首页 > 学术期刊知识库 > 计量经济学论文选题多元

计量经济学论文选题多元

发布时间:

计量经济学论文选题多元

下面,给到一些题目,你觉得对你简单的就可以写。

1.杨海文:空间计量模型的选择、估计及其应用江西财经大学,2015。

2.何煜辉:我国企业合并商誉会计计量研究北京交通大学,2015。

3.陈天约:投资性房地产公允价值计量对企业财务绩效的影响华东理工大学,2015。

4.张春燕:公允价值计量模式在投资性房地产中应用的实证研究武汉科技大学,2014。

5.陈晨:投资性房地产公允价值计量动因与经济后果研究中国矿业大学,2014。

6.张甜:公允价值计量模式在投资性房地产中的应用研究厦门大学,2014。

7.赵轶:金融集聚、空间溢出与区域经济增长西南财经大学,2014。

8.李蓉:自创商誉的计量及其应用研究北京交通大学,2014。

9.杨友焱:投资性房地产公允价值计量的应用及财务影响研究重庆大学,2013。

10.胡庭清:非活跃市场环境下公允价值会计计量问题研究湖南大学,2012。

当然,最好是结合题目的同时,结合自己的现实情况,加入自己的想法,进行创新。

实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3139 2 3208 3 3334 4 3488 5 3582 6 3632 7 3669 8 3815 9 3955 10 4086 11 4229 12 4273 13 4364 14 4472 15 4521 16 4498 17 4545 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =() () () () 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为,资金的边际产出为,技术进步的影响使工业总产值平均每年递增亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =() () () 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为,资金的边际产出为,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = () () () 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =()(-)() 可以看出,模型4中劳动力弹性 =,资金的产出弹性 =,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =()()() 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布

计量经济学课程论文多元回归

计量经济学课程论文小组成员:组长:指导教师:日期:2010/年5月27日2006年我国各城市的GDP变动的多因素分析摘要:本文主要通过对各城市同一时期的GDP进行多因素分析,建立以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立多元线性回归模型,从而对各城市同一时期的GDP进行数量化分析。关键词:GDPY(亿元)多因素分析模型计量经济学检验一、引言部分GDP(国内生产总值)指一个国家(或地区)所有常住单位在一定时期内生产活动的最终成果,从价值形态看,它是所有常住单位在一定时期内生产的全部货物和服务价值超过同期中间投入的全部非固定资产货物和服务价值的差额,即所有常住单位的增加值之和。GDP在创造的同时也被相应的生产要素分走了,主要体现为劳动报酬和利润。在现代社会政府还要以税收的形式拿走一部分GDP。本文主要研究就业人数L(万人)、各地区资本形成总额K(亿元)剔除价格影响因素即商品零售价格指数P(上年=100)之后对各城市同一时期的GDP的影响。二、文献综述注:2006年各城市同一时期的GDP总量的数据来源于《中国统计年鉴2007》;2006年就业人数L(万人)的数据来源于《中国统计年鉴2007》;2006年资本形成总额K(亿元)的数据来源于《中国统计年鉴2007》,本表按2006年价格计算;2006年商品零售价格指数P(上年=100)的数据来源于《中国统计年鉴2007》;三、研究目的通过研究各个城市在同一时期的GDP建立以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立多元线性回归模型,从而对各城市同一时期的GDP进行数量化分析。掌握建立多元回归模型和比较、筛选模型的方法。四、实验内容根据生产函数理论,生产函数的基本形式为:。其中,L、K分别为产出GDP的过程中投入的劳动与资金,本文未考虑时间变量即技术进步的影响。上表列出了我国2006年我国各个城市的GDP的有关统计资料;其中产出Y为各城市同一时期的GDP(可比价),L、K分别为2006年年末职工人数和各地区资本形成总额(可比价)。五、建立模型并进行模型的参数估计、检验及修正(一)我们先建立Y1与L的关系模型:其中,Y1——各个城市在同一时期的实际GDP(亿元)L——2006年年末职工人数(万人)模型的参数估计及其经济意义、统计推断的检验利用EVIEWS软件,经回归分析,作出Y1与L的散点图如下:利用EVIEWS软件,用OLS方法估计得:DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:14:45Sample:136Includedobservations:(F-statistic)可见,L的t值显著,且系数符合经济意义。从经济意义上讲,劳动每增加一单位,都可以使实际GDP相应增加,这在一定条件下可以实现。另外,修正可决系数为,F值为,明显通过了F检验。且L的P检验值为0,小于,所以通过了P值检验(二)建立Y1与K1的关系模型:其中,Y1——各个城市在同一时期的实际GDP(亿元)K1——各地区资本形成总额(实际投入额)(亿元)模型的参数估计及其经济意义、统计推断的检验利用EVIEWS软件,经回归分析,作出Y1与K1的散点图如下:利用EVIEWS软件,用OLS方法估计得:DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:17:16Sample:136Includedobservations:(F-statistic)可见,K1的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加,这在一定条件下可以实现。另外,修正可决系数为,F值为,明显通过了F检验。且K1的P检验值为0,小于,所以通过了P值检验通过两个模型的可绝系数、调整可决系数、T检验、F检验、P值检验的比较,明显的,Y1与K1的关系模型优于Y1与L的关系模型。因此,在以Y1与K1的关系模型为基础模型的条件下,建立二元关系模型。(三)建立Y1与K1和L的二元关系模型其中,Y1——各个城市在同一时期的实际GDP(亿元)K1——各地区资本形成总额(实际投入额)(亿元)L——2006年年末职工人数(万人)利用EVIEWS软件,用OLS方法估计得DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:17:23Sample:136Includedobservations:(F-statistic)可见,K1和L的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加。另外,修正可决系数为,F值为,明显通过了F检验。且K1和L的P检验值为0,均小于,所以通过了P值检验。通过两个模型的可绝系数、调整可决系数、T检验、F检验、P值检验的比较,明显的,Y1与K1和L的关系模型优于Y1与K1的关系模型。因此,建立二元关系模型更符合实际经济情况。(四)建立非线性回归模型——C-D生产函数。C-D生产函数为:,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得:在EViews软件的命令窗口中依次键入以下命令:GENRLNY1=log(Y1)GENRLNL=log(L)GENRLNK1=log(K1)LSLNY1CLNLLNK1则估计结果如图所示。DependentVariable:LNY1Method:LeastSquaresDate:05/27/10Time:17:29Sample:136Includedobservations:(F-statistic)可见,K1和L的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加。另外,修正可决系数为,F值为,明显通过了F检验。且K1和L的P检验值为0,均小于,所以通过了P值检验。通过对以上模型的可决系数、调整可决系数、F检验的比较,明显的,该模型最优。因此,选用该模型为以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立的最优多元线性回归模型。六、总结综上所述,我们采用截面数据拟合的模型成功的反映各城市同一时期的GDPY1与就业人数L(万人)和各地区剔除价格影响因素即商品零售价格指数P(上年=100)的资本形成总额K1(亿元)间的数量关系,是一个成功的模型。从模型中看出,各城市同一时期的GDPY1与就业人数L(万人)和各地区剔除价格影响因素即商品零售价格指数P(上年=100)的资本形成总额K1(亿元)有非常密切的关系,与柯布-道格拉斯(C-D)生产函数密切吻合,验证了柯布-道格拉斯(C-D)生产函数的正确。参考文献:1、《国民经济核算——国家统计年鉴2007》2、《价格指数——国家统计年鉴2007》3、《中国国内生产总值核算》,作者:许宪春编著,

