首页 > 学术期刊知识库 > 基因编辑婴儿参考文献

基因编辑婴儿参考文献

发布时间:

基因编辑婴儿参考文献

早期的基因工程技术只能将外源或内源遗传物质随机插入宿主基因组,基因编辑则能定点编辑想要编辑的基因。

基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂(DSB),诱导生物体通过非同源末端连接(NHEJ)或同源重组(HR)来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。这种靶向突变就是基因编辑。

基因编辑以其能够高效率地进行定点基因组编辑, 在基因研究、基因治疗和遗传改良等方面展示出了巨大的潜力。

扩展资料

2018年11月26日,贺建奎宣布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生,这对双胞胎的一个基因经过修改,使她们出生后即能天然抵抗艾滋病。

2019年12月30日,“基因编辑婴儿”案在深圳市南山区人民法院一审公开宣判。贺建奎、张仁礼、覃金洲等3名被告人因共同非法实施以生殖为目的的人类胚胎基因编辑和生殖医疗活动,构成非法行医罪,分别被依法追究刑事责任。

参考资料来源:百度百科-基因编辑婴儿

参考资料来源:百度百科-基因编辑

这个问题中包含的“首例”和“在中国”字眼,这些字眼是很具有感染力的。我现在最担心的是,在缺乏专业知识(包括相关伦理知识)的外行人眼里,这个试验被解读为重大的、跨越式的、突破式的科学进步创举;而突破各种伦理约束被包装成我国科学家赶超外国同行,实现弯道超车的重要途径。国际上已有的完善周密的伦理制度反而会被解读成“白左势力”对中国科学发展的约束和迫害。于是这件事不仅不是特定科研人员、院校医院乃至相关领导的丑闻,反而成了重大的、值得歌颂的成果和政绩。如果一个试验在科学上可以吹嘘成突破创举;政治上被包装成政绩;还能带动潜在商业利益和商业模式、收割大把金钱,各位觉得会不会有前赴后继的无数模仿者?所以这件事的险恶之处,远远不限于在科学和技术层面,不限于这个试验和相关技术有没有瑕疵、缺陷、争议;而在于这件事是个政治和商业投机。

基因编辑的话会让父母觉得孩子并不算是自己的孩子了而且在伦理道德上也存在着一些严重的伦理道德问题比如说基因因问题还有就是遗传问题

我认为这个事情真的是太疯狂了。首先就是用人体做实验真是让人觉得这个世界都要疯了。每个人的生命都是宝贵的,在未知的条件下进行试验并不能对人体的安全有任何的保障。而且这也是违背人类的伦理纲常的,我觉得没有人会用自己的生命去做实验的羔羊,那么试验的人体只能是那些实在是没有办法的人,只能用出卖身体的方法来保全自己。还有就是这种实验的未知性,在付出这么大的代价情况下并不知道能不能成功,那是不是很得不偿失呢?最后就是如果这样的试验成功了,那么这样的人在人群中该怎么样自处?他会不会对原本的人类世界造成不好的影响?这些都是未知的,所以我觉得在这些问题搞清楚之前还是不要进行这个试验了。

基因编辑婴儿死了

现在非常的健康,生活和普通人没有什么非常大的区别,希望他们可以健康快乐的长大。

现在这对婴儿已经长大了。而且生活的非常的幸福。

克隆人为什么不可以,违反伦理学!而且基因编辑婴儿也不可以保证婴儿本身不出现问题,本身是个实验而已,拿婴儿做实验?怎么可以允许?

