资料 七、如何写作论文 八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。 九、如何才能获奖:比较完整,有几处创新点。 十、如何信息处理:WORD、LaTeX,飞秋、QQ。 其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...>> 问题五:学习数模需要具备哪些知识 参加数学建模竞赛需知道的内容 一、全国大学生数学建模竞赛 二、数学建模的方法及一般步骤 三、重要的数学模型及相应案例分析 1、线性规划模型及经济模型案例分析 2、层次分析模型及管理模型案例分析 3、统计回归模型及案例分析 4、图论模型及案例分析 5、微分方程模型及案例分析 四、相关软件 1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。 五、数模十大常用算法 1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。 六、如何查阅资料 七、如何写作论文 八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。 九、如何才能获奖:比较完整,有几处创新点。 十、如何信息处理:WORD、LaTeX,飞秋、QQ。 其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要 问题六:数学建模是什么? 数学建模的详细定义网上多的我就不阐述了,说一点其他的~~ 数学的主要发展方向是数学结合计算盯。运用数学的算法结合计算机技术解决实际问题,将来你会比单纯学计算机的水平高出一个档次,因为你的算法比他们的先进。而这也就是数学建模竞赛的主要考察的。 数模比赛的含金量也是比较高的,你参加比赛得了名次,完全可以证明你是有一定实力的~~ 你担心数学成绩不好,其实是没有必要的,我参加过几次比赛,用的数学知识并没有很高深,高中数学也能解决很多问题了,主要就是优化,模拟,我觉得考验个人思维能力多一点,况且数学、计算机、写作三个方面呢,你只要有一方面特长就可以了~~ 如果你去参加比赛,真的会给你很多收获,学到很多新知识不谈,还会让你了解原来学的东西可以这么用在生活中,会提起学习的兴趣,真的,我强烈建议你去学一些~~参加比赛~~如果还有其他问题你可以问的呵呵~~~我建模和写作都弄过,编程差点~~ 问题七:学习数学建模看哪本书最好 数学建模感想 纪念逝去的大学数学建模:两次校赛,两次国赛,两次美赛,一次电工杯。从大一下学期组队到现在,大三下学期,时间飞逝,我的大学建模生涯也告一段落。感谢建模路上帮助过我的学长和学姐们,滴水之恩当涌泉相报,写下这篇感想,希望可以给学弟学妹们一丝启发,也就完成我的想法了。拙劣的文笔,也不知道写些啥,按顺序随便写写吧。 我是怎么选择建模的: 大一上,第一次听到数学建模其实是大一上学期,not大一下学期。某次浏览网页偶然发现的,源于从小对数学,哲学以及历史的崇敬吧(虽然大学没敢选择其中任何一个专业,尤其是数学和哲学,怕太难了,学不好),我就坚定了学习数学建模的想法。通过翻阅学校发的学生手册还是神马的资料,发现我们学校有数学建模竞赛的。鉴于大一上啥数学知识都没有,也就没开始准备,把侧重点放在找队友上。 一次打乒乓球,认识了两位信电帅哥,以后也会一起打球。其中一位(M)很有学霸潜质,后来期末考试后,我打听了他的高数成绩,果然的杠杠滴,就试探性的问了下,要不要一起参加建模,嗯,成功! 第二位队友是在大一上学期认识的(向她请教了很多关于转专业的事情),但是是第二学期找她组队的。老样子,打听成绩,一打听吓一跳,是英语超好,微积分接近满分的女生F(鄙人第二学期转入了她的学院)。果断发送邀请,是否愿意一起组队,嗯,成功。 关于找队友:在信息不对称的情况下,优先考虑三人的专业搭配,比如或信电的小伙伴负责编程和理工科题建模,经济金融统计负责论文和统计建模,数学计算专业的全方位建模以及帮忙论文,个人感觉这样子比较好。由于建模粗略地可以分为建模,编程,论文,三块,整体上是一人负责一块的,但是绝对不能走极端,每个人就单单的负责一块,这样子的组合缺乏沟通和互动。应该要在培训中磨合,结合每个人的个人特点。主要负责哪几块,辅助哪几块。 接下来就到了第一次校赛了:第一次还是挺激动的,因为之前问了几个学长学姐说,建模都是要通宵的,于是我们也做好了通宵的准备。第一次拿到的题目是关于一个单位不同工作部门不同饮食习惯的人,健康水平的关系。 后来回顾过来,这其实是一个比较简单的统计分析题。但是想当年可没有这等觉悟,做题全靠office,对着题目想半天也不知道该怎么做。做的过程很痛苦,但是也很兴奋,校赛三等奖的结果证明了光有一股热情是不行的,需要恶补大量知识。 推荐新手入门书目: 数学模型(姜启源、谢金星) 数学建模方法与分析.(新西兰).Meerschaert. 第一本是姜老先生写的,很适合新手,在内容编排上也是国产风格,按模型知识点分类,一块一块讲,面面俱到。第二本是新西兰的,我是大二的时候看这本书的,只看了前面一部分。发现这本书挺适合新手,它是典型的外国教材风格,从一个模型例子开始,娓娓道来,跟你讲述数学建模的方方面面,其中反复强调的一个数学建模五步法,后来细细体会起来的确很有道理,看完大部分这本书的内容,就可以体会并应用这个方法了。(第一次校赛,就是因为五步法的第一步,都没有做到)。对了,还有老丁推荐的一本,美利坚合众国数学建模竞赛委员会主席Giordano写的A first course in mathematic modeling,有姜启源等翻译的中文版,but我没能在图书馆借到,所以没看过,大家有机会可以看看。 怎么建模 第一次国赛前的放假开始学校培训,我提前借了一大堆书,把卡都借满了。第一次国赛前的那次培训,对我而言,这段时期是收获最大的时期,比其他任何时间段都来得大。 这段时间内,我们三个人都很辛苦。白天培训要学习很多知识,完了只能休息......>>