实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3139 2 3208 3 3334 4 3488 5 3582 6 3632 7 3669 8 3815 9 3955 10 4086 11 4229 12 4273 13 4364 14 4472 15 4521 16 4498 17 4545 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =() () () () 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为,资金的边际产出为,技术进步的影响使工业总产值平均每年递增亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =() () () 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为,资金的边际产出为,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = () () () 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =()(-)() 可以看出,模型4中劳动力弹性 =,资金的产出弹性 =,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =()()() 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

计量经济论文选题

随机行走的世界与计量经济学在这篇文章里,我试图论说以下几个问题:第一个是科学史上关于宇宙本质的争论。这个问题十分重要,因为对宇宙是有序运转的,还是无序地紊乱地运转的认识支撑了我们对于科学的信仰、我们的情感和某种程度上我们的人生哲学。也是对这个问题的认识,计量经济学得以建立。第二个问题是关于学习计量经济学的几个基本问题。第三个问题,我将之称为“计量之美”。我一直相信任何一个学科都是极其美丽的,因为,它们不仅告诉我们很多关于世界是如何运行的真知灼见,更重要的是教会我们许多世俗智慧甚至一种人生哲学。因为我一直坚信,即使是读同一本书,不同的人也会得到不同的读书体会。因此,在这个问题之下,我仅就自己的体会谈谈计量经济学的世俗智慧和对我们人生态度的启迪。 一、随机行走的世界 对我们所生活于其中的宇宙的认识和思考,一直以来吸引着各个时代思想家们的智慧。我们生活的这个宇宙本质上是什么样的呢?是以一种有序的、有规律的方式在运转还是无序的、杂乱无章的运转?这种运转能否为我们的智慧所认识?人们对这些关于宇宙问题的渴求正是造就了人类自身的智力进化和卓越品质的重要动力之一。 在我们今天的视野所及的范围,我们知道对这些问题思考的最有影响力的思想是由18世纪的思想家们做出的。18世纪的思想家们建立了近代最有影响力的哲学体系,他们设计了一个“有序的”世界。在某种程度上,他们的世界观是一种“决定论”的世界观,坚信这个世界正在按照某种已经设计好的秩序在运行。持有这个“决定论”观点的人包括诸如牛顿、爱因斯坦等最伟大的自然科学家。这个体系的科学性则是由牛顿定律和对牛顿体系进一步思考的数学定律所保证的。当然,自然科学家们这种关于宇宙的信念和洞见不可避免的影响到了从事社会科学研究的思想家们,其中也包括经济学家。经济学的创始人,亚当•斯密的思想根基也是源于这样的一种信念。他把这种自然科学的有序世界的观点应用到人类社会里,形成了一种从看似“无序”到“有序”的观念,提出了一个“和谐的经济系统”的观点。这种和谐的经济系统的动力则是人的自利动机。 我们决不应该低估这种关于世界的观点的影响力和洞察力。事实上,我们一直在这种“决定论”的世界观下生活并做出各种与我们自身息息相关的决策。一种对于人类经济社会的“完美和谐”的信念直接导致了大家对政府干预经济的效果的质疑,并且主导了许多关于政府问题的争论。这种“决定论”的观点在很大程度上支撑着我们对于自由经济的信心和我们对于世界的信仰。 但是这一体系在历经几个世纪之后,遭到了怀疑。对于这种“决定论”的世界观的挑战来自于统计观点,尤其是概率论的成功。我们可以举一个简单的例子来说明这二者对于世界的看法的分歧。比如我们说,消费函数是 ,其中, 是自发消费, 是可支配收入,c是边际消费倾向。进而我们可以把消费函数写作是可支配收入的函数: 。这个消费函数是更加广泛意义上的数学若干函数中的一个。这个函数明白无误地说明,居民的消费量将精确地取决于可支配收入、自发消费和边际消费倾向。这种函数关系是一种确定性的关系。但是,我们知道,这种关于居民消费的断言在现实中毫无疑问是会受到质疑的,居民的消费量并不是精确地取决于这几个因素。在很大的程度上,这种消费关于自发消费、可支配收入和边际消费倾向的关系是不确定的,或者说是随机的,有着概率分布的。这就是二者之间的差别,持有决定论观点的人依据一种确定性的函数关系认为,这个世界将会精确地按照数学定律所描述的那样运转。而持有统计观点的人却认为,即使是知道了这种关系,消费与其他几个因素之间仍然是一种偶然的,不确定的,有着概率分布的关系。 我们把后一种对于世界的观点叫做统计观点,正是这种统计观点,打破了原来思想家们头脑中的有序结构。但是,这二者之间的分歧似乎是让人迷惑的。因为,当我们在利用统计方法的时候,我们却得出了一些几乎完全可靠的定律。而且,统计总体越是偶然、紊乱,就越能更好地表现出统计规律和必然性。比如,我们投掷硬币,当我们投掷的次数足够多的时候,我们发现,出现正面和反面的概率竟然惊人地各是。再比如,我们对于某种考试成绩的统计发现,如果样本足够的大的话,成绩分布将会呈现一种正态分布。并且,人数越多,成绩就越呈现标准正态分布。更加令人惊奇的是,看起来我们做事情可能犯错误的情况也是有规律可循的,人几乎不能随意地犯错误!总之,某些看起来是无迹可寻的东西,似乎又都可以找到规律。这样,决定论和统计观点二者之间又有什么差别呢?事实上,二者之间的差别仅在于,统计观点认为不存在绝对的定律,任何所谓的定律其实都是有着某种概率的“可能的”情形。在这个意义上说,没有什么事情是确定无疑的。也就是说,这个世界是随机行走的,各种情况都有可能发生。尤其是在人类社会中,如果我们相信独立于人的意识而存在的物质世界都是随机行走的,那么人类社会也会表现出这种随机性看来并不是不可以接受的。 但是,这并不就意味着随机行走的世界会因为其不确定性而无法认识,即使这种随机行走的世界确实可能形成一种混沌状态。我们能够在“决定论”和关于世界的“统计观点”那里架起一座桥梁。那就是:我们相信,我们可以得到一些定律,这些定律是对某些事情本质的一种最好近似,即使这些事情的本质可能并不是一元的。或者说,这个世界会从无序走向某种程度上的有序。对这些统计定律的发现,在我们的专业范围内,就是计量经济学的任务了。 二、随机行走的世界与计量经济学的任务 事实上,统计的成功应用在很早就已经开始了。大约在17世纪,有一位叫做格兰特的英国商人就通过研究注意到:因事故、自杀、各种疾病而死亡的人的百分比是固定的。这几乎叫人感到惊奇!而且也是统计学的成功使得人们日益认识到,一个国家的定量材料应该得到应有的重视,无论是经济学家还是政府决策者,都应该思考数据。 计量经济学就是为了在一个随机行走的世界中探讨统计性规律!因为只要知道了这个规律,我们就可以在某种程度上认识这个世界。但是要记住这种认识肯定是不完全的。而且根据需要,我们还可以根据这个规律来进行预测。进行预测是我们关心规律的一个十分重要的原因。更加值得称道的是,计量经济学在推断统计规律时所用的方法和理念。因为,我们对于这个世界的认识永远是不会完全的,我们只能根据部分“样本”来推断这个世界的整体状况。可以假设这样一种情况:如果我们能够对这个世界的方方面面进行完全的观察,我们就期望可以得出一个关于这个世界本质的定律。可是,我们不能把这个世界的方方面面都观察到,也可以说,我们认识的局限是不确定性的来源。能否由样本近似地认识整体是一个很重要的问题。如果,我们没有一种坚信可以由样本来推断整体规律的信念的话,我们就不能建立这门学科。 这种由样本来对整体进行推断的方法是计量经济学的主要方法。我们要通过一种叫做回归分析的技术来达到这个目的。“回归”这个词最先由F.加尔顿(Francis Galton)爵士引入。加尔顿研究发现,父母和孩子的身高有这样的一个趋势:父母高,儿女就高;父母矮,儿女也矮。但是高个父母的儿女们在同龄人中并不像父辈那样在同龄人中显得那样高,儿女辈的平均身高将“退化”到或者说“回归”到全体人口的平均身高。这也叫加尔顿的“普遍回归定律”。加尔顿在智力遗传的方面也得到了类似的结果:一般来说,天才是要遗传的。但是天才的后代却要比他们的父辈们平庸,也就是他们的智力水平将“回归”到中等水平。但是,对于这种回归背后的动力分析可能已经超出了计量经济学这个学科的研究范围,即使这种研究也许会导致一种有意思的哲学的建立:所有的有机组织都将趋于标准状态! 回归的现代意义则稍微有点不同。现代意义上的回归是指,一个叫做因变量的量和其解释变量之间的依赖关系。也可以说是一种相关的关系。实际上,回归和相关是两个极容易混淆的概念,容易混淆的原因既是因为这两个概念的相近性,更重要的是因为这个世界的复杂性。哲学上宣称,这个世界是普遍联系的。这个宣称的深刻性在于确认了世界上没有什么是完全独立的。比如,我们可以发现在现代社会死于癌症的人逐渐增多,这二者是相关的。但是我们并不能就此认为,是现代社会导致了更多的人染上癌症。再比如,这也经常被用来反驳统计结论,一个国家的经济繁荣的情况可能和这个国家一个时期的太阳黑子出现的情况存在一种相关关系,但是这种相关关系却不能作为我们行动的任何指导。在这个问题的区分上,就是计量经济学和统计学之间的分歧了。计量经济学讨论的是回归关系,这种回归的特点在于,我们试图根据某些变量的数值来估计另一个量的数值,我们要依据这种关系进行预测。比如,我们试图通过研究父母的身高来估计其孩子的身高。