先说基因编辑:基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。由于基因敲除(剪刀CRISPR/Cas9)具有不稳定性,经常脱靶,因此对人的伤害不小;而且,敲除这个靶点后有没有其他潜在威胁,可能会产生蝴蝶效应。同时,包括《科技日报》在内的科学界媒体也在质疑:基因编辑是否能完全有效地防止感染艾滋病病毒?如何来证明?“人是目的本身,而不是手段”,应该是基因领域的金科玉律。一个是活生生的人,拥有自己独立的人格和价值,不是实验的材料。基因被编辑过的婴儿降临人间,打开的可能是一个潘多拉的魔盒,当慎之又慎,哪怕盒子里装的是希望。

基因编辑婴儿一岁了

基因编辑婴儿会带来的风险:有严重缺乏科学评估验证,安全性存在不可预知风险。

在伦理与道德上,在严重缺乏科学评估验证,安全性存在不可预知风险的情况下,贸然开展以生殖为目的的人类生殖细胞基因编辑临床操作,严重违背了基本伦理规范和科学道德。

扩展资料:

科技工作者必须加强科学道德自律,强化自我管束,在探索和创新活动中必须遵守相应的伦理道德准则和法律法规。针对科学技术发展中出现的新情况、新挑战,科技界要深入思考,认真研究,未雨绸缪,加强教育,完善相关行业规范和伦理指南,以保证科技界从事负责任的研究。

有关部门要动态完善相关法规,严格审查监管程序,适时推进有关立法工作,严密防范科研伦理不端行为发生。

参考资料:中国新闻网-工程院:“基因编辑婴儿”严重违背伦理和科学道德

最近,关于一起称为“世界首例免疫艾滋病基因编辑婴儿”的事件一经爆出,国内外媒体均反响剧烈。从克隆起,对于我们人而言,这样的恐惧始终围绕着我们,随着上世纪克隆动物的出现,即第一只克隆动物多利羊的成功克隆,让我们在而后的一段时间对基因生物学产生了巨大的恐惧。 这可以说是个脑洞大开的事情,一说到基因生物学,人们的第一反应很可能是西方的某某电影里的疯狂科学博士,泯灭人性的做着各种号称是用尽一生心血的实验,而更多的成果是让我们大众无法接受的。 就拿这次事件而言,免疫艾滋病的确是一个好消息,但我们必须知道的是,我们畏惧“基因编辑”,就像电影里的那样,人会变异,那岂不是都成了城市英雄,没有弱者,全都是捍卫世界的人?要知道,从古至今,有正派便有反派,我们唯一要明白的是,我们不是因为自己是弱者才去基因编辑,不是因为惧怕某种疾病就用基因编辑去篡改让自己免疫,虽说今后的技术成熟了,可能会开放部分技术造福人类,但作为临床,这样的行为很无道德,甚至可以说毫无人性可言。 作为一个人,生活在社会集体里的人,我们必须意识到什么该做,什么不该做,我们是谁,我们全人类的共同目标是什么。当然,人生在世,总会有人不知道或者不明确这些问题的答案,因此,他们不明白什么是对的,什么是错的。 基因编辑就目前来看前景十分开阔,然而这样强大的技术会让我们明白一个东西,那就是,利用好了便是造福于人类,用得不好便会对整个社会造成一定的危害,我们必须要在面对我们自身的拷问中找到一个平衡的支点,明确什么是有益于人类,什么不益于社会,这样我们便能在这样的技术成熟时,享受这一成果带来的好处,而不至于因为本心的好意坏了大事。 我们并不谴责那些有前瞻性的人,因为他们是我们人类社会的进步的引领者,但我们也必须明白一点,反人道而行的最终结果会是我们人类自食其果。

现在非常的健康,生活和普通人没有什么非常大的区别,希望他们可以健康快乐的长大。

希望当作实验标本继续观察,既然已经可以编辑出婴儿了,就是一项科研成果了,以后可以继续研究!

