首页 > 学术期刊知识库 > 图像分割算法的研究论文

图像分割算法的研究论文

发布时间:

图像分割算法的研究论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

论文阅读笔记:图像分割方法deeplab以及Hole算法解析deeplab发表在ICLR2015上。论文下载地址:方法概述deeplab方法分为两步走,第一步仍然采用了FCN得到coarsescoremap并插值到原图像大小,然后第二步借用fullyconnectedCRF对从FCN得到的分割结果进行细节上的refine。下面这张图很清楚地展示了整个结构:然后这张图展示了CRF处理前后的效果对比,可以看出用了CRF以后,细节确实改善了很多:deeplab对FCN更加优雅的处理方式在第一步中,deeplab仍然采用了FCN来得到scoremap,并且也是在VGG网络上进行fine-tuning。但是在得到scoremap的处理方式上,要比原FCN处理的优雅很多。还记得CVPR2015的FCN中是怎么得到一个更加dense的scoremap的吗?是一张500x500的输入图像,直接在第一个卷积层上conv1_1来了一个100的大padding。最终在fc7层勉强得到一个16x16的scoremap。虽然处理上稍显粗糙,但是毕竟人家是第一次将图像分割在CNN上搞成end-to-end,并且在当时performance是state-of-the-art,也很理解。deeplab摒弃了这种做法,取而代之的是对VGG的网络结构上做了小改动:将VGG网络的pool4和pool5层的stride由原来的2改为了1。就是这样一个改动,使得vgg网络总的stride由原来的32变成8,进而使得在输入图像为514x514,正常的padding时,fc7能得到67x67的scoremap,要比FCN确实要dense很多很多。但是这种改变网络结果的做法也带来了一个问题:stride改变以后,如果想继续利用vggmodel进行finetuning,会导致后面filter作用的区域发生改变,换句话说就是感受野发生变化。这个问题在下图(a)(b)中通过花括号体现出来了:Hole算法于是乎,作者想出了一招,来解决两个看似有点矛盾的问题:既想利用已经训练好的模型进行fine-tuning,又想改变网络结构得到更加dense的scoremap.这个解决办法就是采用Hole算法。如下图(a)(b)所示,在以往的卷积或者pooling中,一个filter中相邻的权重作用在featuremap上的位置都是物理上连续的。如下图(c)所示,为了保证感受野不发生变化,某一层的stride由2变为1以后,后面的层需要采用hole算法,具体来讲就是将连续的连接关系是根据holesize大小变成skip连接的(图(c)为了显示方便直接画在本层上了)。不要被(c)中的padding为2吓着了,其实2个padding不会同时和一个filter相连。pool4的stride由2变为1,则紧接着的conv5_1,conv5_2和conv5_3中holesize为2。接着pool5由2变为1,则后面的fc6中holesize为4。代码主要是im2col(前传)和col2im(反传)中做了改动(增加了hole_w,hole_h),这里只贴cpu的用于理解:

具体指的什么?是原理啊还是编程实现?

图像分割算法的本科毕业论文

通过遥感变化信息检测方法对两时相遥感影像进行处理分析后,得到 “变化信息”影像,同时为了便于后续震害信息的识别,需要把这些变化信息从复杂的环境背景中提取出来,得到一个仅包含变化信息的二值影像,这里就需要用到图像分割 ( ImageSegmentation ) 技术。图 像 分 割 包括 手 动分 割 和 自动分割两种,手动分割是指操作者利用相关的经验进行小图斑的合并、提取和取舍,但是对于大区域遥感影像来说,手工操作工作量大、效率低、速度慢、周期长、容易漏掉小图斑,并且分割图斑的边界容易受到操作者的主观控制,对精度的影响也较大,所以本研究中的图像分割一般指的是自动分割。

退化废弃地遥感信息提取研究

从 20 世纪 70 年代起,图像分割方法一直受到各国学者的关注,至今已经提出了很多种分割方法,FuK. S. ( 1981) 将分割方法分成阈值分割、边缘分割和区域分割,实际上区域分割包含了阈值分割。蔡殉、朱波 ( 2002) 则将图像分割方法分成更多的类别,包括阈值分割、彩色分割、基于模糊集法、深度分割、像素分割、区域增长法,其中彩色分割、深度分割和像素分割都属于阈值分割。