这种估计就要依赖于我们所关心的两个量之间存在的一种理论上的联系。而相关关系则充斥着统计学的各个方面。并且因为世界的普遍联系性,相关关系是一种常态。 基于上面的差别,在回归中,我们要求解释变量是确定的,可以控制的,但是被解释变量(因变量)可以是随机的(被解释变量正是我们要估计的)。但是在相关关系中,这二者并不加以区分。之所以说这两个概念容易混淆是源于这个世界的复杂性,是因为,这个世界本质上就存在一种难以言明的精密联系。我们实在不能够足够自信地认为我们可以确定哪些变量可以控制,哪些变量之间可以精确地被认为是一种回归关系。比如,事实上,我们也可以找出一种机制使得癌症和现代社会之间存在一种回归关系,就像我们可以发展一种理论来说明,太阳黑子的活动和一个国家的经济繁荣存在着回归关系。这个世界的复杂性要求我们必须对我们认识世界和改造世界的能力保持谦虚。同时请记住:具有回归关系可能并不必然地意味着具有因果关系。在判断因果关系时,我们必须要很小心。因为,这个因果关系很不好说,也许看似因果的两个事件,实际上可能是互为因果的。就像佛经中认为的那样:因果是循环的。 我们讲了这么多关于计量经济学的性质,实际上是为了表达我们这样的信念:我们可以在一定的层次上认识世界,我们坚信这个世界存在着某些统计规律,应用这些规律我们可以在“一定程度的错误”的前提下认识和改造世界。计量经济学可以帮助我们达到这个目的。我们可以借助近似地描述了具有相关关系的变量间联系的函数,主要是回归函数,来描述这种关于世界运行的定律。 但是,计量经济学在得到这个回归函数时所使用的复杂的数学推导可能会让我们在特定的时段感到计量经济学的混乱和无序,即使在最后我们坚信可以实现一种理解上的有序。但是,过程中的痛苦可能会让很多人驻足。这里,我们想提前接触一下,那条驾驭计量经济学研究内容的灵魂。 因为,认识世界的理论的建立来自于对世界本质表现出来的现象的分析。有两种对现象进行分析的方式:一种是对现象直接进行操作。这种操作极其便捷,简单而且有洞察力,但是对天赋的要求非常高。其不利之处在于这种对现象的思考得出的结论可能广受争议。另一种方式则是对现象的属性——数据来进行操作。过程中要遵循严格的科学方法。第二种方法就是计量经济学的方法了,这种方法因为是用数据说话,可能争议较少。但是,不利之处却是,这种分析结论却要严格的依赖于数据的质量,也就是说,这种方法得出的结论的质量不会比数据的质量更好。 尽管有这样的困难,我们还是推荐计量的方法。因为,数据的质量可以通过统计手段和统计工具的完善加以解决。并且,根据我们的概率知识,即使这种有误差的数据,其误差也是有规律的,误差情况总是会表现为正态曲线。那么如何来对数据进行操作呢?计量经济学的思路通常是这样:最简单的情况下(双变量回归),在一个坐标平面上画出散点图,发现其大致的规律,通常我们可能发现,我们关心的两个简单量之间呈现一种类似于线形的关系(当然,也可能不是线性的,这种情况下需要更高深的数学工具)。把这种线形的关系利用解析几何的知识转化为直线方程并不困难。获得了这样的一个直线方程是一个极大的成功。因为,这个方程,就是在“某种程度的错误”的前提下的一种描述世界如何运行的定律。事实上,计量经济学的任务在很大的程度上,就是发现这样的关于世界如何运行的定律。 但是,在从数据那里获得一些关于变量间“规律”的方式也可以通过另外的方式来进行。也就是在使用数据之前,通过对先验的知识进行演绎和推理从而得出一系列“定律”。这就是我们在数理经济学中所看到的那些数理方程式。这些数理方程就是我们对世事认识的理论,这种理论能够给我们认识世界和改造世界以指导。尤其是在确定我们所考虑的变量之间的可能具有的关系时很有作用。但是我们是否可以应用这些方程式来指导我们认识世界和改造世界的活动并没有得到证明。计量经济学提供了一种这样的证明。我们可以利用数据来检验这些先验的定律是否符合实际,或者得出一种明确的可以应用于实际的形式,从而对数理方程做出了适合实际的修正。尤其是在不同的国家中,因为不同的文化等隐性的制度因素,这些定律可实施的情况是完全不同的。事实上,始于一种对世界认识的先验的推理,建立一种解释世事的假说并用以改造世界,是每一个学者的虚荣心。 因此,计量经济学的研究的思路或者说计量经济学的灵魂是:通过先验的演绎和推理得出理论模型,最好是数理模型。数理模型中会有参数,那么利用数据对这个模型的参数进行估计得出一条回归方程,并通过假设检验来确认这个方程式。如果这个方程式满足了理论建立时的要求,那么就证明了那个先验的理论是正确的并且能够利用这种理论进行预测。接下来的计量分析就是在这些思路下进行的技术探讨了。 对计量经济学这套思想方法和其技巧的同时掌握,是掌握这门学科并加以实际运用的重要素质。尤其是计量经济学的技巧,是一个计量人的必备素质。因为我们一直坚信,伟大的思想来源于熟练的技巧。就像武侠中的“打狗棒法”虽然只有十八路,但是,一个使过无数次“打狗棒法”的丐帮帮主足可以因这十八招而笑傲江湖了。但是,如果过于沉迷于高级计量的数学推导,我们就很可能失去欣赏这门学科所固有的魅力的机会,并且因为数学知识的缺乏而造成的沮丧可能会阻碍对其进一步的学习,从而失去了领悟计量经济学所蕴含的大量关于生活的智慧的机会。因此,这篇文章里,我们不对计量经济学的技术过多的论及,而主要是看其蕴含的智慧之美。三、计量经济学:智慧之美 最能让我们感受到美感的就是计量经济学这种从样本推断整体的思想。如果能够认识到我们生活的这个世界的复杂性的话,我们对这种思想可能会更加珍视。比如,如果我们有一种信念,比如相信我们能够通过努力成为一个书法家。那么我们能够怎么做呢?计量经济学和书法家们都会这样建议你:先选取几十个字来,集中精力把这几十个字练好,最好是临摹以往大师们的作品。这样,你就几乎能够发现写好字的要领。因为,我们不能够把这个世界上的字都练习到,我们只能够由“样本”来推断所有字的写法。并且,我们坚信这些“样本”蕴含了足够多的关于写字的要领或者说是写字规律的信息。这就是计量经济学的智慧之一。从这个角度出发,我们几乎将这种计量经济学的思想推广到生活的各个方面,并且可以指导我们成就卓越。无论是学习、应试、还是搞艺术,甚至想要成为武林高手,都可以应用这种思想。“样本”往往是我们窥看世界本质的窗口!有心人自会从这里得到无尽的启发。 计量经济学就像从一个古老的神谕里蹦出来的智慧精灵,它几乎全面的改变了我们对于脚踏实地的看法!掌握一种过硬的分析数据的能力,无疑会全面的改变你的工作方式和效率。这在一个人的职业生涯中是极其重要的。经济理论经常地被认为是一门空洞无用的理论,这是在未有数据之前做出分析的常见批评,先验和演绎的方法,很多人认为,不能够对社会科学的研究有什么意义。但是,有了计量经济学就完全不一样了,我们就可以从数据出发来进行我们的分析和预测,这种工作方式无疑会培养我们踏实做人的人品。并且因为处理问题的独特技巧和思维,掌握计量工具的人会得到青睐——来自上司和运气。 在我看来,计量经济学还对我们的人生哲学有着指导意义。人的一生其实只是一个短暂的瞬间,就好像那滑过天际的流星,留下的只是瞬间的美丽。这瞬间如何解释?采用一种什么样的方式来度过这一个瞬间? 人不过是苍茫宇宙中的一粒尘埃,如果这个宇宙尚且遵循着从无序走向有序,那么我们是不是可以将这个信念加以演绎到我们每个人的人生中呢?!其实我们每个人的人生也只是在一个随机行走的世界中的随机行走过程。 我们永远不会知道,在下一个时段,我们会经历什么、会遇到什么,甚至我们对于我们未来的规划都是不确定的。这个过程是随机的、紊乱的、偶然的和无序的。但是,这种无序和紊乱最终会走向有序。用计量经济学的说法,我们会从这些紊乱偶然的样本中得到一个回归方程。这个回归方程就是我们的人生轨迹! 当然我们对于这个轨迹的认识永远是后验的。我们不可能在这人生的每一个阶段之前就得出一个回归轨迹作为我们人生的预测,这种东西没有预测意义。那么这种有序的观念究竟能给我们什么人生启发呢? 那就是:我们实在没有必要对于发生于我们周围的看起来是好事或者坏事的东西耿耿于怀,我们实在没有必要太过挑剔上天对我们的似乎是不公正的待遇,中国自古就有“福祸”的智慧之言。以一种应有的宽容心态来对待我们的人生无疑会让我们感到快乐。甚至我们的职业追求也是如此,没有什么绝对的好或者不好,我们的人生轨迹在我们某些年里需要紊乱和无序,根据计量经济学的思想,越是紊乱和无序的样本,我们就越容易得出稳定的统计定律——一条稳定的人生轨迹!假如大家去看看人物传记就可以发现,在那些人的人生里,他们可能做过记者,参过军,被抓到过牢里,看起来和其最终的路径有了很大的背离,可是这些背离最终回归到这条路径上。事实上,我们并不好确定,是不是这种每个阶段的紊乱和无序最终造成了他们稳定的人生轨迹?! 人生需要这种随机性。并且如果我们要想有一条稳定的人生轨迹,依照计量经济学的理念,我们还要让我们的人生经历这一样本足够大。如何让自己的人生经历更多?如何让自己的人生有更多的随机性?那就是:我们要过主动追求的人生。当我们在生活中有意识地主动去追求时,我们就在客观上丰富了自己的经历,并且扩大了自己的人生经历样本。因为,在你主动追求的时候,才能够发现惊喜和奇遇。消极和封闭的人生态度不利于扩大自己的人生经历样本,样本不具有变异性,就难以得出好的回归方程。我们都应该学学“苍蝇的哲学”,苍蝇的四处乱撞让苍蝇即使在被困的时候也有机会逃脱。这也许是更有含义的古语的一句话的意思吧:树挪死,人挪活。但是,在我们的追求中,因为,我们应该珍视随机性,因此,对于得失就不必太让自己负累。得失是随机的。我们在生活中得到了什么、失去了什么,也许在这冥冥之中的东西面前,可能只是一个慈悲的玩笑。太过于在意也许是失去了更多。 参考文献: [1]古扎拉蒂.《计量经济学》(第三版)[M],林少宫译.北京:中国人民大学出版社.2000. [2]罗伯特S.平狄克,丹尼尔L.鲁宾费尔德.《计量经济模型与经济预测》[M].北京:机械工业出版社.1998. [3]M.克莱因.《西方文化中的数学》[M],张祖贵译.上海:复旦大学出版社.2004. [4]袁荫棠.《概率论与数理统计》[M].北京:中国人民大学出版社.1999.仅供参考,请自借鉴。希望对您有帮助。