基因编辑婴儿论文题目

为背了人类伦礼道德,相当于培育了新品种。

百害而无一利

当前技术太过不成熟,不应当把人当实验品。

最近,关于一起称为“世界首例免疫艾滋病基因编辑婴儿”的事件一经爆出,国内外媒体均反响剧烈。从克隆起,对于我们人而言,这样的恐惧始终围绕着我们,随着上世纪克隆动物的出现,即第一只克隆动物多利羊的成功克隆,让我们在而后的一段时间对基因生物学产生了巨大的恐惧。 这可以说是个脑洞大开的事情,一说到基因生物学,人们的第一反应很可能是西方的某某电影里的疯狂科学博士,泯灭人性的做着各种号称是用尽一生心血的实验,而更多的成果是让我们大众无法接受的。 就拿这次事件而言,免疫艾滋病的确是一个好消息,但我们必须知道的是,我们畏惧“基因编辑”,就像电影里的那样,人会变异,那岂不是都成了城市英雄,没有弱者,全都是捍卫世界的人?要知道,从古至今,有正派便有反派,我们唯一要明白的是,我们不是因为自己是弱者才去基因编辑,不是因为惧怕某种疾病就用基因编辑去篡改让自己免疫,虽说今后的技术成熟了,可能会开放部分技术造福人类,但作为临床,这样的行为很无道德,甚至可以说毫无人性可言。 作为一个人,生活在社会集体里的人,我们必须意识到什么该做,什么不该做,我们是谁,我们全人类的共同目标是什么。当然,人生在世,总会有人不知道或者不明确这些问题的答案,因此,他们不明白什么是对的,什么是错的。 基因编辑就目前来看前景十分开阔,然而这样强大的技术会让我们明白一个东西,那就是,利用好了便是造福于人类,用得不好便会对整个社会造成一定的危害,我们必须要在面对我们自身的拷问中找到一个平衡的支点,明确什么是有益于人类,什么不益于社会,这样我们便能在这样的技术成熟时,享受这一成果带来的好处,而不至于因为本心的好意坏了大事。 我们并不谴责那些有前瞻性的人,因为他们是我们人类社会的进步的引领者,但我们也必须明白一点,反人道而行的最终结果会是我们人类自食其果。