由于现今遥感变化信息检测还处于像元级别 ( 钟家强,2005) ,通过不同检测方法,对灰度、彩色影像进行处理变换,使得变化信息的灰度 ( 像素值) 和色彩信息得到加强,通常表现出灰白色 ( 图 4 - 8、图 4 - 9) 和亮绿色 ( 图 4 - 11) ,与周围地物的色标不协调,可以通过确定相关的变化阈值把变化区域分割出来。但是由于变化信息受到太阳辐射、大气干扰、传感器参数、空间分辨率、光谱分辨率以及季节差异等因素影响,变化图斑的灰度有时在一定的范围内波动,增加了变化信息精确分割的难度,这使得变化阈值的确定显得尤为重要。

( 一) 变化影像特征分析

通过多时相遥感变化信息检测方法得到的灰度或彩色影像通常具有以下特征: ① 影像中光谱特征复杂,包含的地物类型众多,但是变化信息和背景环境的光谱性质不一致。② 灰度影像的变换信息图斑一般分布在灰度轴的两端 ( 就是较亮的区域) ,不过有时也可能位于暗端,极少数情况下也可能位于两者之间,这要根据具体的遥感数据和采用何种检测方法来定; 彩色影像变化信息图斑一般为亮绿色,是否能够和周围地物类型明显区分要根据实际情况而定。③ 变化信息图斑内部的灰度值比较均匀,但是会在一定范围内波动,所以图像分割时很容易丢失细小的图斑。④ 变化信息图斑之间灰度特征比较相似 ( 一致) ,但是纹理特征的差别通常较明显,因为变化信息的图斑可能属于不同的地物类型,所以通常不能用纹理信息来分割变化信息图斑。⑤ 由于非人为控制的因素,影像中不可避免地存在一些噪声信息,这些噪声信息一般表现在与变化信息图斑接近的小图斑( 图 4 - 9 表现得特别明显) ,所以分割的时候要区分哪些是变化信息图斑,哪些是噪声图斑。⑥ 对于不同的环境和区域,变化信息图斑是服从随机分布的,有的地方稀疏,有的地方密集。

( 二) 单阈值区域分割法

单阈值区域分割是一种简单有效的图像分割方法,其用一个阈值将变化图像的灰度级分为两个部分: 变化与未变化。其最大特点是计算简单,在重视运算效率的应用场合 ( 例如用于硬件实现) 得到了广泛应用 ( 冯德俊,2004) 。一般是利用图像的灰度直方图来确定分割阈值。在计算分割阈值时,常在去除噪声的基础上将灰度直方图包络成一条曲线,如果图像上有多个特征区域,其直方图就会出现多个峰值,每个峰值对应一个特征区域,而谷底值点就为分割阈值,用以划分不同的特征区域。

复杂图像的目标和背景的灰度值时常有部分交错,为了在分割时使这种错误分割的概率最小,需要寻找出最优的分割阈值,所以单阈值区域分割法也叫最优阈值法,意指能够使分割误差最小。图像的灰度直方图可以看成是像元灰度值的概率分布密度函数,假设一幅图像仅含有目标和背景两个主要的灰度值区域,那么其直方图就表示对应目标和背景两个单峰值的概率分布密度函数之和,如果已知密度函数的形式,就可以计算出使误差最小的最优阈值。其计算原理如下:

假设一幅含有高斯噪声的图像,其背景和目标的直方图(概率密度函数)分别为pb(z)和po(z),那么整个图像的混合概率密度p(z)为(章毓晋,2001):

退化废弃地遥感信息提取研究

式中:σb和σo分别为背景和目标均值的均方差;μb和μo分别为背景和目标的平均灰度值;pb和po分别为背景和目标区域灰度的先验概率,二者之和为1。如果μb<μo,需要确定阈值T,将小于阈值的分割作为背景,大于阈值的分割作为目标,假设将目标像元错误地划分为背景以及把背景错误地划分为目标的概率分别为Eb(T)和Eo(T),则总的误差为两者之和E(T)。为了使该误差最小,将总误差对T求导数,并令导数为零,得到

