首页 > 学术期刊知识库 > 单片机电子钟论文素材

单片机电子钟论文素材

发布时间:

单片机电子钟论文素材

基于51单片机的遥控电子钟的设计 第二十六页Ji Yu 5 1 Dan Pian Ji De Yao Kong Dian Zi Zhong De She Ji更新时间:2011-1-4点击:2作者:佚名【内容摘要】本毕业设计项目根据毕业设计任务书指定和我校高职高专特点的要求,体现毕业生的实践动手能力、创新思维、解决问题的能力和对所学知识的综合运用能力,为学校教学楼设计制作一套遥控电子钟系统,整个系统中的大型数码管、控制电路、遥控发射和接收电路、印刷电路板、编程器以及外壳等自己设计制作,可实现如下功能: 1、 采用数字显示,外形美观、大方,显示醒目、直观。 2、 秒、分钟及小时的显示,计时准确,每年的时间误差小于一分钟。 3、 可显示星期,不得有误差。 4、 可用遥控来对数字钟进行调整,便于使用。市电断电后能继续保持时间的正常运行,来电后恢复显示。 标签收藏:51单片机 遥控电子钟 设计 遥控 电子钟 单片机 该文章转自《论文帮 - 应用基础频道》

推荐你去淘宝的:翰林书店,店主应该能下载到这类论文。我去下过,很及时的

电子钟相关毕业设计 ·数字电子钟的电路设计 (字数:9242,页数:22 )·数字电子钟的设计与制作 (字数:8017,页数:22 )·数字钟的设计 (字数:6208,页数:21 )·基于8051单片机的数字钟 (字数:21638,页数:50)·基于单片机的电子时钟控制系统 (字数:7935,页数:42 )·数字电路数字钟设计 (字数:4846,页数:21 )·电子闹钟设计 (字数:4094,页数:19 )·定时闹钟设计 (字数:5714,页数:24 )·智能定时闹钟设计 (字数:3826,页数:18 )·下棋定时钟设计 (字数:5290,页数:24 )·多功能数字钟设计与制作 (字数:13129,页数:34)·基于单片机的电子钟设计 (字数:7710,页数:24 )·基于单片机的数字电子钟设计 (字数:10301,页数:42)·基于Labview的虚拟数字钟设计 (字数:17457,页数:32)·电子日历钟 (字数:10677,页数:33)·数字钟的设计与制作 (字数:4922,页数:23 )·单片机数字钟设计 (字数:15355,页数:47)·基于单片机的数字钟设计 (字数:12541,页数:27)·单片机定时闹钟设计 (字数:8450,页数:24 )·万年历可编程电子钟控电铃 (字数:14371.页数:41)·数字定时闹钟设计 (字数:7770,页数:28 )·基于EDA技术的数字电子钟设计 (字数:12247,页数:32)·多功能时钟打点系统设计 (字数:8353,页数:31 )·智能音乐闹钟设计 (字数:10002,页数:37)·基于AT89S51单片机的数字电子钟设计 (字数:14560,页数:39)