教学中案例研究论文

关于案例教学法在教学中的实践论文

一、案例教学法在高中化学教学中的实践

1.展示案例,阅读感知

案例展示可以作为教学前的引导出现,也可以作为教学中的事实举例出现。案例展示的方式多种多样,可以给学生发放文字材料,还可以使用投影仪将案例投射在多媒体放映仪器上,可以播放音频材料,教师还可以讲案例编排为剧本,让学生进行角色表演等。例如教师在进行氯气的知识点教学时,可以激发学生学习氯气的兴趣,并且引导学生积极主动探寻氯气的物理性质与化学性质,可以选择一个小故事来进行举例。故事中小明在家使用次氯酸钠(NaClO)为主的高效消毒剂清洁厕所,但是小明觉得只用一种清洁剂洗不是很干净,所以又使用了洁厕灵,结果小明中毒被送往医院。教师在讲完小故事后,学生产生的强烈的好奇心,教师可以自然的过渡到氯气的教学点上了。

2.设疑问答,引发思考

在学生融入情境之中后,教师应该立即设疑问答,让学生能够自主分析,思考。教师在设置问题时不宜一次性将问题全部问完,而是要循序渐进地引导学生来回答最后的问题。问题不宜过难,否则会让学生失去学生的兴趣。例如在上述案例中,教师可以提出为什么次氯酸钠(NaClO)为主的高效消毒剂与洁厕灵不能混合起来使用呢?是不是因为洁厕灵中含有硫酸呢?接着,教师可以根据问题来进行探究性实验。首先在如下图所示的孔洞内分别放置干红纸、湿红纸、蓝色石蕊试纸、氢氧化钠溶液以及硝酸银溶液。并且在如下图所示的中间的大孔中滴入次氯酸钠(NaClO)为主的高效消毒剂与稀硫酸,马上将盖子盖上,然后观察盒子里面的现象。如通过教师提问回答,学生的学习思维被大大激发,认真的观察实验,并且详细记录实验中出现的现象,进行归纳其中的化学原理。

3.班级交流,归纳整合

班级交流是在教师的引导写全部同学积极参与的教学方式。班级交流的主要目的就是消除学生之间存在争议的问题。不仅仅可以让学生的思维再次迸出火花,还能够出现智慧与智慧的碰撞。学生在班级交流中学生可以互相取长补短,共同进步。例如在上述案例中,教师组织学生讨论后可以在黑板上进行板书,说出五个孔洞中出现的不同反应。干红纸没有出现明显反应,而湿红纸出现了褪色。蓝色试纸先变成红色,然后出现褪色;氢氧化钠溶液出现白色沉淀物。