基因编辑技术的参考文献

“上帝的手术刀”对海洋生物做了啥? 今年的诺贝尔化学奖颁发给了两位女科学家——埃马纽埃尔·卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗·杜德纳(Jennifer A. Doudna),以表彰她们开发了被誉为“上帝的手术刀”“基因魔剪”的CRISPR/Cas9基因编辑技术。今年的诺贝尔化学奖得主 CRISPR即成簇的规律性间隔排列的短回文重复序列(clustered regularly interspaced short palindromic repeat )。Cas是CRISPR关联基因(CRISPR associated gene)的缩写。 CRISPR最初由日本科学家在大肠杆菌中发现,后来被证明广泛存在于约45%的细菌和约90%的古细菌中,是其抵御噬菌体入侵的重要武器。 当噬菌体第一次侵染细菌时,细菌的Cas1和Cas2蛋白会将噬菌体的一小段DNA片段整合到自己的重复序列区中,成为一个新的间隔序列。待同一种噬菌体再次来袭时,病毒DNA被间隔序列转录的guide RNA识别,并激活Cas核酸酶,切断噬菌体的DNA双链,从而守护自身安全。利用此原理,科学家们可以实现对研究对象某一特定序列的靶向敲除、敲入等。CRISPR/Cas9 CRISPR/Cas9系统可分为三类,其中CRISPR/Cas9结构和操作更简洁,由guide RNA引导Cas9核酸内切酶进行靶向基因编辑,自2013年首次运用到真核生物基因编辑以来,发展迅速,曾于2013年、2015年两次被Science杂志评为当年十大科学突破,且今年终于不负众望,摘得诺奖桂冠。 目前关于CRISPR基因编辑技术的报道多集中于人类医学(处于实验室研究阶段)和线虫、拟南芥、果蝇、斑马鱼、小鼠等模式生物。那么,这把“上帝的手术刀”在海洋生物中的应用取得了哪些进展呢?构建海洋模式生物与疾病模型 将CRISPR基因编辑技术运用于海洋生物的最早报道可追溯至2014年。这一年,Sasaki、Stolfi等人均以海洋模式生物——玻璃海鞘(Ciona intestinalis)为研究对象,利用CRISPR技术先后实现了Hox基因定位和ebf基因定点突变。 Hox基因是一种动物基因组内高度保守的发育调控基因,在动物体轴形成过程中起重要的作用。ebf基因可在胚胎发育过程中决定细胞命运。这两种基因突变的玻璃海鞘模型可用于探究脊索动物身体形成的分子机制。 2016年,Nymark等将CRISPR技术运用到了海洋藻类中, 成功敲除了三角褐指藻(Phaeodactylum tricornutum)的CpSRP54基因。 CRISPR技术为海洋生物模型构建提供了新的视角,加快了科学家们探秘海洋生物起源与进化的步伐。培育海洋经济新品种 海产鱼虾贝蟹是我们饮食中重要的蛋白质来源,而良种的培育能促进海水养殖业快速发展。利用基因编辑技术在新品种培育中具有诸多优势,如育种周期短、靶向性强、比转基因技术安全性高等,有着广阔的应用前景。 2019年,Kim等将肌生成抑制素(PoMSTN)基因相关基因编辑组件通过显微注射导入牙鲆(Paralichthys olivaceus)胚胎中,经过筛选,得到了杂合双等位基因突变体,表现为身体增厚,肉质更加肥满。与野生型(左)相比,PoMSTN基因杂合突变的牙鲆(右)的肥满度增加(图片来自Kim等,2019) 今年,来自河北大学的研究者们利用CRISPR/Cas9技术敲除了脊尾白虾(Exopalaemon carinicauda)的类胡萝卜素异构加氧酶(EcNinaB-X1)基因,发现突变体在受到副溶血性弧菌或嗜水弧菌的攻击时存活率明显高于野生型;又敲除了另一个类胡萝卜素加氧酶基因EcBCO2,突变体具有更高的抗病性。这些研究发现为培育抗病抗逆对虾新品种提供了新思路。解析海洋生物基因功能 解密基因的功能是解读生命这部“天书”的先决条件,基因编辑技术为科学家们提供了一个解密的绝妙手段。2014 年,Nakanishi等人将CRISPR 技术首次运用于甲壳动物,失活了大型溞(Daphnia magna)的pax6 基因,证明了该基因在眼发育中的关键作用。2019年,Liu等人成功敲除海胆的聚酮化合物合酶1基因(Psk1),突变个体从表现为白化。野生型(左)与Pks1基因敲除的白化海胆(右)(从3个月至成年) 需要承认,基因编辑技术在海洋生物的应用仍处于初级阶段,受到海洋生物材料本身问题(如显微注射后的受精卵孵化率有待提高、海洋生物细胞系数目较少等)、CRISPR系统脱靶问题等方面的制约。但毫无疑问,海洋生物基因编辑领域的前途是光明的,我们有理由相信科研工作者们会不断创新,成功解决上述问题,取得海洋生物基因编辑领域的一个又一个成就!参考文献Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): J, Cho J Y, Kim J W, et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus[J]. Aquaculture, 2019, 512: D, Awazu A, Sakuma T, et al. Establishment of knockout adult sea urchins by using a CRISPR‐Cas9 system[J]. Development, Growth & Differentiation, 2019, 61(6): 378-388.

β细胞是人体的胰岛素“工厂”。它们对升高的血糖作出反应,分泌出胰岛素,向肌肉细胞发出信号,以吸收并利用血液中的葡萄糖。

糖尿病患者的β细胞往往不能产生足够的胰岛素:对于2型糖尿病患者而言,是由于β细胞随着时间的推移而功能下降。对于1型糖尿病患者而言,是由于自身免疫系统发生故障,并攻击、损坏了β细胞。

在一些糖尿病患者中,β细胞衰竭是基因缺陷所导致的结果。在过去的十年里,研究人员发现基因代码中的少数几个地方,一旦发生微小的错误就会干扰身体感应或产生胰岛素的能力。其结果就是医学上所说的“单基因糖尿病”。

这种单基因突变导致的糖尿病远比人们所知的要多。美国纽约哥伦比亚大学Naomi Berrie糖尿病中心的干细胞生物学家Dieter Egli博士指出,大约1%到5%的糖尿病患者属于单基因糖尿病,在全球范围内这个数字以百万计,因此“单基因糖尿病”并不是一种罕见的疾病。