MAX+PLUS开发系统本文详细介绍了一个 EDA教学实验的设计实例——电子秒表电路的设计。作者采用顶层图形设计的思想 ,对电子秒表电路的核心芯片——计时控制芯片进行设计 ,并介绍了在设计中所解决的各个关键问题。本文使用目前流行的一种 EDA软件平台——美国 Altera公司的 M ... 2. EDA教学实验设计实例——电子秒表电路的设计 艾明晶 金惠华 文献来自:中国仪器仪表学会第三届青年学术会议论文集(下) 2001年 第总第期 北京 100083本文详细介绍了一个EDA教学实验的设计实例——电子秒表电路的设计。作者采用顶层图形设计的思想,对电子秒表电路的核心芯片——计时控制芯片进行设计,并介绍了在设计中所解决的各个关键问题。本文使用目前流行的一种EDA软件平台——美国Altera公司的MAX+PL ... 3. 风扇电子定时器设计一例 仇德明 潘裕明 文献来自:家电科技 1987年 第03期 秒表:金雀电子秒表,上海手 表五厂产 现将以上5个样机试验结果进行分析,以便对本电路按理论计算式所得的定时时间T的置信度作一讨论:由于影响T的因素较多,如电容漏电流的离散性、不稳定性、门电路闭值电平vT。的差异 ... 本文介绍一种以数字电路为主兼顾成本与质量两者关系的三小时电子定时电路,具有一定的实用性。 ... 4. 实用多功能电子时钟设计 被引次数:1次 翟玉文 徐宏亮 艾学忠 王庆伟 赵岩 文献来自:吉林化工学院学报 2001年 第01期 通过按键可进行电子时钟与电子秒表功能的切换 ,可对电子时钟的显示内容、时间对时、闹钟定时等功能进行设定和对电子秒表开始计时、暂?... 动态显示介绍一种以AT89C5 1单片机为核心的实用多功能电子时钟设计 .该时钟具有年、月、日、星期、时、分、秒显示和整点音乐报时及定时闹钟等功能 ,也可作电子秒表使?... 5. 数字秒表的实验设计 邹华 文献来自:潍坊教育学院学报 1997年 第01期 、(图二J这样整个数字秒表就设计出来了。从电路图上可以看出,所用器件都比较简单,除有一定实用价值外,作为一个学生实验来做,既可系统地巩固所学知识,又有利于理论联系实际,实践证明,效果很好。39数字秒表的实验设计@邹华<正>秒表是一种 ... 6. 简易电子钟的设计 王韧 俞斌 文献来自:电子世界 2005年 第07期 仅通过程序设计,即可为电子钟增加年、月、日、星期以及闹铃、秒表等功能。简易电子钟的设计@王韧$湖南工学院电气与信息工程系 @俞斌$湖南工学院电气与信息工程?7. 用电子秒表取代打点计时器 朱成标 文献来自:物理实验 1995年 第03期 连接外接微动开关的引线aa'与bb'和电子秒表的连接方法如图2所示.aa'与相连的开关ANI、KZ相当于电子秒表按钮M,对电子秒表有复位/中间计时的控制作用 ... 电子秒表即可获得相应的计时控制信号.二、电子秒表的实验计时方法电子秒表用于实验计时有三种计时方法,即同步计时、中途一次计时、中途二物理实验第15卷第8期次计时8. 语音智能电子体温计设计 支长义 程志平 焦留成 文献来自:微计算机信息 2007年 第07期 450002河南郑州$郑州大学电气工程学院根据设计要求,以SPCE061A新型单片机为基础,通过对温度采样信号分析研究,给出了语音智能电子体温计设计电路,测试结果表明,该电路较为理想。SPCE061A单片机 9. 电子秒表自动计时的研究 谢志堃 文献来自:绍兴文理学院学报 2004年 第10期 并用这个信号去控制电子秒表的触发端,以实现电子秒表自动起、停的计时功能.1电子秒表的自动计时研究 电子秒表具有分段计时的功能,因此可以用来测量运动物体经过某段距离的时间间隔 通过对电子秒表的研究发现,从电子秒表的触发方式来看,只需对计时触发端提供一个电压就可以对电子秒表加以控制,实现自动计时的功能希望以上资料对你有帮助.

单片机数字电子钟毕业论文

电子钟相关毕业设计 ·数字电子钟的电路设计 (字数:9242,页数:22 )·数字电子钟的设计与制作 (字数:8017,页数:22 )·数字钟的设计 (字数:6208,页数:21 )·基于8051单片机的数字钟 (字数:21638,页数:50)·基于单片机的电子时钟控制系统 (字数:7935,页数:42 )·数字电路数字钟设计 (字数:4846,页数:21 )·电子闹钟设计 (字数:4094,页数:19 )·定时闹钟设计 (字数:5714,页数:24 )·智能定时闹钟设计 (字数:3826,页数:18 )·下棋定时钟设计 (字数:5290,页数:24 )·多功能数字钟设计与制作 (字数:13129,页数:34)·基于单片机的电子钟设计 (字数:7710,页数:24 )·基于单片机的数字电子钟设计 (字数:10301,页数:42)·基于Labview的虚拟数字钟设计 (字数:17457,页数:32)·电子日历钟 (字数:10677,页数:33)·数字钟的设计与制作 (字数:4922,页数:23 )·单片机数字钟设计 (字数:15355,页数:47)·基于单片机的数字钟设计 (字数:12541,页数:27)·单片机定时闹钟设计 (字数:8450,页数:24 )·万年历可编程电子钟控电铃 (字数:14371.页数:41)·数字定时闹钟设计 (字数:7770,页数:28 )·基于EDA技术的数字电子钟设计 (字数:12247,页数:32)·多功能时钟打点系统设计 (字数:8353,页数:31 )·智能音乐闹钟设计 (字数:10002,页数:37)·基于AT89S51单片机的数字电子钟设计 (字数:14560,页数:39)