我有许多范文 还有我们自己做的论文 需要找我

出生活1978年,

学术堂整理了十五个计量经济学论文题目供大家进行参考:1、中国货市需求函数实证研究.2、货币超发的实证研究3、存款准备金率变化的影响4、货币需求与通胀关联分析5、货币需求的弹性分析6、我国居民消费函数实证分析7、浙江省居民消费函数变化8、日元实际汇率长期利率的实证分析9、欧元实际汇率长期利率的实证分析10、瑞朗实际汇率长期利率的实证分析11、利率汇率与外商直接投资12、利率与通胀的关系实证分析13、利率与商业银行不良贷款率的波动实证分析14、利率、租金与房价15、货币政策、利率传导机制实证分析

计量经济学论文范文一元回归

根据回归出来的模型和参数,表达应变量y和自变量x的关系,他们的实际意义。比如截距α,x前面的系数β的意义:说明y和x是什么关系,单位x的变化会引起y怎样的变化等。因为有error term(那个e),还可以简单分析一下可能存在的其他影响y的因素。举个例子,Yi=,Y是每个家庭上缴的所得税,X是家庭的收入,单位是千美元。这里系数β是,这个回归的意义是,保持其他变量恒定,家庭的收入每增加$1000,则上缴的所得税相应增加$190。或者也可以说,当家庭收入每增加一个单位,相应的所得税增加单位。这里的截距是,在经济学概念上没有意义的(因为当x=0每个家庭收入为0对于我们的回归无意义),但是理论上来说,就是当一个家庭的收入为0时,应缴的税是(-)$1924。或者如果我们从“负所得税”的概念来解释这个数字的话,那就是说,在这种情况下,事实上政府付给该家庭$1924。就这样分析结论,能理解么??

