首页 > 学术期刊知识库 > 鸡兔同笼论文的相关参考文献

鸡兔同笼论文的相关参考文献

发布时间:

鸡兔同笼论文的相关参考文献

童鞋们……那是数学论文……

什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科。各门科学的“数学化”,是现代科学发展的一大趋势

拔尖人才资料准备 论文发表 论文《通透数量关系 建构数学模型——例谈“鸡兔同笼”解法多样性培养数感及建模》在《教学与研究》杂志2020年第7期发表; 论文《真诚鼓励,一种向美而生的能力——临时生成的数学“班会”育人案例简述》发表于《中小学教育》2020年第12期刊; 论文《特殊时期,“未来学习”的催化剂——互联网+技术视角下的数学教育实践与初探》在《中学生学习报·教研周刊》2020年第11期发表; 论文《“互联网+”技术支持下的小学数学高效课堂构建策略探析》发表于《年轻人》杂志2020年4月刊期;省级荣誉 被聘为第26届江西省中小学幼儿园优秀教学资源展示活动系列课程资源评审专家; 被聘请为江西省第一批智慧作业微课评审专家; 获奖 国家级 作品《不马虎过生日——分数“比”的意义与应用》在新世纪小学数学第13届全国(网络)悦读活动“学习短视频”创作专场中获全国二等奖; 在全国新世纪小学数学第15届教学设计与课堂展示大赛中荣获全国二等奖; 省级  微课资源《作简单图形的三视图》荣获第一届“赣教云”微课征集活动一等奖; 智慧作业微课资源《列方程解含有一个未知数的应用题》获省级二等奖; 融合创新应用教学案例《让生命闪光——“积极抗疫、珍爱生命、健康成长”主题队会》荣获省级二等奖; 个人网络学习空间创建荣获江西省二等奖; 指导的成序列资源《北师大版小学数学四年级下试卷》荣获省级三等奖; 指导作品《人物专题:努力,成全生命之美(上)》荣获第四届全省中小学微视频征集展播活动三等奖; 指导作品《人物专题:努力,成全生命之美(中)》荣获第四届全省中小学微视频征集展播活动三等奖; 指导作品《情景剧:溺水而亡的痛》荣获第四届全省中小学微视频征集展播活动三等奖; 指导作品《课本剧:小英雄雨来》荣获第四届全省中小学微视频征集展播活动三等奖; 指导学生作品《人物专题:爱,伴我成长》荣获第四届全省中小学微视频征集展播活动三等奖; 在2020年春季“智慧作业”微课征集活动中有8节省级公开课被“赣教云”平台收录; 在2020年秋季“智慧作业”微课征集活动中有3节省级公开课被“赣教云”平台收录; 指导的成系列资源《北师大版小学数学四年级下试卷》被江西教育资源公共服务平台录用; 市级 论文《宅家抗疫“玩数学,练思维”益智微课综述》获景德镇市中小学教学论文评比一等奖; 融合创新应用教学案例《让生命闪光》获景德镇市级一等奖; 个人网络学习空间创建荣获江西省景德镇市一等奖; 战“疫”主题征文《只为赢得心中那份踏实》荣获景德镇市二等奖; 微课《让生命闪光》获景德镇市“珍爱生命”专题教育活动微课制作比赛二等奖; 电教论文《疫情,“未来学习”的催化剂》荣获景德镇市级二等奖; 信息技术与学科教学整合课例《看一看》荣获景德镇市级二等奖; 微课《奇数偶数拓展魔术课:隔掌认币——硬币翻转中的奇偶性》获景德镇市级二等奖; 指导的微课《可数名词单数变复数》获景德镇市级二等奖; 指导学生电子板报《复学防控我规划》荣获景德镇市级三等奖; 县级 论文《假设与推理——“鸡兔同笼”问题趣解及模型初建》获乐平市课题研究成果评选一等奖; 指导学生在第十五届青少年书信文化作文竞赛活动中荣获一等奖; 在2020年疫情防控期间线上教育教学课程录制工作中被评为“优秀先进个人”。 课题研究 全国教育科学“十三五”规划课题《互联网+技术在中小学教育教学中的应用研究》结题; 中央电化教育馆课题《专递课堂,名师课堂,名校网络课堂运行机制与考核激励研究》立项; 江西省教育科学规划课题《专递课堂运用与网络空间建设提高课堂教学效率的实践研究》立项。 江西省基础教育课题《整体把握单元教学促进深度学习实践研究——以分数教学为例》立项并被评为重点课题; 江西省基础教育课题《小学数学课堂教学与现代教育技术整合的研究》立项; 景德镇市课题《借助单元结构力量促进分数的深度学习实践研究》立项并评选为重点课题;