退化废弃地遥感信息提取研究

将该式代入式(4-3),可得二项式

退化废弃地遥感信息提取研究

求解该二项式得到最优阈值

退化废弃地遥感信息提取研究

最优阈值T的选取原理如图4-12所示,其原理可以概括为:将经过平滑去噪后的直方图看成一条曲线h(x),最优阈值T必须满足以下两个条件:

退化废弃地遥感信息提取研究

图4-12 最优阈值选取原理

设原始图像 f( x,y) 的灰度值范围为 G =[0,L -1],用最优单阈值法把图像分成两类,最优分割阈值为 T ( 0 < T < L -1) ,分割后生成的二值影像为 g( x,y) :

退化废弃地遥感信息提取研究

本研究在 ERDAS 软件下利用空间建模语言 ( SML) 实现了单阈值 ( 最优阈值) 法,分别分析了图 4 -8、图 4 -9 和图 4 -11 变化影像的直方图分布情况 ( 图 4 -13) ,并进行了最优阈值区域分割,把得到的三幅二值变化信息影像取合集,即把三幅影像相加,保留所有大于 1 的像素点,最后得到变化区域二值影像,如图 4 -14 所示。

图 4 -13 三幅变化影像的直方图曲线

图 4 -14 单阈值法提取的变化信息二值影像( 白色区域为发生变化的区域)

图 4 -15 双阈值模糊识别法计算流程

(三)双阈值模糊识别分割法

由于单阈值区域分割法只有一个全局阈值参与影像分割,然而影像受到大气、噪声、光照以及背景灰度变化的共同影响,导致了变化信息的灰度值总是在一定范围内波动,常常出现变化信息和噪声以及其他地物类别交错的现象。在这种情况下,单阈值区域分割难以满足精度的要求,如何区分出其中的变化信息?本研究提出了双阈值模糊识别分割法,其流程如图4-15所示。

利用变化图像的灰度直方图计算得到两个阈值T1和T2,并且T1<T2,然后利用双阈值法对变化图像进行分割(DaneKottkeetal.,1989、1998),将图像f(x,y)分割为三个类别:背景、不确定类、变化信息:

退化废弃地遥感信息提取研究

对其中不确定的像元保留其灰度值不变,利用模糊识别算子构建目标函数,分别计算出该像元属于两种不同类别(背景和变化信息)的模糊隶属度,通过比较两种隶属度的大小判断其归属(把它归类到隶属度大的那一类当中),划分到背景与变化信息当中,直到完成所有不确定像元的划分,即完成了整个分割过程。

1.双阈值T1和T2的计算

核心阈值T1的计算按照公式4-5的单阈值(最优阈值法)区域分割法得到。核心阈值T2则是利用灰度直方图中大于T1阈值的像元灰度求平均值得到。

设影像的灰度值在0到255之间(8维图像),利用离散积分的原理来计算灰度的均值。如果利用单阈值法计算出来的最优阈值为T1,那么核心阈值T2的计算公式如下:

退化废弃地遥感信息提取研究

式中:ni表示变化图像中灰度为i的像元出现的个数。

2.模糊识别算法

模糊识别算法的基本思想如下(李希灿等,2003、2008):

首先将样本集规格化,就是把样本集的特征值规格化到0到1之间,设样本特征值y规格化为x,样本集n个样本划分为C个类别,则模糊识别矩阵为

退化废弃地遥感信息提取研究

式中:Uhj为样本j归属于第h类的相对隶属度,h=1,2,…,C,且应当满足以下条件:

退化废弃地遥感信息提取研究

设C个类别的特征值为标准指数或模糊聚类中心指标,则C个类别的中心指标向量为:

退化废弃地遥感信息提取研究

式中:Sh为第h类的中心指标,0≤Sh≤1且h=1,2,…,c,为了求解最优模糊识别矩阵U和模糊最优中心指标S,建立目标函数(李希灿,1998):