几十年来,替换失去功能的β细胞一直是治疗所有类型糖尿病的“圣杯”(注:代指具有神奇能力的事物)。研究人员已经尝试了从移植胰腺到植入β细胞的多种方法,但是,这些手术的成本很高,因为它们是外来器官、细胞,身体会排斥它们,控制这种免疫排斥反应需要借助强大的免疫抑制药物,或是用某种方法将所移植的β细胞“封装”起来,以瞒过自身免疫系统。

由于单基因糖尿病是单一基因缺陷或突变的结果,新的基因技术为单基因糖尿病患者提供了治愈的希望,甚至一些2型糖尿病患者也有望获得治愈。在美国糖尿病协会(American Diabetes Association,ADA)的资助下,Dieter Egli博士和他的科研团队正在进行单基因糖尿病的研究,特别是对于一些出生时或出生不久后身体就不能产生胰岛素的病例,他们制造出干细胞,借由干细胞再制造某些特定的人体组织,包括β细胞、神经组织等。

然后,他们使用了一种名为“CRISPR-Cas9”的尖端技术,来修复那些阻止β细胞正常工作的基因错误 [1] 。在过去的一年里,这项研究取得了可喜的成果,他们已经能够纠正干细胞的突变,使β细胞重新产生胰岛素。

下一步预期,可将经过修正的 β细胞 重新植入患者体内。因为它们来源于患者自身的细胞,所以可以被身体接受而不需要应用免疫抑制药物,植入后预计能像正常β细胞那样对血糖水平做出反应,并且产生胰岛素。

然而,基因编辑所依托的科学技术太前沿了,以至于还没有被美国食药监局(FDA)批准用于人体试验。为了观察新的β细胞是否能起作用,Dieter Egli博士将修正后的人类β细胞植入β细胞受损的实验动物体内。人们欣喜地看到,通过将β细胞移植到小鼠体内,可以保护缺乏 β细胞 的小鼠免于罹患糖尿病。

Dieter Egli博士说,如果能将修正后的β细胞安全地植入患有单基因糖尿病的人体内,那就相当于治愈了糖尿病。

在基因编辑技术应用于人类之前,还有很多工作要做。一些研究者担心,用于编辑基因突变的技术可能会在其他地方引起意想不到的“偏离目标”的影响。Egli博士表示,“利用老鼠模型是一个很好的开始,但是只有在人类身上进行尝试,我们才能最终得到答案。”

即使Egli博士和其他领域的研究人员能够证明这种基因治疗是安全的,与试纸、血糖仪和胰岛素注射相比,要获得好的成本-效益比,可能还需要一些时间。虽然到那时,患者不再需要支付胰岛素、口服降糖药和其他血糖管理用品的费用,但预计个性化干细胞治疗也可能会花费每位患者数万美元,甚至更多。

据了解,目前在国内也有一些学者在进行相关研究 [2] 。因此,笔者愿意乐观地相信,随着研究的深入、技术的成熟和普及,这种可能会治愈糖尿病的新疗法将会有走出实验室、走近你我身边的那一天。让我们一同拭目以待,继续关注来自这一领域的好消息吧!

参考文献:

[1] Hasegawa Y, Hoshino Y, Ibrahim AE, et al. Generation of CRISPR/Cas9-mediated bicistronic knock-in Ins1-cre driver mice[J]. Exp Anim, 2016,65(3):319-327.

[2] 曹曦,宋丽妮,张怡尘,等. 应用CRISPR/Cas9技术制备MrgD基因敲除小鼠模型[J]. 首都医科大学学报,2018,39(4):517-521.

  • 索引序列
  • 基因编辑婴儿参考文献
  • 基因编辑婴儿死了
  • 基因编辑婴儿一岁了
  • 基因编辑婴儿论文题目
  • 基因编辑技术的参考文献
  • 返回顶部