例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 1)假设全是鸡,则应该有脚: 2×35=70(只) 因为把有4只脚的兔当成了鸡,所以比总脚数会少一些比总脚数少的脚数: 94-70=24 (只)少了这么多脚是因为把有4只脚的兔当成了只有2只脚鸡,从而每只兔少算了脚: 4-2=2(只)有一只兔,就少算了1个2,2只兔少算了2个2……24里共有几个2,就是兔的只数: 24÷2=12(只)剩下的就是鸡的只数: 35-12=23(只) 2)假设全是兔,则应该有脚: 4×35=140(只) 因为把有2只脚的鸡当成了兔,所以比总脚数会多一些比总脚数多的脚数: 140-94=46(只)多了这么多脚是因为把有2只脚的鸡当成了有4只脚兔,从而每只鸡多算了脚: 4-2=2(只)有一只鸡,就多算了1个2,2只鸡多算了2个2……24里共有几个2,就是鸡的只数: 46÷2=23(只)剩下的就是兔的只数: 35-23=12(只) 补充题:班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?

关于鸡兔同笼问题新探论文范文

兔子X,鸡设成Y,根据题目描述,列出两个方程式,求解就可以了。

这学期我们学习了假设策略,由此我就想到一个非常著名的例题:鸡兔同笼。这个问题是我国古代著名趣题之一。大约在1500年前,《孙子算经》中记载的这个有趣的问题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?同学们,你会解答这个问题吗?你知道孙子是如何解答这个“鸡兔同笼“的问题吗?,原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。我们学习了假设策略,现在解答这道题就不难了,我有两种不同的解题方法,一,假设全是鸡,每只鸡有两只脚 那么35只鸡,就有35*2=70只脚,那么还少94-70=24只脚,每只兔比鸡多两只脚,24/2=12只,这就是兔子的只数,鸡的只数就是35-12=23只。二:假设全是兔子,每只兔子四只脚,那么35只兔子就是35*4=140只脚,多出了140-94=46只脚,每只鸡比兔少两只脚,那么46/2=23只,就是鸡的只数,那么兔子就是35-23=12只。这道题和大多数假设问题相似,其数量关系就是:总数相差量/个体相差量。通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发了我学习数学的兴趣,同时通过多角度地思考,让我尝试用不同的方法去解决鸡兔同笼问题,培养我的逻辑推理能力。

假设法或者用方程都可以解答

“鸡兔同笼问题”是我国古算书《孙子算经》中著名的数学问题,其内容是:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雉兔各几何。” 意思是:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?《孙子算经》用算术方法来解:脚数的1/2减头数,即94/2-35=12为兔数;头数减兔数即35-12=23为鸡数。这种解法虽然直接而自然,也很合乎逻辑,但是却不容易理解。知道孙子是如何解答这个“鸡兔同笼”问题的吗?原来孙子提出了大胆的设想。他假设砍去每只鸡和每只兔1/2的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数。用现在列方程的方法,这个问题就更容易解决了。设鸡有x只,兔有y只,则根据题意有:x+y=35,2x+4y=94,解这个方程组得x=23,y=12。

数学小论文四年级范文鸡兔同笼

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有几只鸡和兔? 算这个有个最简单的算法。(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数 (94-35乘以2)÷2=12(兔子数) 解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了兔的头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。 假设法 假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都抬起一只脚,笼中站立的脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)假设全是兔:4×35=140(只)如果假设全是兔那么兔脚比总数多:140-94=46(只)鸡:46÷(4-2)=23(只)兔:35-23=12(只) 方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。4x+2(35-x)=94解得x=12或 解:设鸡有x只,则兔有(35-x)只。2x+4(35-x)=94解得x=23答:兔子有12只,鸡有23只。通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。二元一次方程解:设鸡有x只,兔有y只。x+y=35,2x+4y=94解得x=23,y=12答:兔子有12只,鸡有23只。 抬腿法 方法一:假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