退化废弃地遥感信息提取研究

式4-14的意义是:样本集对于全体类别的加权广义海明距离平方和为最小。显然,在不分类别(h=1,Uhj=1)的情况下,该公式变为通常的最小二乘最优准则。在式4-14的目标函数下,计算出最优模糊划分的隶属度和中心指标向量:

退化废弃地遥感信息提取研究

式中:u*hj为样本j隶属于h类的隶属度。

3.分割归类

通过构造的目标函数(隶属度函数),分别计算出每个像素点属于“目标”(变化信息)和“背景”(非变化信息)的隶属度,并把它分入到隶属度大的那一类当中,从而完成图像分割的过程。

图4-16 双阈值模糊识别分割法二值影像

(白色区域为变化信息)

通过在ERDAS下利用空间建模语言(SML)实现该分割算法,分别将图4-8、图4-9和图4-11变化图像作为输入对象,进行双阈值模糊识别分割,得到的二值变化图像取合集最终结果如图4-16所示。从图4-16中可以看出,双阈值模糊识别分割法能够在一定程度上消除单阈值区域分割法中混杂在变化信息中的离散噪声和个别地物类型,使变化信息更加准确、集中,从而提高了分割的精度。实践证明,双阈值模糊识别分割法有着坚实的理论基础,并且在实际变化信息的分割中能够取得很好的效果,是一种可行、可靠的图像分割自动算法。

我能帮你写的。要有全局观念,从整体出发去检查每一部分在论文中所占的地位和作用。看看各部分的比例分配是否恰当,篇幅的长短是否合适,每一部分能否为中心论点服务。比如有一篇论文论述企业深化改革与稳定是辩证统一的,作者以浙江××市某企业为例,说只要干部在改革中以身作则,与职工同甘共苦,可以取得多数职工的理解。从全局观念分折,我们就可以发现这里只讲了企业如何改革才能稳定,没有论述通过深化改革,转换企业经营机制,提高了企业经济效益,职工收入增加,最终达到社会稳定。(二)从中心论点出发,决定材料的取舍,把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的。有所失,才能有所得。一块毛料寸寸宝贵,舍不得剪裁去,也就缝制不成合身的衣服。为了成衣,必须剪裁去不需要的部分。所以,我们必须时刻牢记材料只是为形成自己论文的论点服务的,离开了这一点,无论是多少好的材料都必须舍得抛弃。

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理方面了解的了。

svm图像分割研究生论文

可以学术研究的人都知道一个著名的短语Publish or perish。就是说,研究人员发表文章是硬道理,只有快速而持续在某些专业领域发表自己的研究成果才能在学术界占领高地,并且让自己走得更远。而无论大家如何评价学术论文发表对科学和社会的贡献,学术圈实质上的游戏规则一直没有太大改变:对研究人员来说发表论文是硬通货,是他们获得职位、争取资源、赢得荣誉的重要途经和手段。目前杂志数量爆发式增长,研究人员在发表论文的时候自然有了更多的选择,但同时也给学术的评估带来了不小的麻烦,于是乎评估人员只好依赖于期刊的质量指标来评定研究质量。比如汤普森的影响因子就是为了将这个复杂而微妙的判定简化为一个数字,当然这也是目前业内使用广泛的指标。理论上影响因子似乎是期刊所发表研究的质量,但这一假设目前却越来越受到质疑。学术圈的人都深切体会到一篇文章能否在某个期刊终发表出来,除了科学质量方面的因素外还有其他一些很重要的因素。比如我们一直在告诫学生,一篇稿件在写作风格上、突出重点上和表达上些微的差别就可能影响杂志的接收情况。那么,这究竟只是老道的论文作者的感觉,还是不同期刊上文章的表达真的存在着这样那样的差别呢?如果这些差别真的存在,那么是否就表明影响因子真的与科学质量以外的东西有关呢,而作者是否可以通过改善一些相对简单的写作技巧,以此来提高他们在高影响因子期刊上发表论文的机会呢?在竞争激烈的学术圈中,年轻的研究人员和学生们必须尽可能地发表更多的论文,也希望大限度地争取在好的刊物上发表文章的机会,那么我们应该怎么做呢?美国南伊利诺斯大学的Brady Neiles及其同事在近一期的Bulletin of the Ecological Society of America上撰文分析了不同影响因子期刊中发表的论文,他指出:在竞争激烈的环境下,作者如果要让他们的稿件脱颖而出,改善写作的风格可能是一个有效的手段。而有力的科学写作手段也可看作是某种程度的推销和讲故事,作者必须找到如何创造性地讲故事并清晰地表达这些发现的重要性。