单片机数字钟设计毕业设计我会做啊加你了

哎、太麻烦了

楼上说的是正道。。。。没人能愿意做这些去挣积分的。。。。。。。。

电子类单片机毕业论文

这有一系列的毕业论文qq310852504

以下均可参考,满意给我加分,1. 基于FX2N-48MRPLC的交通灯控制 2. 西门子PLC控制的四层电梯毕业设计论文3. PLC电梯控制毕业论文 4. 基于plc的五层电梯控制5. 松下PLC控制的五层电梯设计 6. 基于PLC控制的立体车库系统设计7. PLC控制的花样喷泉 8. 三菱PLC控制的花样喷泉系统9. PLC控制的抢答器设计 10. 世纪星组态 PLC控制的交通灯系统11. X62W型卧式万能铣床设计 12. 四路抢答器PLC控制13. PLC控制类毕业设计论文 14. 铁路与公路交叉口护栏自动控制系统15. 基于PLC的机械手自动操作系统 16. 三相异步电动机正反转控制17. 基于机械手分选大小球的自动控制 18. 基于PLC控制的作息时间控制系统19. 变频恒压供水控制系统 20. PLC在电网备用自动投入中的应用21. PLC在变电站变压器自动化中的应用 22. FX2系列PCL五层电梯控制系统23. PLC控制的自动售货机毕业设计论文 24. 双恒压供水西门子PLC毕业设计25. 交流变频调速PLC控制电梯系统设计毕业论文26. 基于PLC的三层电梯控制系统设计 27. PLC控制自动门的课程设计28. PLC控制锅炉输煤系统 29. PLC控制变频调速五层电梯系统设计30. 机械手PLC控制设计 31. 基于PLC的组合机床控制系统设计32. PLC在改造z-3040型摇臂钻床中的应用 33. 超高压水射流机器人切割系统电气控制设计34. PLC在数控技术中进给系统的开发中的应用35. PLC在船用牵引控制系统开发中的应用36. 智能组合秤控制系统设计 37. S7-200PLC在数控车床控制系统中的应用38. 自动送料装车系统PLC控制设计 39. 三菱PLC在五层电梯控制中的应用40. PLC在交流双速电梯控制系统中的应用41. PLC电梯控制毕业论文42. 基于PLC的电机故障诊断系统设计 43. 欧姆龙PLC控制交通灯系统毕业论文44. PLC在配料生产线上的应用毕业论文 45. 三菱PLC控制的四层电梯毕业设计论文46. 全自动洗衣机PLC控制毕业设计论文 47. 工业洗衣机的PLC控制毕业论文48. 《双恒压无塔供水的PLC电气控制》 49. 基于三菱PLC设计的四层电梯控制系统50. 西门子PLC交通灯毕业设计 51. 自动铣床PLC控制系统毕业设计52. PLC变频调速恒压供水系统 53. PLC控制的行车自动化控制系统54. 基于PLC的自动售货机的设计 55. 基于PLC的气动机械手控制系统56. PLC在电梯自动化控制中的应用 57. 组态控制交通灯58. PLC控制的升降横移式自动化立体车库 59. PLC在电动单梁天车中的应用60. PLC在液体混合控制系统中的应用 61. 基于西门子PLC控制的全自动洗衣机仿真设计62. 基于三菱PLC控制的全自动洗衣机 63. 基于plc的污水处理系统64. 恒压供水系统的PLC控制设计 65. 基于欧姆龙PLC的变频恒压供水系统设计66. 西门子PLC编写的花样喷泉控制程序67. 欧姆龙PLC编写的全自动洗衣机控制程序 68 景观温室控制系统的设计69. 贮丝生产线PLC控制的系统 70. 基于PLC的霓虹灯控制系统71. PLC在砂光机控制系统上的应用 72. 磨石粉生产线控制系统的设计73. 自动药片装瓶机PLC控制设计 74. 装卸料小车多方式运行的PLC控制系统设计75. PLC控制的自动罐装机系统 76. 基于CPLD的可控硅中频电源77. 西门子PLC编写的花样喷泉控制程序 78. 欧姆龙PLC编写的全自动洗衣机控制程序79. PLC在板式过滤器中的应用 80. PLC在粮食存储物流控制系统设计中的应用81. 变频调速式疲劳试验装置控制系统设计82. 基于PLC的贮料罐控制系统83. 基于PLC的智能交通灯监控系统设计1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文电梯控制的设计与实现 6.恒温箱单片机控制7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文 变电所一次系统设计11.报警门铃设计论文 单片机交通灯控制13.单片机温度控制系统 通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统 16.基于单片机的电子密码锁17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计 20.基于LabVIEW的PC机与单片机串口通信设计的IIR数字高通滤波器 22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计 30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文 数字滤波器的设计毕业论文机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文变电站电气主接线设计 序列在扩频通信中的应用37.正弦信号发生器 38.红外报警器设计与实现39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材 42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护 46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现 48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计 50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文 52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文 54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文 56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器 58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文 60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文 62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文 64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计 66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计 68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究 70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计 72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计 74.