二、总结评价,提升认识

总结评价是案例教学法的最后阶段。学生可以在教师的总价评价中提升到新的高度。总结评价主要是对学生在前述几个阶段中的表现进行评价,教师评价主要以证明积极鼓励为主,对学生的发言与自主学习表示肯定,对学生所提出的独到见解要表示赞许。并且要就本次案例的化学性质与道理进行总结,让学生加深印象。在本次案例教学中,教师最后可以向学生展示次氯酸钠(NaClO)为主的.高效消毒剂的使用说明书,并且让学生回去向家长指出次氯酸钠(NaClO)为主的高效消毒剂的注意事项,同时说明化学道理。这样一来氯气的知识点就会牢牢的印在学生的脑海当中。案例教学法通过展示案例、设疑问答、班级交流、总结评价等环节有效的提升了学生分析问题、合作交流、归纳概括的能力。案例教学法所选择的有针对性的案例能够扩展学生的化学知识面,帮助学生将化学知识应用到实际生活中去。总而言之,案例教学法应用在高中化学教学课堂上是十分有效并且合理的,能够突出教师课堂主导的地位,激发学生的学习主动性,让学生爱上化学,主动学习。

作者:邵红安 单位:江苏省兴化市楚水实验学校

语文教学案例分析论文

在学习、工作生活中,大家都经常看到论文的身影吧,论文是描述学术研究成果进行学术交流的一种工具。相信很多朋友都对写论文感到非常苦恼吧,下面是我为大家整理的语文教学案例分析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

摘要:

本文将用分析法,从课堂的导入、教学过程、教学内容的达成和对教学的思考四个方面,对郑桂华老师《陋室铭》课例进行研讨,和大家一起共同学习郑桂华老师丰富的教学经验和高超的教学能力。

关键词:

分析法:郑桂华;语文教学;教学案例;分析

xxx老师是课程与教学论专业语文教育方向的博士,本人有幸现场聆听到郑老师执教的《陋室铭》,给了我极大的震撼,给了我实实在在的收获、语文的收获。感触之余,写了下面这篇小文。我将从以下四个方面展开分析讨论:关于本节课的导入;关于课堂教学过程;关于教学内容的达成;关于对教学的思考。我坚信,研习郑老师这节课,将改变我们上课的方式,理解新课程带给我们的实惠。

一、 关于本节课的导入

王荣生教授曾这样评价郑桂华老师:郑桂华的课有行云流水般的家常味,真实、真切,让人感受课堂的美好。①我深有同感,郑老师在唠家常的同时是在“收买人心”,拉近与学生的关系,营造一个轻松活跃的课堂氛围,我们可以先来欣赏一下她独特的导入:

(课间,教师走进教室,还未上课,学生三三两两的在交谈)

师:(问坐在前排的同学)你们班有多少同学呀?

生:62.师:你们班的语文科代表是谁呀?

生:(科代表举手示意)老师,是我。

师:你叫什么名字呀?

(此时教室已经安静下来,学生都坐在自己的座位上)

生:我叫李月菡。

师:好名字。可是你知道父母为什么要给你取这个名字呢?

生:不知道。

师:我猜想啊。“李”是你家的姓,“月”是月亮,“菡”就是菡萏,也就是荷花的意思,你父母取名是寓意你像月亮一样洁白,像荷花一样美丽。老师说得不错吧。

生:好像有这么一层含义。那老师你叫什么名字呢?

师:我姓郑,叫桂华。你们能说说名字的含义吗?

生:我猜想是这样的:“郑”是应该是姓,“桂”是“桂林山水甲天下”的“桂”,我猜老师是桂林人,老师像桂林山水一样的漂亮。“华”是中华的“华”,就是要热爱自己的祖国。

师:大家看看我,就知道我并不漂亮,我也不是桂林人,我是陕西人。

生:我想“桂”是桂花的“桂”,寓意是桂花一样的清香,“华”是春华秋实的“华”,意思是你的父母希望你做一个踏实的人。

师:这位同学好有学问啊,用了成语春华秋实,那你为什么不用华而不实呢?