11111111111111111111111111111111111111111111111111111111111111111111

长期以来,对教师教学的要求强调领会教学大纲、驾驭教材较多,因此教师钻研教材多,研究教法多,而研究学生思维活动较少,因而选择适合学生认知过程的教法也少。实践证明忽视了“学”,“教”就失去了针对性。教学的高低,很大程度上取决于学生的学习态度和学习方法。特别是初一年级学生,在小学阶段学习科目少、知识内容浅,并多以教师教为主,学生所需要的学习方法简单。进入中学后,科目增加、内容拓宽、知识深化,尤其是数学从具体发展到抽象,从文字发展到符号,由静态发展到动态……学生认知结构发生根本变化。加之一 部分学生还未脱离教师的“哺乳”时期,没有自觉摄取的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境。这也往往是初二阶段学生明显出现“两极分化”的原因。因此重视对初一学生数学学习方法的指导是非常必要的。这里仅对数学学习方法指导的内容及形式谈几点拙见。一、数学学习方法指导的内容根据学生学习的几个环节(预习、听课、复习巩固与作业、总结),从宏观上对学习方法分层次、分步骤指导。这种学习方法具有普遍性,可适用其它学科。1.预习方法的指导。初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。2.听课方法的指导。在听课方法的指导方面要处理好“听”、“思”、“记”的关系。“听”是直接用感官接受知识,应指导学生在听的过程中注意:(1)听每节课的学习要求;(2)听知识引人及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听好课后小结。教师讲课要重点突出,层次分明,要注意防止“注入式”、“满堂灌”,一定掌握最佳讲授时间,使学生听之有效。“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基储关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。3.深后复习巩固及完成作业方法的指导。初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后独立完成作业,解题后再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。指导时应教会学生(1)如何将文字语言转化为符号语言;(2)如何将推理思考过程用文字书写表达;(3)正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。4.小结或总结方法的指导。在进行单元小结或学期总结时,初一学生容易依赖老师,习惯教师带着复习总结。我认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复习总结的途径。要做到一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一 些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会总结是数学学习的最高层次。学生总结与教师总结应该结合,教师总结更应达到精炼、提高的目的,使学生水平向更高层发展。二、数学学习方法指导的形式1.讲授式。它包括课程式和讲座式。课程式是在初一新生入学的前几周内安排几次向学生介绍如何学习数学,提出数学学习常规要求的课。讲座式可分专题进行,可每月搞一至二次,如介绍“怎样听课”、“如何学习概念”、“解题思维训练”等。2.交流式。让学生相互交流,介绍各自的学习方法。可请本班、本年级或高年级的学生介绍数学学习方法、体会、经验。这种方式学生容易接受,气氛活跃,不求大而全,只求有一得,使交流真正起到相互学习促进的作用。3.辅导式。主要是针对个别学生的指导和咨询。任何一种学习方法都不是人人都适合的,这时就应该深入了解学生学习基础,研究学生认识水平的差异,对不同学生的学习方法作不同的指导或咨询。尤其是对后进生更应特别关注。许多后进生由于没有一个良好的学习习惯和学习方法,一般指导对他们作用甚微,因此必须对他们采取个别辅导,既辅导知识也辅导学法。因材施教,帮助每一个学生真正地去学习,真正地会学习,真正地学习好,这是面向全体学生,全面提高学生素质,全面提高教学质量的关键。数学学习方法的指导是长期艰巨的任务,初一年级是中学的起始阶段,抓好学法指导对今后的学习会起到至关重要的作用。