空调器微电脑控制系统75.全自动洗衣机控制器 76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计 78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计 80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计 82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器 84.电阻炉温度控制系统85.智能温度巡检仪的研制 86.保险箱遥控密码锁 毕业设计变电所的电气部分及继电保护 88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统 90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统 92.继电器控制两段传输带机电系统93.广告灯自动控制系统 94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统 96.全自动车载饮水机97.浮球液位传感器水位控制系统 98.干簧继电器水位控制系统99.电接点压力表水位控制系统 100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置 102.直流操作电源监控系统的研究103.悬挂运动控制系统 104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置 型无功补偿装置控制器的设计电机调速 频段窄带调频无线接收机109.电子体温计 110.基于单片机的病床呼叫控制系统111.红外测温仪 112.基于单片微型计算机的测距仪113.智能数字频率计 114.基于单片微型计算机的多路室内火灾报警器115.信号发生器 116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计 118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计 120.电子万年历 121.遥控式数控电源设计 降压变电所一次系统设计 变电站一次系统设计 124.智能数字频率计 125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计 127.基于FPGA的电网基本电量数字测量系统的设计 128.风力发电电能变换装置的研究与设计 129.电流继电器设计 130.大功率电器智能识别与用电安全控制器的设计 131.交流电机型式试验及计算机软件的研究 132.单片机交通灯控制系统的设计 133.智能立体仓库系统的设计 134.智能火灾报警监测系统 135.基于单片机的多点温度检测系统 136.单片机定时闹钟设计 137.湿度传感器单片机检测电路制作 138.智能小车自动寻址设计--小车悬挂运动控制系统 139.探讨未来通信技术的发展趋势 140.音频多重混响设计 141.单片机呼叫系统的设计 142.基于FPGA和锁相环4046实现波形发生器 143.基于FPGA的数字通信系统 144.基于单片机的带智能自动化的红外遥控小车 145.基于单片机AT89C51的语音温度计的设计 146.智能楼宇设计 147.移动电话接收机功能电路 148.单片机演奏音乐歌曲装置的设计 149.单片机电铃系统设计 150.智能电子密码锁设计 151.八路智能抢答器设计 152.组态控制抢答器系统设计 153.组态控制皮带运输机系统设计 154..基于单片机控制音乐门铃 155.基于单片机控制文字的显示 156.基于单片机控制发生的数字音乐盒 157.基于单片机控制动态扫描文字显示系统的设计 158.基于LMS自适应滤波器的MATLAB实现 功率放大器毕业论文 160.无线射频识别系统发射接收硬件电路的设计 161.基于单片机PIC16F877的环境监测系统的设计 162.基于ADE7758的电能监测系统的设计 163.智能电话报警器 164.数字频率计 课程设计 165.多功能数字钟电路设计 课程设计 166.基于VHDL数字频率计的设计与仿真 167.基于单片机控制的电子秤 168.基于单片机的智能电子负载系统设计 169.电压比较器的模拟与仿真 170.脉冲变压器设计 仿真技术及应用 172.基于单片机的水温控制系统 173.基于FPGA和单片机的多功能等精度频率计 174.发电机-变压器组中微型机保护系统 175.基于单片机的鸡雏恒温孵化器的设计 176.数字温度计的设计 177.生产流水线产品产量统计显示系统 178.水位报警显时控制系统的设计 179.红外遥控电子密码锁的设计 180.基于MCU温控智能风扇控制系统的设计 181.数字电容测量仪的设计 182.基于单片机的遥控器的设计 电话卡代拨器的设计 184.数字式心电信号发生器硬件设计及波形输出实现 185.电压稳定毕业设计论文 186.基于DSP的短波通信系统设计(IIR设计) 187.一氧化碳报警器 188.网络视频监控系统的设计 189.全氢罩式退火炉温度控制系统 190.通用串行总线数据采集卡的设计 191.单片机控制单闭环直流电动机的调速控制系统 192.单片机电加热炉温度控制系统 193.单片机大型建筑火灾监控系统 接口设备驱动程序的框架设计 195.基于Matlab的多频率FMICW的信号分离及时延信息提取 196.正弦信号发生器 197.小功率UPS系统设计 198.全数字控制SPWM单相变频器 199.点阵式汉字电子显示屏的设计与制作 200.基于AT89C51的路灯控制系统设计 200.基于AT89C51的路灯控制系统设计 201.基于AT89C51的宽范围高精度的电机转速测量系统 202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计 204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计 206.新型自动装弹机控制系统的研究与开发 207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统