生:华而不实是贬义词。

师:华而不实是贬义词就不能用啊,好聪明。(同学们都笑了)。“郑”郑和的郑,是我家的姓,但是和郑和没关系啊,虽然我很想有点关系,但不是一个地方的。“桂华”其实就是“桂花”。一是古代花者,华也,“华”跟“花”是想通的。二来是我是在秋天生的,桂花也在秋天开放。“华”也许和刚才同学说的“春华秋实”有关,因为父母希望我们做个一个春华秋实的的踏实的人,不做华而不实的人。可见,父母给我们取名字是有讲究的。其他同学还愿意分享自己名字的学问吗?(依次有几位同学起来分享自己名字的寓意,课堂气氛非常活跃。此时,上课铃想了起来)

看似闲庭漫步的唠家常,其实是实实在在的“春华秋实”,这节课的导入不是给人以震撼的视频画面,不是语句优美的散文诗,也不是为了“传道授业解惑”而预设的教学情境,就是简简单单的交谈,现实生活中的普通的沟通和交流。也就是这种交流,消除了老师和学生彼此之间的陌生感、畏惧感,为课堂上的交流扫清心理障碍。为此,郑老师的良苦用心得到了学生的回应,整节课几乎全部学生都举手发言,分享自己的想法。也许,这就是郑桂华老师借班上课的底气:不惧怕学生语文基础不好、学习不主动、上课发言少。但是,面对一群愿说、能说、会说的学生时,郑老师又是如何解决的呢?接下来我们从教学过程和教学内容的达成加以分析。

二、 关于课堂教学过程

上面的“开场白”虽然没有进入教学情境,但是学生的思维都已经聚焦在老师身上,接下来就是学生在老师的指引下学习的过程。我们先看一下本节课的教学流程:

王荣生教授说“流程”是课堂教学从起点到终点的过程,即课堂教学的连贯过程。②郑老师这节课符合“流程”的教学观,就是“根据学生的学情导向这节课的终点”,也就是“学生随着老师走”。教学伊始,教师的发问埋下了一个“炸弹”,“同学们,知道今天要上的课文吗?”“知道。”“预习过吗?”“预习了!”“预习到什么程度了?”“会背!会翻译了!”我想此时所有听课的老师都在为郑老师捏一把汗,按照郑老师本人的话来说就是:遇到大的麻烦了。文言文预习到会背会翻译了,那这课还有什上的呢?恰恰这就是郑老师的睿智之处――关注学情,顺势而导,导出了“子云宅”的问题。接下来的课便是顺风顺水,由“子云宅”引出押韵,押韵引出朗读,朗读引出写作意图,环环相扣,层层剖析,学生的思维已完全被郑老师掌控了,也深深被郑老师渊博的学识而折服。

这样的教学丝毫没有拖泥带水的感觉,更像是随着学生学习的情况而进行的行云流水般的自然,不搪塞,不僵硬。

三、 关于教学内容的达成

郑老师善于找到教学的突破口。当得知学生已经预习的.很充分时,教师立即改变了教学重心,再讲学生已经掌握的只是已经没有太多的意义。那么怎么知道学生掌握了哪些知识,哪些没掌握呢?此时,郑老师就来检测一下学生预习的情况。这样就检测出了“子云宅”的问题,给这节课找了一个突破口,化解了老师重复讲解学生已学知识的尴尬局。教师化解了挑战顺势而导,开始了精彩的课堂,

课堂有高度,有深度。就在“子云宅”这个问题上深究一下,其他老师上课

时一般不会苦口婆心的绕一大弯子,要么直接告诉学生是为了押韵的需要,或者就不涉及这个问题,反正课文也没这个知识点。郑老师却不这样做,而是提示和指导学生朗读,激励学生自己感悟发现问题,挖出有利于教学的知识。这样不得不说老师的备课的认真。我们可以来看一张老师的幻灯片: “馨”属于“青部”,“下平”9 《广韵》

“琴”属于“侵部”,“下平”12 《广韵》

按照《广韵》中的要求:不在同一部的字是不能押韵的。

在引入“押韵”后,郑老师好像意犹未尽的样子,又引出了“要是“馨”算押韵,那么“琴”字应该算押韵的,这是怎么回事呢?”的问题。现在看来,这完全是郑老师给这个课堂布的一个大局,从教师准备的课件来看就会明白了。学生给老师挑战,老师给学生一大疑难,这样老师才能镇得住课堂,学生才会跟着老师的节奏继续学习。