一般来说需要写出回归方程 R^2 还有系数的标准误差和t统计量就可以如果在后文的分析中需要着重论述共线性或异方差等,就需要再汇报一下dw和残差检验结果

计量经济学是用定量 方法 研究经济活动规律的一门科学,在经济学科中居于最重要的地位。下面是我为大家推荐的计量经济学论文,供大家参考。计量经济学论文 范文 篇一:《形成性评价计量经济学》 1形成性评价的可行性及必要性 我国医学类院校最早成立统计学本科专业的是第四军医大学,随后中山大学、潍坊医学院、滨州医学院等院校也相继成立了统计学本科专业。该专业培养目标是培养适应未来经济社会与科技发展需要,德、智、体、美等全面和i皆发展,掌握统计学的基本理论和方法,可熟练运用计算机分析数据,能在卫生行政机关、卫生防疫及医药相关部门从事统计调査、统计分析工作,或在医药卫生、 教育 机构从事科研与教学等工作的应用型专门人才。 我院统计学专业本科(卫生统计方向)自2006年开始招生,其培养友案涉及的主干课程可分为医学类(含基础医学_、临床医学和预防医学)、统计类、数学类、经济管理类、计算机类、外语及人文社会科学7类课程。其中计量经济学课程作为经济管理类的核心课程之一,属于统计学专业的必修课程。 本课程的学习使学生在已经学习的统计学和经济学的基础上进一步理解、掌握计量经济分析的方法和基础理论,通过模型研究经济问题的数量规律,对经济问题的前景做出正确的预测,提高学生发现问题、分析问题、解决问题的能力以及运用统计学理论与方法分析、解决相关领域实际问题的能力。传统的计量经济学课程评价采用的是终结性评价,即学生成绩由期末考试卷面成绩和平时成绩(含考勤、作业)组成。 多年的教学实践表明,终结性评价存在重视结果而忽略过程、评价主体单一化、评价内容缺乏全面性等诸多缺陷,而“一考定乾坤“的不公平评价方式也给学生带来了负面的影响,造成一定的考前突击、考试作弊现象ra,不利于教学质量和学生素质的提高。迄今为止,尚没有形成性评价在计量经济学课程中应用的文献,但形成性评价在其他学科教学中的广泛应用表明,它对学生成绩的提高具有明显效果,使学生的学习动机和学习自信心得到增强M。因此,有必要对计量经济学课程应用形成性评价的具体方案进行探讨。 2调查结果分析 自制“计量经济学课程形成性评价调查问卷”调查学生对形成性评价的认识、态度等,以便改进。在2011级开设计量经济学课程的本科学生中,抽取两个班级进行整群调査。发放调査问卷80份,收回有效问卷80份,有效问卷回收率100%。调i。 问卷调査结果显示,首先是认识方面,的学生认为形成性评价的主体应该是教师与学生相结合;其次是态度方面,的学生对计量经济学这门课程感兴趣,的学生认为计量经济学考核实行形成性评价有必要和很有必要;再次是授课效果评价方面,的学生对教师授课的总体评价是优;最后从结果来看,的学生认为通过本学期的学习,对计量经济学的掌握有进步,的 学生 自我评价 分数达80分及以上。 由此可见,在计量经济学考核中实施形成性评价得到了绝大多数学生的支持,收到了良好的效果。在保证教师评价与学生自我评价相结合的基础上,充分贯彻了“以学生为中心”的教育理念,可提高学生的学习兴趣和信心,增强学习效果,促进教学质量和学生素质的提高。 3结语 综上所述,形成性评价在计量经济学考核中具有广阔的应用前景,是顺应教学改革潮流的现代化考核方式。在实际应用中,需要优化计量经济学教学内容,改革 教学方法 和教学手段,可先通过构建和完善形成性评价结合终结性评价的课程评价体系,然后逐步过渡到形成性评价。同时,形成性评价在计量经济学课程考核中应用的成功 经验 对医学类院校统计学专业其他课程考核方面的改革有很强的借鉴意义。 计量经济学论文范文篇二:《试谈独立学院计量经济学》 1独立学院计量经济学课程的阈限概念分析 计量经济学是一门运用回归模型分析数据的方法论学科,本科阶段的初级层次计量经济学课程的主要内容涵盖计量经济学数据、一元线性回归模型、多元线性回归模型、回归估计量的理论,异方差、序列相关等。根据计量经济学理论和方法的发展,将计量经济学的阈限概念具体可归结为以下3组概念:第一,回归假设。回归假设是为分析回归结果引入的合情合理的假设,在不同数量的假设下能够得到回归系数估计量的不同性质。回归假设是整个回归方法的基础,一切回归有关的参数估计和假设检验都和回归假设紧密相关,同时违反回归假设的情形也是计量经济学理论发展的重点,因此回归假设是计量经济学的阈限概念之一。第二,回归系数估计量的无偏性、有效性和一致性。无偏性、有效性和一致性是评价估计量的基本标准,回归系数估计量的无偏性、有效性和一致性是回归理论的核心,整个初级计量经济学的理论最终都归结为回归系数估计量的这3个性质,同时,这3个性质又与回归假设紧密相关,故回归系数估计量的无偏性、有效性和一致性是计量经济学的阈限概念之二。第三,异方差。异方差是违背回归同方差假设时的回归结果表现,无论对于横截面数据还是时间序列数据,异方差的出现是回归分析的常态,因此对于异方差的检验和修正是初级计量经济学的重要内容,也是经济金融实证研究中需要关注的基本问题,故异方差是计量经济学的阈限概念之三。以上三个阈限概念是学生掌握计量经济学理论的关键,同时在概念上具有紧密的联系,下文将基于此探讨计量经济学课程的教学方式。 2基于阈限概念的独立学院计量经济学教学注意事项 由于独立学院的教学方式主要强调理论与方法的应用和实践,因此基于阈限概念的独立学院计量经济学教学的总体原则仍立足于阈限概念的理解与实际运用,具体地,需要注意以下三个方面:第一,合理安排教学内容。为了突出3大阈限概念,在首节导论课即向大家提出3大阈限概念,在介绍回归分析的原理和方法时,详细的说明每个假设的用途,使学生理解每个假设的目的和本质,进而在回归估计量三个性质的教学中把握无偏性、有效性和一致性的具体条件,并明确理解异方差这一违反假设的情况。在具体教学过程中,以充分的时间介绍三大阈限概念及其联系,从而建构整个计量经济学的知识和方法体系。第二,运用软件展示阈限概念的具体应用。独立学院的计量经济学教学应完全从应用性角度出发,运用软件展示计量经济学概念、原理和方法。对于3大阈限概念,可用40%左右的时间解释概念产生的原因与本质,而60%左右的时间结合典型例题讲解如何运用计量经济学软件如Eviews解决具体的回归分析建模和假设检验问题。第三,通过尝试撰写学术论文强化阈限概念的综合运用。撰写实证性的学术论文是进行计量经济学方法综合训练的较好途径之一,可以通过让学生从选择题目开始,通过收集数据,建立回归模型,参数估计,假设检验以及进行可能的异方差和序列相关检验和修正等等来感受计量经济学解决综合问题的方法和程序,通过写作论文的方式加以体现,然后交流讨论,以深化对计量经济学阈限概念的理解。计量经济学教学经过以上三个方面的具体设计,帮助学生牢固掌握计量经济学的阈限概念,提升解决实际问题的能力。 3基于阈限概念的独立学院计量经济学教学实践 以浙江大学城市学院为例浙江大学城市学院是一所以培养应用型人才为导向的独立学院,也是我国建立最早、最有名的独立学院之一。