这篇Multi-Branch Hierarchical Segmentation 文章来自上海交通大学仿脑计算与机器智能研究中心(简称BCMI),来自CVPR 2015,是一篇用 segmentation 来做 proposal 的论文,该文是在selective search原型的基础上进行了进一步区域聚合方法的探索。 Segment based object proposal的方法的主要思想是,将分割好的图像区域进行组合来得到目标区域。这存在一个问题:上一步区域组合出错会导致下一步错误,这种single-way merge segmentation region的方法是有缺陷的。所以此篇文章采用muti-branch分支的方法来扩大搜索范围,以达到改进精度的目的。 通过对分割区域空间搜索来得到目标区域的方式,单纯使用贪心策略是不可取的。此篇文章对分割区域的组合采用了一个原则:包含了多种颜色和纹理区域的复杂目标需要使用不同的组合策略来完成分割区域组合。这篇文章的主要思路就是将多种组合策略进行组合搜索,来改善selective search方法的精度。 此篇文章研究的内容主要由多种分割区域组合策略和分割区域搜索两部分组成。 (1)Learning complementary merging strategies 论文将区域组合的过程抽象为线性分类器,并通过改变每次训练样本的权值来训练分类器(类似Boosting过程)。但与Boosting不同的是,论文提出的区域组合分类器不是将多个弱分类器组合成强分类器,而是通过分类器之间的错误修改来形成新的分类器。 (2) Multi-staged branching 通过上面的区域组合分类器,可以对图像分割区域进行搜索,将一个贪心聚合的步骤分成了多个。 论文主要通过树形组织来增加分割区域的组合搜索空间,并用区域组合结果来训练SVM分类器。 文章采用树型分支的方式来组织不同的区域组合策略,同一个分支下的分割区域组合策略方法相同。 假设区域聚合树的高度为T,树的每个非叶子节点的度为K,则最底层可以得到KT个区域聚合结果,总共可以得到 个proposal窗口,其中λ表示每次区域聚合增加的零散区域数量,N为最开始图像拥有的分割区域数量。则可以使用λ和N来控制最后的proposal数量。 其中生成每个分支的过程实际上还是贪心聚合的方法,但对这个过程进行了分层操作。 上一点描述了如何进行分支操作,接下来是如何使用图像分割区域聚合树来生成proposal的过程,主要是如何设计分割区域分类器。 为使得图像分割区域聚合树不同分支上的proposal分类模型相同,文中使用了binary linear classifier(二元线性分类器)来对分割区域进行分类。 即将属于同一物体的不同区域作为正例,将属于不同的物体的不同的区域作为反例作为训练。进而得到相应的SVM分类器。 实验的原始图像数据来自PASCAL VOC2007,初始的图像分割图像算法和图像区域特征完全与selective search相同,这篇文章主要在区域聚合算法上面进行了改进。 进行对比的算法有selective search (SS), geodesic object proposals (GOP), global and local search (GLS), edge boxes (EB) 和 binarized normed gradients(BING)。 实验结果对比如下所示: 在对比中,文章提出的方法(Ours)与Selective Search (SS)差别并不太大。在低proposal数量情况下Edge Box和Selective Search的结果要好于文章提出的方法;在高proposal数量情况下,文章提出的方法结果稍微好一点。 上表是几种方法加R-CNN在PASCAL VOC2007识别结果对比,文章中并没有注明对比情况下的IoU参数。从表中看出,就检索精度上,文章提出的算法与Selective Search并没有太大的区别,文章提出的算法改进很有限。 这篇文章的主要思想是对Selective Search方法就分割区域聚合过程进行改进,文章使用了多层树形聚合方法,将之前的单贪心聚合分为多个贪心聚合流程,并使用SVM进行区域分类。文章使用的树形区域聚合方法确实增大了分割区域聚合的搜索空间,但从单个过程来看还是贪心聚合的方式,所以文章对Selective Search的改进程度很小,主要提供了一种新的分割区域聚合的思路。 从实验对比结果来看,文章提出的方法只在低proposal数量情况下稍微优于Selective Search,但文章提出的方法使用的空间复杂度远大于Selective Search,而且文章提出的方法增加了计算proposal的时间。 Uijlings, Jasper RR, et al. "Selective search for object recognition." International journal of computer vision (2013): 154-171.