德国教育家第斯多惠(FriedriehAdolfwi]helmDisterwegl790一1866年)阐述了他对教学艺术的深刻见解:“教学的艺术不在于传授的本领,而在于关于激励、唤醒、鼓舞。而没有兴奋的情绪怎么能激励,没有主动性怎么能唤醒沉睡的人,没有生气勃勃的精神,怎么能鼓舞人呢?只有生气才能产生生气,死气只能从死气而来。所以你要尽可能多地习惯于蓬勃的生气”。③这种“激励、唤醒、鼓舞”艺术在这节课堂教学内容的达成中无疑能够得到很好的验证。

四、 关于教学的思考

1、 语文“教什么”

语文“教什么”,钱梦龙老师认为认为,教语文第一就是要教会学生抓住文章的灵魂。教会学生抓住文章的灵魂,也就教会学生读文章的方法,其中之一就是教会学生朗读课文,培养学生的语感。这篇《陋室铭》是较短的文言文,又是篇韵文,朗读肯定是十分重要的。郑老师在指导学生如何朗读的时候却不是从读入手,而是从押韵入手。这样学生就理解了如何押韵,怎样押韵,读起来就更有自己的感觉,更容易体悟文章内容。

语文的“教”要关注学情。老师面对的一群基础扎实、能说会道、高度自觉的学生时,重讲文言词汇和翻译之类的学生已经掌握的知识,课堂效果肯定是热闹非凡。只是这样的课堂会是无趣的,具有了表演性质,也没了本真,学生在课堂是得不到实惠,得不到成长。或许,老师也不一定能驾驭这样的课堂。真实的课堂,真实的教学,需要关注学生的学情,这样学生才可能学有所得,获得进步。

语文“教是为了不教”,要突破“教课文教知识” 的局限。在实际教学中,教师要发觉每一篇课文独特的“语文价值”。本节课中,需要探讨的就是作者写陋室的意图。由于时间问题,郑老师没把这个问题深谈下去,可是在学生心中种了“问题”,从“铭” 的解释开始,教师就一直在引导学生对“陋室”的探讨,特别是选用刘禹锡《秋词》来加以印证,学生也明白了古人失意时的自勉和自我肯定的价值。

2、 备课“背什么”

课堂上教师的课堂呈现直接关系着学生学习的行为。目前对语文信息的展示泛滥成灾,并且都只是停留在表层信息的咀嚼,语文课有两个极端:教师讲的内容学生都懂和教师讲的学生都不懂。这两种课堂,学生都不愿意听,不感兴趣。郑老师的课没有落入这两个极端,是因此教师明白了学生的需求,真正从学生出发设计教学,从学生的实际情况从发,关注学生的成长。 那么,教师的备课就着重从学生的学情出发,备学生,备教材,预设学生的需求。只有这样,学生在课堂上才会都有事可做,学有所得。

3、 课堂教学的预设与生成

充分的预设,是课堂教学成功的保障。只有课前精心预设,才能在课堂上动态生成。然而课堂教学是千变万化的,再好的预设也不可能预见课堂上可能出现的所有情况。课堂上出现了意料之外的情况,教师可以而且应该调整预设,给生成腾出空间,机智地驾驭课堂,让课堂呈现别样的精彩。感受课堂教学活跃的气氛同时,更要关心学生是不是驻留了与教学内容相应的语文体验。关注语文课程目标的有效达成。因此,课前教师应对教学目标、教学内容、教学过程、教学方法预先设计,并在实际教学中,根据学情的变化,对目标、内容、过程、方法的适当调整。课堂教学中需要教师运用教学机智和合理调控,发掘有价值的问题,精当的点拨或讲解,使课堂闪光,使学生顿悟,使学生在知识、能力或方法上实现自我建构。

参考文献:

[1] 王荣生.听王荣生教授评课[M].上海:华东师范大学出版社,2007:84.

[2] 谢利民,郑百伟.现代教学基础理论[M].上海:上海教育出版社,2003:331一332,344.

[3] 钱理群,孙绍振,王富仁. 解读语文[M].福州:福建人民出版社,2010:278-287.

[4] 新课程实施过程中培训问题研究课题组编写.新课程的理念与创新[M].北京师范大学出版社,2001:82- 83,59.