计量经济学课程是浙江大学城市学院金融学专业的必修课程,在大三上学期开设。浙江大学城市学院的计量经济学课程以提高学生建立回归模型能力为教学目标,基于Eviews软件进行教学,每周教学学时为理论(教师讲授)与上级实验(学生练习)各2学时,特别注重学生对计量经济学阈限概念的理解与掌握。因此,研究浙江大学城市学院的计量经济学教学对研究独立学院计量经济学课程的教学具有借鉴意义。浙江大学城市学院的计量经济学教学内容为传统的初级计量经济学教学内容。教师在讲授回归假设时着重解释回归假设的设立目的与合理性,并通过软件讲解回归假设的验证,使学生理解并掌握回归假设。在回归系数估计量的无偏性、有效性和一致性教学中,通过详细分析三个性质所依据的不同假设,使学生理解三个性质所应具备的条件从而掌握线性回归估计量理论。特别地,专门安排约10学时左右的实验课进行计量经济学论文撰写与分析的交流,要求学生自选题目,收集数据,建立回归模型,进行估计并检验异方差、序列相关以及模型设定问题,写作小论文并在课堂上展示交流。为评价教学效果,选取2010级学生1个教学班共24人进行满分为5分的教学满意度打分,学生对计量经济学课程全部项目的满意度均达到97%以上,总体平均满意度超过99%。由此可见,浙江大学城市学院应用统计课程的教学效果非常成功。 4结论 回归假设、回归系数估计量的无偏性、有效性和一致性和异方差是计量经济学课程的三大阈限概念。基于阈限概念的计量经济学教学在于合理安排教学内容,运用软件展示阈限概念的具体应用以及通过尝试撰写学术论文强化阈限概念的综合运用。浙江大学城市学院计量经济学课程的教学实践分析表明本文提出的基于阈限概念的计量经济学教学方式对独立学院的计量经济学课程教学具有很好的适用性及学生满意度。 计量经济学论文范文篇三:《高校经济类专业计量经济学课程研究性教学路径》 一、引言 2世纪美国伟大的教育家、以倡导研究性教学闻名全球的博耶(Ernest L. Boyer)教授认为,“最好的大学教育意味着积极主动的学习和训练有素的探索,使学生具有推理及思考能力。所有的教师都应不断改进教学内容和教学方法,通过创造性的教学鼓励学生积极主动地学习”。 2005年,教育部在《关于进一步加强高等学校本科教学工作的若干意见》中首次明确提出要“积极推动研究性教学,提高大学生的创新能力”,“大力加强实践教学,切实提高大学生的实践能力”,“要让大学生通过参与教师科学研究项目或自主确定选题开展研究等多种形式,进行初步的探索性研究工作”。 二、文献综述 近年来,国内已经有一批高校从整体上推进实施“研究性教学”,已被证明是“创新人才培养的成功模式”之一。众多高校老师、学者已将“研究性教学”理念融入教学改革中,积极探索适合“研究性教学”相配套的课程结构体系、教师教学激励机制、创新学分制度等制度,为之有效开展提供了制度保证。 刘赞英等(2007)对国外大学研究性教学的经验进行了全面的 总结 对比,为我国大学开展研究性教学提供了启示与借鉴[1]。刘智运(2006)认为,研究性“教”与“学”反映的是一种互动式师生关系。教师不仅仅是传授现有知识,更重要的是要创设有利于学生参与研究和主动探索的情境,鼓励、引导和帮助学生学习、思考和研究。同时学生也不是被动接受式学习,而是积极主动的求知过程,同时需要与教师展开及时的互动交流[2]。王岚等(2007)认为,研究性教学既是一种教学理念,又是一种教学模式,还是一种教学方法。 它是一种将教师研究性教学与学生研究性学习、课内讲授与课外实践、依靠教材与广泛阅读、教师引导与学生自学有机结合并达到完整、和谐、统一的教学[3]。龙慧灵等(2010)通过研究发现,研究性“学”要求学生在“学”中“研究”,在“研究”中“学”,学生的研究与教师的研究有所不同,学生的研究更多的是强调研究和探索的过程,通过这一过程实现知识的学习,问题发现与解决能力的培养[4]。王锋等(2014)认为,研究性“学”与研究性“教”是相辅相成、不可分割的统一体,其内在联系通过“研究”这一纽带得以体现,并从平等合作的师生关系、研究性 学习方法 激励、教师团队建设、过程管理以及体系评价配套等方面提出有效实施研究性教学的策略[5]。 此外,关于研究性教学模式,肖萍等(2005)、刘茂军(2005)、蒋乃华(2010)和李胜清等(2009)分别提出了“以课题为中心的模式”、“溯源法模式”、“‘一体两翼’模式”和“‘四位一体’模式”[6][7][8][9]。 三、计量经济学的课程性质 计量经济学的重要性不言而喻。诺贝尔经济学奖获得者R?Clein说过:“计量经济学已经在经济学科中居于最重要的地位。”著名经济学家P?Samuelson也曾经指出,第二次世界大战后的经济学是计量经济学的时代。从1969年第一届诺贝尔经济学奖授予计量经济奠基人R?Frisch和计量经济建模之父J?Tinbergen以来,95%以上的获奖成果都与计量经济学有着密切的联系。 我国教育部高等学校经济学学科教学指导委员会也将“计量经济学”列为经济学类各专业的八门核心课程之一。计量经济学是一门理论性、应用性、实践性、体验性很强、难度较大的综合性课程,跟高等数学、概率论、数理统计和宏微观经济学联系密切,Kennedy认为“理论计量经济学家和应用计量经济学家缺乏充分交流会导致理论与实践的严重脱节,甚至不知所措[10] ”。Guy Orcutt曾说过,“做计量经济学就像试图通过播放收音机来研究电的规律”,足见其难度。因此,本科阶段的学习会更侧重于计量经济实证研究,其对统计数据的质量要求很高,否则计量模型再完美,也只能是“垃圾进去,垃圾出来”,而收集数据本身在一定程度上又是一门艺术。 四、研究性教学的路径选择 1.强化大学新生研究性训练,为高年级研究性学习做好铺垫。 《计量经济学》是经济类专业学生的必修课,如果前期没有一定的研究训练,突然实施研究性教学会让学生无法适应,手足无措。因此建议一入学就给学生灌输研究性学习的理念,让学生从传统教育模式的“被动接受者”向“主动参与者”转变。具体做法就是在大一阶段设立“新生讨论课”项目,由相关专业有经验的教师主持研讨课,课程围绕学科专业引导、开拓学生视野、激发科研兴趣的目的展开,重在让学生了解科研对于专业学习的意义。同时,也可以尝试在学科基础课如微观经济学、宏观经济学、应用统计学等课程中适当介入研究性学习训练,使基础学习阶段的学生对研究性学习有所启蒙。用麻省理工学院校长查尔斯?韦斯特的话说,就是“尽可能尽早把年轻人引导到科研领域”。 2.合理的时间安排和针对性的内容计划是实施研究性教学的关键。 欧美高校在计量经济学的课程设置上普遍具有多样性、层次性特征,如耶鲁大学、哈佛大学、剑桥大学、芝加哥大学、麻省理工学院等基本上都会将计量经济学分解成几门更细的课程或者分成基础、进阶、高级等不同的层次。而国内大学普遍只单一开设计量经济学这门课程,和国外相比我国各高校计量经济学课时安排相对较少。