论文地址:     V-Net 是另一种版本的3D U-Net。它与U-Net的区别在于: 1、3D图像分割end2ent模型(基于3D卷积),用于MRI前列腺容积医学图像分割。2、新的目标函数,基于Dice coefficient。3、数据扩充方法:random non-linear transformations和histogram matching(直方图匹配)。4、加入残差学习提升收敛。 (1)网络结构     其网络结构主要特点是3D卷积,引入残差模块和U-Net的框架,网络结构如图:          整个网络分为压缩路径和非压缩路径,也就是缩小和扩大feature maps,每个stage将特征缩小一半,也就是128-128-64-32-16-8,通道上为1-16-32-64-128-256。每个stage加入残差学习以加速收敛。    图中的圆圈加交叉代表卷积核为5*5*5,stride为1的卷积,可知padding为2*2*2就可以保持特征大小不变。每个stage的末尾使用卷积核为2*2*2,stride为2的卷积,特征大小减小一半(把2x2 max-pooling替换成了2x2 conv.)。整个网络都是使用keiming等人提出的PReLU非线性单元。网络末尾加一个1*1*1的卷积,处理成与输入一样大小的数据,然后接一个softmax。 (2)损失函数     由于前景比较小,在学习过程中不容易被学习到,因此重新定义了Dice coefficient损失函数。两个二进制的矩阵的dice相似系数为:          使用这个函数能避免类别不平衡。

基于聚类的图像分割方法研究论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

简要说一下:图像分割基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通集合。常用方法有:1) 以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法;2) 以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割;3) 先检测边缘像素,再将边缘像素连接起来构成边界形成分割。具体的阈值分割:阈值分割方法分为以下3类:1) 全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。2) 局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。3) 动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点:1) 每幅子图像的尺寸不能太小,否则统计出的结果无意义。2) 每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。3) 局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。参详书目当然是《数字图像处理》,及网上的一些有用文档;工具:MATLAB或VC++