[5] 周敏.语文课程“动姿化”知识教学研究[M].长沙:湖南师范大学出版社,

[6] 李字辉.关心教学组织形式的建构[J].天津师范大学学报(基础教育版),2006,(9).

[7] 刘济良.论科学技术对人的异化与教育对人的价值世界的重建[J].教育理论与实践,2003,

[8] 周相玲.关心型师生关系的研究「J].长春:东北师范大学硕十学位论文,2007.

注解:

① 王荣生.听王荣生教授评课[M].上海:华东师范大学出版社,2007:84.

② 王荣生.听王荣生教授评课[M].上海:华东师范大学出版社,2007:84.

③ 谢利民,郑百伟.现代教学基础理论[M].上海:上海教育出版社,2003:331一332,344.

案例型论文怎么写呢?这是我为大家整理的写论文的步骤和范文,仅供参考!

要熟悉案例教学,掌握案例的撰写还有一个不短的过程。不过,只要了解了案例的有关格式,明晰了案例的关键所在,在参照国外有关案例的基础上,写出富有我们自身特色的案例,并不是一件十分困难的事情。在写作案例时,写作者必须要清醒地认识到,案例应该反映的是一个真实事件,要能激发起大家的思考。

劳伦斯(Lawrence,·‘)说: 一个好的案例是一个把部分真实生活 引入课堂,从而可使教师和全班学生对之进行分析和学习的工具。一个好的案例可 使课堂讨论一直围绕只有真实生活中才存在的棘手问题来进行。它是学术思绪驰骋的依据。案例是对一个复杂情景的记录,必须要把这一复杂情景解剖分析再如实复原 以使人们能够理解它。在课堂讨论中,大家 以案例为对象进行分析和表达,各种观点 体现了不同的思想方法。要做到上述所有这些,案例必须首先是一篇好报道。实际上,案例写作既像写好报道那样简单也像 写好报道那样困难。

案例教学尤其注重对有关疑难问题的讨论,是在讨论中激发学生的思维,使其不断澄清对有关问题的认识。实际上,教师,尤其是刚刚接触案例的教师,在撰写案例时,也要注重相互间的探讨,注重在探讨与研究中将案例梳理得更规范,更能反映出要探索的疑难问题。

(一)案例撰写的一般程序

从这样一种认识出发,教师,尤其是教师群体在撰写案例时,可以遵循下列程序:

1.首先选择一个或几个典型性的案例,对其内容进行分析

对这些案例的分析可能会涉及到下列问题:案例描述了什么样的问题?涵盖哪些内容?你对这些案例有何认识?在你的教育教学经历中,是否遇到过类似的问题?

2.对这个或几个案例,进行写作形式上的分析

在对案例内容进行分析的基础上,接下来可以从写作者的角度出发,考虑一下:这些案例读起来怎么样?你理解了他要表达的内容吗?从撰写者的角度看,内容表达得清晰吗?案例中描写的细节细致吗?案例中包括了哪些组成部分?部分与部分之间的关系怎么样?

3.运用头脑风暴法,要求每位教师说出自己教育教学经历中曾遇到过的疑难或两难问题

任何案例都是围绕一定问题展开的,经过前面的分析,教师可以对案例的结构有一定的了解,因此调动大家的思维考虑一下自己的教育教学经历中遇到的一些疑难问题是完全可行的。在这一步骤,每个教师讲出自己曾遇到过的一些问题,而其他教师在不重复的情况下讲出自己遇到的另外一些问题。尤其对那些两难问题要予以特别关注。问题意识或者说问题的提出,是案例形成的第一步,它给案例提供了一个基点和着眼点。 ”

4.把所有问题进行归类,汇总成不同范畴

教师提出的问题,难免相互之间有交叉、重合,问题与问题之间也缺少一定的逻辑顺序,因而,把相似的问题归并在一起,把性质相近的问题汇总成一个类别,使问题本身变得眉目清晰就尤为必要了。

5.教师分头撰写案例初稿,篇幅限定在2000字左右

教师在头脑风暴中提到的各不相同的论题,经过归并后有了一定的逻辑结构。接下来可以让每个教师或几个教师围绕自己曾经提出的论题撰写案例初稿。初稿的篇幅不必太长,可限定在2000字左右。在写作时,一要考虑界定的问题是否清晰,二要考虑表达方式是否得当。