笔者调查了北京大学、清华大学、浙江大学、南京大学、复旦大学、武汉大学、吉林大学、人民大学、厦门大学、南开大学等10所具有代表性的综合性大学和西南财大、东北财大、上海财大、中南 财经 政法大学等5所财经类大学以及中国矿业大学、石油大学、中国地质大学、中国农业大学、武汉理工大学、华中农业大学等6所地矿类、农林类专业特色突出的院校,发现该门课程的学时设置大体分为48学时和64学时,学分在3~4个之间。即便是一学期64学时的安排,要让学生充分掌握计量经济学理论、方法及应用依然是非常困难的。从学期安排来看,除了个别学校安排在第四或者第六学期外,绝大多数高校安排在第五学期较为合理,一方面大二刚刚学完微观、宏观经济学和统计学原理,可以趁热打铁,有效降低遗忘效应,另一方面也可以为大学中后段的 社会实践 乃至 毕业 论文(设计)打下模型和方法的基础。 教学内容的甄选也会很大程度上影响该课程研究性教学的开展。根据教育部高教司制定的经济类本科专业课程教学基本要求,计量经济学应包括概述、经典单方程的简单线性回归及多元线性回归模型、放宽经典假定的单方程模型(包括多重共线性、异方差性、自相关性和模型设定偏误)、联立方程组模型以及应用计量经济模型等板块。 在概述部分,通过1~2篇尽可能涵盖全书主要内容的经典计量经济学学术论文介绍开始,让学生对计量经济学有一个轮廓性的认识,并初步引导学生进入研究性学习的体系中来。经典单方程线性回归模块,鉴于在统计学原理课程中已基本掌握OLS的基本方法,应侧重于剖析偏相关以及几大经典假定的阐述,这一部分以课内讲授、原理学习为主。研究性学习的重点放在后面三大模块,尤其是放宽经典假定的单方程模型篇章中的多重共线性、异方差性、自相关性部分以及应用时间序列计量经济模型篇章。 3.选择适当的配套教材,为实施研究性教学奠定基础。计量经济学的国内外教材非常多,笔者认为选取合适的教材和配套的参考书对研究性教学的效果有着相当关键的影响。教材在提供给学生系统知识的同时,也应给学生一定的面向经济实践的问题思考。因此,对该课程而言,最好能采取主、辅教材同步配套的策略,主教材以提供给学生基本理论与知识为主,在注意系统性的同时,要吸收前沿成果。辅助教材则尽可能囊括可以实时更新数据的案例为主,对经典案例的分析解读是本科生“模仿研究”的起点。 经过多年的教学实践,我校的计量经济学教学模式从最初教师主导的“理论模型方法阐述”到后来的师生交互的“计量模型+案例实践”,再到目前尝试探索学生主导的“研究性教学”,使用的教材也经历了反复的尝试和总结。建议主教材选择清华大学李子奈教授的《计量经济学》或者西南财经大学庞皓教授的《计量经济学》,配套参考书选择古扎拉蒂的《计量经济学基础》或者伍德里奇的《计量经济学导论:现代观点》以及EVIEWS软件自带的《用户手册(User Guider I、II)》,这样的组合可以很好地满足研究性教学的教材需要。 4.多方配合和资源共享为实施研究性教学提供保障。突破传统教学模式,实施研究性教学对学校、学院以及课程教学团队都提出了很高的要求。学校要制定实施研究性教学的指导意见,专门组织开展全校范围内的研究性教学研讨与交流活动,因为实施研究性教学的过程不是一两个学院、一两个专业或者一两门课程能形成氛围的,它不仅仅是教学方法与教学模式转变的过程,更是教育思想观念与教育理念革新的过程。在全校范围内推行研究性教学模式下的教学管理制度,用研究性的视野重新认识教学管理活动的目标、途径和方法,积极开展管理创新,为研究性教学的开展创造自由、开放、宽容、友好的服务软环境。学院层面也尽可能结合精品课程的建设,为开展研究性教学提供优质的教学资源,积极争取实现课程教学资源的网络化,支持并构建以精品教材为主干的教材体系建设,教育学生树立“研究为新常态”的学习观,激励学生主动探究和亲身体验以及基于真实任务的研究问题的解决[11]。课程教学团队除了依托自身的科研项目,广泛吸纳本科生参与研究外,更要结合经济现实,鼓励学生自主立项,建立系统的课程项目库。 计量经济学的研究性教学对全校范围的资源共享的要求也很高。数据共享、软件共享、图书资料共享要求完善健全的校园网络建设和管理,除了教室和实验室以外,老师学生可以随时随地访问数据库,下载更新数据,调用专业统计软件。加强改善教室、实验室、研讨间等研究性学习场所的建设力度,争取实现“小班教学”和“小组实验”,为研究性教学提供软件和硬件的保障。 5.以点串线、由线及面共同构建研究性教学的一体化架构。开设计量经济学课程的经济学学科有各种不同的本科专业,以我校为例有经济学、统计学、金融学和国际经济贸易等专业,不同专业学生的性别比例、生源类别、学科基础和专业侧重均有所不同,相同专业的班风学风也不尽一致,因此可以选择有一定的科研基础和研究能力的任课老师选择相关专业学风优良的班级进行试点。在计量经济学教学大纲范围内选择相对容易理解的知识点和相对“规范(或者标准)”的经济问题作为该课程研究性教学的起点。通过模仿标准案例,然后引导学生以小组的形式各自选择一个研究项目,要求小组(项目组)成员统一拟定立项计划书,阐明研究背景、立项意义,梳理综述文献,设定研究方法和技术路线,合理进行人员分工,最后进行研究成果展示,互相交流心得,教师在学生立项研究的过程中随时答疑解惑。 这样,多个研究项目组合串联起来,就可以形成较为完美的“4线”:前因后果线、教研反馈互动线、理论实践融合线和课内课外互补线。这种教师引导、学生自主立项研究学习的方式能够充分激发学生全方位选择研究主题、多途径收集资料,既可以为教师的科学研究提供补充信息,又可以使学生在研究过程中涉猎更多的学科领域,丰富他们的知识面;在项目负责人组织带领下,各成员分工合作,集思广益,既避免了搭便车现象,又可以极大程度上扩大学生的参与面;项目的研究过程和最终效果也可以作为整个课程考核的重要环节,从而拓展考核的内容面。 五、结语 计量经济学是一门跟现实经济社会密切相关的课程,涉及的计量方法和模型在微观领域可以和家庭(或个人)的经济行为(收入、储蓄、消费、投资等)以及企业的管理活动( 人力资源管理 、生产成本控制、营销策略制定等)等经济现象紧密结合,在经济增长、就业与通货膨胀、区域经济社会差异、财政政策与货币政策制定等宏观经济领域更是大有用武之地。既可以分析单一的横截面数据(或者时序数据),又可以研究混合数据(面板数据)。除了数值型数据,它还能对分类数据构建相应的计量模型。它不只研究经济社会的表面现象,还可以通过数据分析挖掘出现象背后的本质规律。计量经济学应用领域的广泛性为方便学生选题、开展研究性教学提供了强有力的可行性。 经济类专业的本科生学习计量经济学应侧重实证研究,在很多情况下经济理论并不能给出相关经济现象的确切答案,而唯一可行的途径便是“仔细收集数据,深入实证分析”。对于初学计量的学生来说,通过立项研究,与真实数据交手是加深理解的重要途径。因此,实施研究性教学,“弄脏学生的手,弄乱他们的桌”才能真正学会实证研究,领悟计量经济学的真谛。 猜你喜欢: 1. 关于经济发展的论文 2. 有关工程计量与计价论文 3. 有关金融计量的参考论文 4. 统计学论文范文