单片机毕业论文答辩陈述

难忘的大学生活将要结束,毕业生都要通过最后的毕业论文,毕业论文是一种有计划的检验大学学习成果的形式,那么毕业论文应该怎么写才合适呢?以下是我为大家收集的单片机毕业论文答辩陈述,仅供参考,希望能够帮助到大家。

单片机毕业论文答辩陈述

各位老师好!我叫刘天一,来自**,我的论文题目是《基于AVR单片机的GSM—R基站天线倾角测量系统》。在这里,请允许我向宁提纲老师的悉心指导表示深深的谢意,向各位老师不辞劳苦参加我的论文答辩表示衷心的感谢。

下面我将从论文的背景意义、结构内容、不足之处三个方面向各位老师作一大概介绍,恳请各位老师批评指导。

首先,在背景和意义上,移动通信网络建设初期,基站站间距大、数量少、站型也不大,并且频率资源相对比较丰富。在这一阶段的网络规划时很少对天线的倾角做详细的规划,基站功率常常以满功率发射。对于越区覆盖则主要通过增加邻区的办法予以解决。

但随着网络的迅速发展,城市中的基站越来越密集,在一个中等城市通常分布着数十个基站,在省会城市更是达到了数百个基站之多,并且基站的密度越来越高,站型也越来越大,如果对越区覆盖的问题仍然釆用老办法解决,那么网络质量将难以保证。因此有必要在规划阶段就对基站天线的倾角、基站静态发射功率等进行更加细化合理的规划,从而减轻优化阶段的工作量。

合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围,而且可以加强本基站覆盖区内的信号强度。通常天线下倾角的设定有两方面侧重,一方面侧重于干扰抑制,另一方面侧重于加强覆盖。这两方面侧重分别对应不同的下倾角算法。一般而言,对基站分布密集的地区应该侧重于考虑干扰抑制(大下倾角);而基站分布比较稀疏的地方则侧重于考虑加强覆盖(小下倾角)。

规划阶段进行的倾角设计,在实际施工过程中会出现一定的偏差,在使用的过程中,由于季节变化或风、雨、雪、温度、湿度等自然条件影响,基站天线倾角会发生变化,进而影响场强质量。而移动通信已经是人类日常生活中不可或缺的一部分,正常的通信离不开基站的建设与维护,因此,基站天线倾角的实时、精确测量就显得尤为重要了。但现阶段移动通信基站的天线方位角、下倾角等基本是依靠人工现场通过罗盘、坡度仪等仪器进行测量得到的,而且由于基站的数量巨大,因而测量耗费了大量的时间、人力、物力,并且存在较大的测量人员人身安全隐患。因此,实现一种省时、省力的自动化测量仪器是非常亟需的。