例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 1)假设全是鸡,则应该有脚: 2×35=70(只) 因为把有4只脚的兔当成了鸡,所以比总脚数会少一些比总脚数少的脚数: 94-70=24 (只)少了这么多脚是因为把有4只脚的兔当成了只有2只脚鸡,从而每只兔少算了脚: 4-2=2(只)有一只兔,就少算了1个2,2只兔少算了2个2……24里共有几个2,就是兔的只数: 24÷2=12(只)剩下的就是鸡的只数: 35-12=23(只) 2)假设全是兔,则应该有脚: 4×35=140(只) 因为把有2只脚的鸡当成了兔,所以比总脚数会多一些比总脚数多的脚数: 140-94=46(只)多了这么多脚是因为把有2只脚的鸡当成了有4只脚兔,从而每只鸡多算了脚: 4-2=2(只)有一只鸡,就多算了1个2,2只鸡多算了2个2……24里共有几个2,就是鸡的只数: 46÷2=23(只)剩下的就是兔的只数: 35-23=12(只) 补充题:班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?

与鸡兔之乐有关论文参考文献

鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。

教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。

2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。

3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:用假设法解决“鸡兔同笼”问题。

教学具准备:电脑课件

一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)

“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”

二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)

1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。

2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。

同样方法演示全是5元的,再拿二元去替换也可以。

3.抽象算法(形成策略):

(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。

三、类化巩固(自主练习)。

①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”

先由学生小组讨论,在抽生上台展示算法:

假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。

同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。

②自己出题,交换答案.

展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?

展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)

四、归纳提高:

解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).

五、知识拓展。

其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。

“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”

六、 解决生活问题(达标测试):

1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。

②小明买了6角和8角的邮票共花5元,分别买了多少张?

2.选作题:

①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?

②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?

反思

《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。

首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。

在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。

在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。

本堂课我力求做到了三动:身动、心动、神动.

随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。

在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。

“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。

一、 《孙子算经》中的“雉兔同笼”

“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)

其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:

第一步:上置三十五头,下置九十四足

我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)

古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。

如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。

第二步:半其足得四十七

意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。

图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。

第三步:上三除下三,上五除下五

这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)

用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)

第四步:下有一除上一,下有二除上二即得

与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)

以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。

二、 《算法统宗》中的“鸡兔同笼”

“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)

其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:

第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。

第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。

第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。

第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。

第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。

第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。

另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。

《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:

(94-35×2)÷2=12(只)

第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:

(35×4-94)÷2=23(只)

这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。

《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”

【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。

【关键词】鸡兔同笼;解题思路;求解方法;数学思想

鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。

解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡

方程:

解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23

答:兔有12只,鸡有23只。

我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解

对于这个问题,我们给出如下几种求解方法,并给出相应的公式;

解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数

解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数

解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数

解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数

解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数

解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数

解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数

解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数

解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数

“鸡兔同笼”中的数学思想方法

一、化归思想

化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。

二、假设思想

假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。

用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。

三、方程思想

方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。

四、建模思想

弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。

以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。

参考文献:

鸡兔之乐是散文鸡兔之乐我所居的单元楼,有许多人家发达了,搬到更好的小区,因而就住进来一些新的成员:有外地打工者,还有山里的农民。一位住一楼的农民,在自家阳台的荫蔽处建一鸡埘,养母鸡两只,家兔一对。在山里,鸡兔是不同笼的,但到了楼宇之后,因无隙地,也只好随遇而安。它们处得很好,各自行止,互不打扰,就像这里的居民,虽同楼而栖,却像陌生人,兀自生息,不相往来。小兔好养,城镇的菜叶子总是多的,如果主人能放下身价,邻人遗弃的,也能捡回来,即便不储备,也不至于饿。母鸡更好养,粗粮身贱,花有限的钱就能从农贸市场买回旬月所需。那母鸡的叫声能勾引童年的记忆,所以特感亲切。有时会情不自禁地把自家的小杂粮拿给这家居民,他们也不推辞,只是从此亲热起来,喜欢唠几句家常。鸡似乎比人懂得感恩,因为吃得好,就拼命给人下蛋,一只母鸡,有时一天里会给主人下两枚鸡蛋,最后那枚蛋,竟往往还带着缕缕血丝。只不过,小区的管理者前来干预,说这是楼宇,不可饲养,既扰民,又污环境,不仅要拆除,还要接受罚款。鸡兔的主人很委屈,找我求助。因为我是区里的干部,说出的话,能占位置。小区居委会的主任,正是我的一个酒友,我对他说,鸡兔安静,并不扰民,即便是母鸡时有咯咯声,也是喜人语调,让人热爱生活。至于饲养带来的粪便,可令主人勤于打扫,环境之污也会迎刃而解。他说,我倒无妨,就怕居民不允,若众人皆怒,会成为事件。我说,这你也不要担心,因为这栋楼房的居民成分我了解,除新搬来的住户,老住户基本上是离退休机关干部,尚在职者唯我一人。新住户都是草民,他们疲于为生计奔波,不会计较细节;会计较的,主要是这些干部,但这些干部我都熟,他们不会更多地反对,因为去职的干部都比较隐忍,身上的浮火已渐渐熄灭,与一般百姓日渐趋同。他说,既然这样,我也就睁一只眼闭一只眼。我说,这就对了。在我的观念里,自我意识太强,喜欢多事的人,多是权贵,而这是个平民小区,居民多自卑、悯人,不会鸡蛋里挑骨头,更不会节外生枝。于是,鸡兔无恙,得以平安生存。但是,小区的居民生活却发生了微妙的变化。以前甬道冷清,很少见到人影,而现在我每一下班归来,都能看到鸡兔的笼旁总有数人簇拥,他们有说有笑,不是品评小兔的长相,就是夸赞母鸡的产蛋之勤,都觉得鸡兔给他们带来生气与乐趣,让他们又见到土地上的生活。由于鸡兔,居民有了自然的来往,陌生的人们也渐渐相识,再见面,都能礼貌客气地打招呼,小区多了人声与人气。更可喜的是,居民多了对鸡兔的牵挂,好像鸡兔活得好不好,都跟他们每个人有关。于是,他们主动把多余的米谷和菜叶拿给鸡兔的主人;到河畔遛弯儿,也留心柳树的新芽和可食用的野菜,适时地采回来,也交给鸡兔的主人。有时鸡兔生病,许多居民不仅问询,还拿出医治的建议,甚至从动物医院买回相关的药剂,殷切地叮嘱鸡兔服下。鸡兔虽然不是人,却比人更牵动人的情怀,大家关切在一起,彼此都亲近了。同时,这情景还大有深意,起初的鸡兔,属于“私人饲养”,到了后来,就变成了“公共饲养”,虽然鸡兔不为自己所有,却比实际的拥有,更具有“拥有”意识——凡俗的小区,居然很有哲学韵味。由鸡兔的启示,这之后,一个小区的居民,竟有了多余的心思,不仅居住,还要居住得符合自己的心意。纷纷找我,说:我喜栽桑,能否栽桑存茧?我喜植杏,能否杏挂东南枝?我都是允的。于是,楼前楼后,都有了随性的栽植,渐渐地,虽居住的是楼宇,却居然一改刻板,有了山林模样,葳葳蕤蕤,兴盛得一如山间形态。桑熟,我能看到抽丝之难;杏黄,我能尝到儿时的滋味;香椿长成,我能品到既往的幽香——虽与乡土隔绝,却也如还在垄亩上耕耘;虽生活于市井,却也如亲炙于旧时桑梓,一举一动好像都对应着出身的来路。大家都有同感,生者熟,熟者近,你我与共,一片和谐。如是,鸡兔虽小,却也有大牵引,生态的善化,从兹展开。可谓,无心者,怨处境,有心者,顺时势,便居小看大,俗处看雅,乘势而为,渐进佳境。不是我等心胸开阔,而是现实不可拂逆,一旦顺生,鸡兔健旺,人心归一,孤独之我,也融于众人,乐在其中,心地就阔大了。

不要相信

论文中的参考文献相同

一处就产生了多个参考文献,比如文献2,文献3,文献4,文献5等。有时候可以这样写[2,3,4,5]。但是,有的却要求合并在一起[2-5].怎么办?其实很简单。先按第一种形式编辑好后,选中不需要出现的部分,在字体一栏里选择隐藏即可。很简单。