问题一:聚类分析的意义是什么 科技名词定义中文名称:聚类分析 英文名称:cluster *** ysis 定义1:按照某种距离算法对数据点分类。 应用学科:地理学(一级学科);数量地理学(二级学科) 定义2:把观测或变量按一定规则分成组或类的数学分析方法。 应用学科:生态学(一级学科);数学生态学(二级学工) 聚类分析指将物理或抽象对象的 *** 分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。 问题二:数据挖掘,聚类分析算法研究的目的和意义是什么! 15分 图像分割 基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通 *** 。常用方法有: 1) 以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法; 2) 以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割; 3) 先检测边缘像素,再将边缘像素连接起来构成边界形成分割。 具体的阈值分割: 阈值分割方法分为以下3类: 1) 全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。 2) 局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。 3) 动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。 全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点: 1) 每幅子图像的尺寸不能太小,否则统计出的结果无意义。 2) 每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。 3) 局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。 全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。 参详《数字图像处理》工具:MATLAB或VC++ 问题三:聚类分析方法有什么好处 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。 常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。 注意事项: 1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类; 2. K-均值法要求分析人员事先知道样品分为多少类; 3. 对变量的多元正态性,方差齐性等要求较高。 应用领域:细分市场,消费行为划分,设计抽样方案等 优点:聚类分析模型的优点就是直观,结论形式简明。 缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映珐试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。 问题四:聚类分析的结果分成几类,但是这几类有什么关系呢,这几类有什么含义。 5分 这个要看你是面对什么问题了,如:用聚类做财务舞弊,则会有以下几类:正常财务报表、虚增利润舞弊财务报表、关联交易财务舞弊报表等 问题五:SPSS新手求问聚类分析 聚类分析主要作用是把一些数据分成未知的几类这样理解对吗? 系统聚类的 建议买本spss的教程,可以更加系统的学习。要是写论文的话, 可以帮忙数据 he 分析。 问题六:主成分分析法和聚类分析法的区别 问题七:如何评价spss系统聚类分析结果? 用方差分析来判定聚类结果好坏,类与类之间是否差异性显著,呵呵~~ 问题八:聚类分析主要解决什么类型的实际问题 主要解决实现不知道类别标签的样本集的分类问题.聚类其实也是实现分类的功能.聚类和分类的区别:分类是用知道类别标签的样本集去训练一个分类器,然后用该分类器对其他未知类别的样本进行归类,由于训练分类器用到了知道类别的样本,所以属于有导师学习;聚类是完全不知道各个样本的类别,按照一定的聚类度量准则直接进行聚类,所以属于无导师的学习. 聚类可以用在图像处理,模式识别,客户信息分析,金融分析,医学等很多领域.用模糊聚类进行图像分割就是一个非常典型的应

图像去噪算法的研究论文

题目基于小波变换的图像去噪方法研究学生姓名陈菲菲学号 1113024020 所在学院物理与电信工程学院专业班级通信工程专业1 101 班指导教师陈莉完成地点物理与电信工程学院实验中心 201 5年5月 20日 I 毕业论文﹙设计﹚任务书院(系) 物理与电信工程学院专业班级通信 1 101 班学生姓名陈菲菲一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究二、毕业论文﹙设计﹚工作自 201 5年3月1日起至 201 5年6月20 日止三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。设计任务: (1 )整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2 )在 MATLAB 下仿真验证基于小波变换的图像去噪算法。 2 、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法, 应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。进度安排: 1-3 周:查找资料,文献。 4-7 周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11 周: 研究基于小波的图像去噪算法,在 MATLAB 下对算法效果真验证。 12-14 周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17 周:撰写毕业论文,完成毕业答辩。指导教师陈莉系(教研室) 系( 教研室) 主任签名批准日期 接受论文( 设计) 任务开始执行日期 学生签名 II 基于小波变换的图像去噪方法研究陈菲菲( 陕西理工学院物理与电信工程学院通信 1 101 班,陕西汉中 72300 0) 指导教师: 陈莉[摘要] 图像去噪是信号处理中的一个经典问题, 随着小波理论的不断完善,它以自身良好的时频特性在图像去噪领域受到越来越多的关注。基于小波变换的去噪方法有很多