6.举行案例会议,就所写案例的内容和形式进行讨论

讨论可以有这样两种形式,一种是3—4位教师围绕一位教师写的案例进行讨论,另一种是3—4位教师同时展示自己的案例,围绕这3—4个案例进行讨论。这样一个阶段有些类似于案例教学过程中的小组讨论。讨论既要关注到案例的内容,也要关注其表现形式,为每一案例的修改提出具体的建议。

“问题学生”教育案例

摘 要:本文旨在小学美术课堂 “问题学生”的教学效率的提高,须要激发学习美术的兴趣,利用分层教学提高自主学习的能力。

关键词:教学效率 兴趣 自主学习

一 、“问题学生”在小学的现状

“问题学生”通常是班集体荣誉的破坏者,班里的同学们都讨厌害怕他,不愿亲近,他丧失了集体友谊和同情。即使他有过勇于改正错误的表现,但也常常难以得到重视、信任和鼓励,因而他产生了心理对抗;另一方面,这类学生通常对学习提不起兴趣,对自身没有自信,学习基础差,学习目标不明确,并且经常成为老师批评、家长打骂、同学嘲笑的对象。

例如:我校三年级有一男生,他无论什么课上一会儿故意踢踢周围同学,一会儿玩学习工具,一会儿用橡皮屑投同学,再没人理他,他就在那发会儿呆,整节课都无所事事。下课后,他也从未看过跟学习相关的书籍,还时常在楼道里或班级内疯跑,打人,乐不思蜀。班主任、科任教师批评、教育多次,这位男生每次满嘴上答应改正,并以后认真学习,但从未付诸行动,仍旧如往常。

这位学生在一定程度上也是“问题学生”的一个典型代表,对学习没有兴趣,缺乏自主学习意识与能力,厌学,没有人生目标,责任心不强、日子得过且过。这样的情况使得美术课堂的教学效率相对低下,有悖于学校的办学理念,不利于学生的发展,现状不容乐观。

二、“问题学生”在美术课中容易出现的问题

美术课中的这类“问题学生”通常在作业过程中喜欢恶作剧,例如:画上“屎”, 课堂喜欢闹。但是,这样调皮的学生,往往会有很好的表现;只是他们的注意力不一样,关注的问题也不同,所以会在课堂上经常有一些不羁的表现。例如:有的“问题学生”在作业本上表现一些稀奇古怪的东西,有的“问题学生”喜欢画一些大人们看不懂的东西,甚至画得饶有兴趣,乐此不疲,图画本也很快消耗尽了。

三、‘课堂问题’的看待与改善

首先,我认为这是正常现象。因为学生们在课堂学习过程中都会出现类似的个性学生,西方的教育思想是支持和积极引导的态度,只是在我国这种现象常常会被认为不正常,因为目前的教育土壤还不适合这样的学生成长。社会土壤也不成熟,让这样孩子发展成为难题。

其次,美术教师要提升课堂效率,提高学生学习兴趣;要正确引导、正确教育;要让“问题学生”知道为什么要画画,要让“问题学生”能展现出具一种内心文明程度的绘画,引导他们通过画笔表现出自己内心的“真、善、美”,他们就会有改变。

那么,如何提高美术课堂效率

(一)‘讲台’变成‘舞台’,激发学习兴趣

兴趣是学生学习美术的基本动力之一,如果我们的美术课堂兴趣盎然、引人入胜,那就意味着学生在学习和积累的同时,还会领略到强烈的艺术感染力。在课堂教学过程中,教师可以从丰富美术史论入手,在工作、生活中的重要作用,帮助学生明确学习目的,激发间接学习动机,增强学生的自主性,让积极学习的情感贯穿美术学习中,使学生学会欣赏美,在美术课堂中获得乐趣。同时可以采用范画、挂图、实物等多种媒体,采用游戏、故事、儿歌等手段,创设引人入胜的教学氛围和教学情境,教师以积极主动的情感,去吸引、感染学生的情感,使学生获得情感的共鸣,使学生体验到美术课堂是一种轻松愉快、创造想象的教学活动,从而认同接纳教师的教学内容。