计量经济学论文选题范围小

学术堂整理了十五个计量经济学论文题目供大家进行参考:1、中国货市需求函数实证研究.2、货币超发的实证研究3、存款准备金率变化的影响4、货币需求与通胀关联分析5、货币需求的弹性分析6、我国居民消费函数实证分析7、浙江省居民消费函数变化8、日元实际汇率长期利率的实证分析9、欧元实际汇率长期利率的实证分析10、瑞朗实际汇率长期利率的实证分析11、利率汇率与外商直接投资12、利率与通胀的关系实证分析13、利率与商业银行不良贷款率的波动实证分析14、利率、租金与房价15、货币政策、利率传导机制实证分析

我国旅游经济的因素分析我国旅游业发展状况分析我国居民消费增长模型我国经济增长与周期波动我国经济增长对能源消耗的依赖公共投资取向与经济增长分析三大产业的发展与城镇居民家庭消费支出餐饮业区域市场潜力的影响因素分析资本结构主要影响因素的再探析国债发行规模的计量经济分析工资收入差异分析城镇人均收入与人均通讯消费分析影响居民消费水平的因素分析影响就业人数的因素的计量分析影响大学生就业问题的因素分析影响股价指数的因素分析影响我国电力产量的因素分析影响中国汽车产量的多因素分析私家车拥有量的计量分析我国汽车需求的因素分析

出生活1978年,

  • 索引序列
  • 计量经济学论文选题多元
  • 计量经济学课程论文多元回归
  • 计量经济论文选题
  • 计量经济学论文范文一元回归
  • 计量经济学论文选题范围小
  • 返回顶部