当前国内、外的研究动态从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年和VetterliM.提出了一种“真正”的二维图像稀疏表达方法——Contourlet变换[7,8],这种变换能够很好的表征图像的各向异性特征。由于Contourlet变换能更好的捕获图像的边缘信息,因此选择合适的阈值进行去噪就能获得比小波变换更好的效果。Starck等人将Curvelet变换应用于图像的去噪过程中并取得了良好的效果[9],该方法虽然能有效的去除噪声,但往往会“过扼杀”Curvelet系数,导致在消除噪声的同时丢失图像细节。在过去的二十年里,自适应滤波器在通信和信号处理领域引起了人们的极大关注。TerenceWang等人针对二维自适应FIR滤波器提出了一种二维最优块随机梯度算法(TDOBSG)[10]。这种算法对滤波器的所有系数使用了空间可变的收缩因子。基于使后验估计方差矢量的二范数最小的最小方差准则,在块迭代的过程中选出最优的收敛因子。线性滤波器的最大优点是算法比较简单且速度比较快,缺点是容易造成细节和边缘模糊。在目前对非线性滤波器的研究中,中值滤波器有较明显的优势,很多科学工作者对中值滤波器作了改进或者提出了一些新型的中值滤波器。Loupas等人提出的自适应的加权中值滤波方法(AWMF),但他利用的Speckle噪声模型不够精确,图像细节损失较大[11]。针对中值滤波器在处理矢量信号存在的缺点,Jakko等人提出两种矢量中值滤波器[12]。近年来,小波分析是当前应用数学中一个迅速发展的新领域,它凭借其卓越的优越性,越来越多的被应用于图像去噪等领域,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet提出了 MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础[13]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone[14]提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被Donoho和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者和提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[15,16,17]。从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪的效果。影响比较大的方法有以下这么几种:和提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[18];等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法[19];学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法[20];等利用原图像和小波变换域中图像的相关性用GCV(generalcross-validation)法对图像进行去噪[21];和Woolsey等人提出结合维纳滤波器和小波阈值的方法对信号进行去噪处理[22],VasilyStrela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法[23];同时,在19世纪60年代发展的隐马尔科夫模型(HiddenMarkov Model)[24],是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法[25,26],它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。另外,尽管小波去噪方法现在已经成为去噪和图像恢复的重要分支和主要研究方向,但目前在另类噪声分布(非高斯分布)下的去噪研究还不够。目前国际上开始将注意力投向这一领域,其中非高斯噪声的分布模型、高斯假设下的小波去噪方法在非高斯噪声下如何进行相应的拓展,是主要的研究方向。未来这一领域的成果将大大丰富小波去噪的内容。总之,由于小波具有低墒性、多分辨率、去相关性、选基灵活性等特点[27],小波理论在去噪领域受到了许多学者的重视,并获得了良好的效果。但如何采取一定的技术消除图像噪声的同时保留图像细节仍是图像预处理中的重要课题。目前,基于小波分析的图像去噪技术已成为图像去噪的一个重要方法。

导言 损坏的图像往往是在其噪声采集和传输。例如在图像采集,其性能的影像传感器是受多种因素,如环境条件和质量检测的内容本身。例如,在获取图像的CCD相机,轻水平和传感器温度是主要影响因素的数量所产生的噪声的形象。图像传输过程中还损坏,由于干扰的频道用于传输。图像降噪技术,必须消除这种添加剂随机噪声,同时保留尽可能多的重要信号的功能。的主要目标,这些类型的随机噪声去除抑制噪声,同时保持原始图像的细节。统计过滤器一样平均滤波器[ 1 ] [ 2 ] , Wiener滤波器[ 3 ]可用于消除这种噪音,但基于小波变换的去噪方法更好的结果证明不是这些过滤器。一般来说,图像去噪规定之间的妥协,减少噪音和保护重要的图像细节。为了实现良好的性能在这方面,去噪算法,以适应图像的不连续性。小波代表性,自然有利于建设这种空间自适应算法。它压缩在一个重要信息信号转换成相对较少,大量系数,代表图像细节在不同的决议尺度。在最近几年出现了相当数量的研究小波阈值和阈值选取的信号和图像去噪[ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ 9 ] ,因为小波提供了一个适当的基础分离噪音信号从图像信号。许多小波阈值技术一样VisuShrink [ 10 ] , BayesShrink [ 11 ]已经证明,效益较好的图像去噪。在这里,我们描述一个有效的阈值去噪技术通过分析统计参数的小波系数。本文安排如下:简要回顾了离散小波变换( DWT域)和小波滤波器银行第二节。小波阈值技术是基于解释第三节。在第四部分提出了新的阈值技术的解释。的步骤在此范围内工作的解释第五节第六节的实验结果这个拟议的工作和其他去噪技术是当前和比较。最后总结发言中给出了第七节。

  • 索引序列
  • 图像分割算法的研究论文
  • 图像分割算法的本科毕业论文
  • svm图像分割研究生论文
  • 基于聚类的图像分割方法研究论文
  • 图像去噪算法的研究论文
  • 返回顶部