为此,拟研发GSM—R基站天线倾角测量系统,实现不登塔作业即可完成基站天线倾角的测量工作,并可对各基站测试点进行联网,实现对基站天线倾角的实时监测。本系统可以大大降低GSM—R系统现场维护作业的人身安全风险和作业难度、强度,具有很高的实用性和安全性。

其次,在结构内容上,论文主要对基站倾角测量系统进行设计,主要研宄内容为:

(1)根据控制要求,选用倾角测量模块;学会使用并通过使用手册深入学习其特性及原理。

(2)采用ATmegal62作为控制芯片,进行倾角测量系统的硬件电路设计。整个系统分为主板和从板,通过芯片内置的TWI串行总线传输接口进行通信,由主板将数据通过无线模块发送给手持终端。

(3)采用JZ863数传模块,将其与上位机控制芯片、下位机控制芯片的异步串行接收/发送器USART连接,进行上位机与下位机的无线数据通信。

(4)在硬件平台基础上根据模块化思想进行倾角测量系统的软件程序设计。

(5)在设计好的软硬件平台上进行相关实验,实现控制系统设计目标和要求。

本文各章节安排如下:

第1章“引言”,对倾角测量系统进行了简要概述,介绍了研宄背景,并对本文的内容作了简介。

第2章“倾角测量传感器”,主要分析了本系统比较重要的倾角测量模块的原理以及SCA100T—D01倾角测量芯片,对其各个引脚的功能以及通信协议等进行了阐述,为后面的具体实现打下了基础。

第3章“ATmegal62微处理器结构及原理”,分析了本毕设使用的核心单片机芯片ATmegal62,包括它的各个引脚以及I/O端口,并且分析了本论文主要使用的通信协议,即同步串行SPI接口和USART串行口。

第4章“倾角测量系统软硬件实现”,本章首先对系统的总体设计进行了实现,包括主要的技术指标、主要的功能模块等。接着进行了本系统的硬件实现和软件实现。硬件实现包括各个功能模块的具体电路设计以及最后的PCB电路板制作,软件实现包括各个功能模块的程序设计。

第5章“倾角测量系统调试及实验”,本章主要进行了硬件电路的调试,并介绍了通过AVR Studio进行软件仿真以及下载,最后在搭建的系统软硬件平台的基础上,进行调试和实验,以此来验证基站倾角测量系统的硬件与软件设计。

第6章“结论”,本章主要总结了本论文的研究结果,并阐述了系统的不足之处和对以后工作的展望。

最后,在不足之处上,这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。

[知识拓展]

论文答辩提问方式

在毕业论文答辩会上,主答辩老师的提问方式会影响到组织答辩会目的的实现以及学员答辩水平的发挥。主答辩老师有必要讲究自己的提问方式。

1、提问要贯彻先易后难原则。主答辩老师给每位答辩者一般要提三个或三个以上的问题,这些要提的问题以按先易后难的次序提问为好。所提的第一个问题一般应该考虑到是学员答得出并且答得好的问题。学员第一个问题答好,就会放松紧张心理,增强“我”能答好的信心,从而有利于在以后几个问题的答辩中发挥出正常水平。反之,如果提问的第一个问题就答不上来,学员就会背上心理包袱,加剧紧张,产生慌乱,这势必会影响到对后面几个问题的答辩,因而也难以正确检查出学员的答辩能力和学术水平。

2、提问要实行逐步深入的方法。为了正确地检测学员的专业基础知识掌握的情况,有时需要把一个大问题分成若干个小问题,并采取逐步深入的提问方法。如有一篇《浅论科学技术是第一生产力》的论文,主答辩老师出的探测水平题,是由以下四个小问题组成的。

(1)什么是科学技术?

(2)科学技术是不是生产力的一个独立要素?在学员作出正确回答以后,紧接着提出第三个小问题:

(3)科学技术不是生产力的一个独立要素,为什么说它也是生产力呢?