例如:小学五年级的美术课《戏曲人物》,是一部有关“京剧”的内容,而学生普遍对京剧感到陌生、遥远;课堂上对京剧人物的“老生”、“花旦”、“小生”等等角色觉得陌生而枯燥。我授课时, 会给学生讲---‘杨门女将穆桂英’的故事,并播放穆桂英挂帅的京剧选段影片给他们看。我把‘讲台’变成‘舞台’,学生们争先恐后地模仿着京剧英雄人物的动作,一个个表演得非常认真,学习兴趣高涨。当场我还示范了一幅“武生”的戏曲人物图,故意弄得比较幼稚,激发起他们的学习兴趣,让学生也勇敢地进入了创造领域,达到了较为理想的教学效果。

(二)明确‘爱’,美术课‘因材施教’

美术的教学中,教师不应将美术教学视为单纯的技术训练,一味追求学生画的能有多好,而应更多的注重学生了解到多少美术知识,至于,通过课堂学习对学生的审美能力有怎样的提高,不同的学生,不同的要求,做到普及美术常识即可。教师应该注重提高学生审美情趣,针对“问题学生”个别技能指导。对待“问题学生”要给予一颗宽容的心。

美术课的课堂本就活跃,“问题学生”活泼好动,思想活跃,难免会脱离老师思想里的那个“圈”。据研究表明,小时候唯唯诺诺,“特别听话”的孩子,长大了很多都不会有大出息的,反而从小表现出很多问题的“问题学生”,只要本质不坏,长大后很多人都会做出一定的成绩。所以作为美术教师对待“问题学生”要给予比普通学生更多的爱,更多的空间,教师要宽容一些,不必太苛责他们,只要他们的做法不出“大圈”,不出“大格”,不必太过限制。教师可指导他们从生活中单个‘基本形’开始想像和练习,运用‘基本形’学习对称、均衡,认识对比的重要性,掌握比较方法,进而学习物品较多的组合画面,让他们学习画面中的对称、均衡、变化、多样统一的组织形式。教师应把学生们的全面发展作为教学的根本目标,充分认识到学生们发展是全面的发展。

(三)尊重“主体”们的自尊心

每个人都有自尊心,从某种程度上讲,‘问题学生’的自尊心甚至比一般人还强些。由于种种原因,“问题学生”在心灵深处受到创伤,如:他们多次受到批评,或纪律处分,同时成绩又差,因而十分自卑。在这种情况下,我们更要真诚地去关心他们,用炽热的爱去激发他们的自尊心。

美术学习是一个自觉的、积极的、主动的过程,学生不应单纯是学习过程的客体,消极、被动地去接受知识,而应当成为学习过程的主体,积极有兴趣地主动获取知识,这样的学习才是有效的学习。教师可根据学生的实际情况调整教学重难点和相关内容实施教学,以学生为本,以关注学生的发展为基准,进行有效地教学设计,选择学生熟悉的题材作为切入点展开教学。教师还可以提供多种的表现形式的范例供学生参考,充分体现以学生为本的现代教学理念。由于学生素质良莠不齐,因此,在美术课堂教学中,教师可以根据情况实施分层教学,以学生的不同素质为根据,将其客观地分成多个层次组,并在教学过程中注重备课的深浅,区别各个层次对范画制作讲究的不同难度,分层布置作业及其辅导,根据各个层次设定教学目标的尺度,努力实现各个层次学生的共同提高,充分体现了因材施教、区别对待的教学原则。

分层教学方法是建立在尊重学生的个体差异之上实施的,能充分调动学生学习的主动性、积极性及参与性,让学生自己选择适合自己的层次,变被动学习为主动学习,这也是“以学生为本”理念的有效体现。

另外,尤其是教师不要过多注意他们的缺点、短处,而要多肯定其长处和优点,不要动辄在办公室、教室或公众场所批评、讽刺、贬低、伤害他们的自尊心。

四、结束语

总之,问题学生就像一棵棵弯曲的小树苗,只要教师们有“衣带渐宽终不悔,为伊消得人憔悴”的精神,工作做细,方法得当,持之以恒,就一定能育曲为直,育直为壮。不管“问题学生”身上有多少问题,只要他是我们的学生,我们就要用爱去解决他们的困难,去解决他们的“问题”,让他们书写出人生理想的答案。

  • 索引序列
  • 高中数学建模教学案例研究论文
  • 高等数学建模案例论文模板
  • 数学教学案例研究论文
  • 数学建模案例分析论文
  • 教学中案例研究论文
  • 返回顶部