问题一:同一文献出现多次,参考文献怎么弄,要求引用同一文献的编号是不同的,在参考文献中要出现像下面这样的 20分 这个问题很简单,你在文中第一次引用该文献时,该文献在参考文献列表中的排序是多少,比如说是第4位,那么你在后面的文中继续引用该文献时只需在上角标上标注[4]即可。也就是说对于有重复引用的情况,文中引用文献的标号不一定非要从小到大一直按顺序排列。有些学校的规定很不合规范,他要求文中文献要按顺序标号,然后在后面的参考文献中就会出现比如第7,第25,第30个文献都是同一个参考文献,其实这是不正确的,同一文献在参考文献列表中只能出现一次。希望对你有帮助。 问题二:两次以上引用同一篇文章怎样插入尾注? 5分 1,单击要插入对注释的引用的位置。2,单击“插入”菜耿中的“交叉引用”命令。3,在“引用类型”框中,单击“脚注”或“尾注”。4,在“引用哪一个脚注”或“引用哪一个尾注”框中,单击要引用的注释。5,单击“引用内容”框中的“脚注编号”或“尾注编号”选项。6,单击“插入”按钮,然后单击“关闭”按钮。 希望对你有所帮助,我之前也是不会,后来网上找到了方法。 问题三:毕业论文同一篇文章引用多次怎么写表考文献 对于论文写作时多次引用同一篇文献问题,GB/T 7714-2005《文后参考文献著录规则》规定:多次引用同一篇著者的同一篇文献时,在正文中标注首次引用的文献序号,文后参考文献列表只列首次出现得一条;如果为图书,在各处序号的“[ ]”外著录引文页码。 问题四:参考文献的引注,一篇文章多次引用,怎么标? 比如你在第一章中引用了一篇文章,标号是10,接下来会有11,12等别的文章引用,到了第二章,或者某个位置,又想引用第10篇文章,那么不是从13开始,还是在引用的地方标注10,在参考文献中也不需要重复写第10篇引文的出处,只要一个就够。 问题五:论文中多次引用同一著作的多处内容,而只在参考文献中出现一次,其他是上标页码 论文中多次引用同一著作的多处内容,可以简化标注,比如见以上著作,多少页码即可。 问题六:使用word软件,论文多次引用同一文献,尾注如何标号的问题。 我感脚吧、 脚注是个比较麻烦不易使用的东西、 你原文里还是不要那么复杂的用脚注了、、 就手动插入[1]、[2]浮[3]……吧、 最后的文献就用自动编号的方式、、 脚注虽然专业、 但是不好用、、 【也是我没怎么研究过它、、 顺便教你个快捷键、不知道你用过没、 原文里的[1]、[2]等等要用上标的形式、 选中[1], 按 ctrl + shift + = 就变成上标了、 如果用 ctrl + = 就是下标、、 我也就会这些、、 问题七:同一文献在论文中多次引用,该怎么写 一般情况下,引用参考文献的基本单位是期刊中的单篇论文、论文集中的单篇论文、图书中的一个章节、报纸上的一篇文章,或者自成一份的学位论文、科技报告、专利说明书、技术标准、产品样本等。 你这里所列举的27篇参考文献,有几个可以合并。 例如,第9、第10,页码完全相同,可以合并;第6的页码包含在第9、第10中,也可合并。 第18、第19的页码完全相同,第21的页码相差1页,如果是同一章节的,可以合并。 第11、第12、第14、第17,页码比较接近,如果是同一章节的,则可以合并;如果不是同一章节的,则分别列举。 第23、第22、第4,页码比较接近,如果是同一章节的,可以合并。 第24、第27,如果是同一章节的,可以合并;如果不是同一章节的,则分别列举。 第3、第8,页码相距较远,很明显不是一个章节的,应当分别列举。 第1、第2、第5、第7、第13、第15、第16、第20、第25、第26,都是独立单元的,应当分别列举。 上述意见供你参考。

1、直接找到论文中有相同的参考文献之处,按照图示输入重复的尾注并选中合并对象。

2、下一步如果没问题,就点击字体那里的按钮。

3、这个时候弹出新的对话框,需要确定勾选隐藏。

4、这样一来会得到相关的结果,即可达到目的了。

  • 索引序列
  • 鸡兔同笼论文的相关参考文献
  • 关于鸡兔同笼问题新探论文范文
  • 数学小论文四年级范文鸡兔同笼
  • 与鸡兔之乐有关论文参考文献
  • 论文中的参考文献相同
  • 返回顶部