(4)你是怎样理解科学技术是第一生产力的?通过这样的提问,根据学员的答辩情况,就能比较正确地测量出学员掌握基础知识的扎实程度。如果这四个小问题,一个也答不上,说明该学员专业基础知识没有掌握好;如果四个问题都能正确地回答出来,说明该学员基础知识掌握得很扎实;如果能回答出其中的2—3个,或每个小问题都能答一点,但答得不全面,或不很正确,说明该学员基础知识掌握得一般。倘若不是采取这种逐步深入的提问法,就很难把一个学员掌握专业基础知识的情况准确测量出来。假如上述问题采用这样提问法:请你谈谈为什么科学技术是第一生产力?学员很可能把论文中的主要内容重述一遍。这样就很难确切知道该学员掌握基础知识的情况是好、是差、还是一般。

3、当答辩者的观点与自己的观点相左时,应以温和的态度,商讨的语气与之开展讨论,即要有“长者”风度,施行善术,切忌居高临下,出言不逊。不要以“真理”掌握者自居,轻易使用“不对”、“错了”、“谬论”等否定的断语。要记住“是者可能非,非者可能有是”的格言,要有从善如流的掂量。如果作者的观点言之有理,持之有据,即使与自己的观点截然对立,也应认可并乐意接受。倘若作者的观点并不成熟、完善,也要善意地、平和地进行探讨,并给学员有辩护或反驳的平等权利。当自己的观点不能为作者接受时,也不能以势欺人,以权压理,更不要出言不逊。虽然在答辩过程中,答辩老师与学员的地位是不平等的(一方是审查考核者,一方是被考核者),但在人格上是完全平等的。在答辩中要体现互相尊重,做到豁达大度,观点一时难以统一,也属正常。不必将自己的观点强加于人,只要把自己的观点亮出来,供对方参考就行。事实上,只要答辩老师讲得客气、平和,学员倒愈容易接受、考虑你的观点,愈容易重新审视自己的观点,达到共同探索真理的目的。

4、当学员的回答答不到点子上或者一时答不上来的问题,应采用启发式、引导式的提问方法。参加过论文答辩委员会的老师可能都遇到过这样的情况:学员对你所提的问题答不上来,有的就无可奈何地“呆”着;有的是东拉西扯,与你绕圈子,其实他也是不知道答案。碰到这种情况,答辩老师既不能让学员尴尬地“呆”在那里,也不能听凭其神聊,而应当及时加以启发或引导。学员答不上来有多种原因,其中有的是原本掌握这方面的知识只是由于问题完全出乎他的意料而显得心慌意乱,或者是出现一时的“知觉盲点”而答不上来。这时只要稍加引导和启发,就能使学员“召回”知识,把问题答好。只有通过启发和引导仍然答不出或答不到点子上的,才可判定他确实不具备这方面的知识。

【拓展】

单片机毕业论文开题报告参考

1. 课题名称:

数字钟的设计

近年来,随着单片机档次的不断提高,功能的不断完善,其应用日趋成熟、应用领域日趋广泛,特别是工业测控、尖端武器和日常家用电器等领域更是因为有了单片机而生辉增色,不少设备、仪器已经把单片机作为核心部分。单片机应用技术已经成为一项新的工程应用技术。尤其是Intel公司生产的MCS-51系列单片机,由于其具有集成度高、处理功能强、可靠性高、系统结构简单、价格低廉等优点,在我国得到了广泛的`应用,在智能仪器仪表机电一体化等方面取得了令人瞩目的成果。现在单片机可以说是百花齐放,百家争鸣,世界上各大芯片制造公司都推出了自己的单片机,从8位,16位,到32位,数不胜数,应有尽有由于主流C51兼容的,也有不兼容的,但他们各具特色,互成互补,为单片机的应用提供了广泛的天地。在高节奏发展的现代社会,以单片机技术为核心的数字钟越来越彰显出它的重要性。

3. 设计目的和意义:

单片机的出现具有划时代的意义。它的出现使得许多原本花费很高的复杂电路以及繁多的电气元器件都被取缔,取而代之的是一块小小的芯片。伴随着计算机技术的不断发展,单片机也得到了相应的发展,而且其应用的领域也得到更好的扩展。在民用,工用,医用以及军用等众多领域上都有所应用。为了,能够更好的适应这日新月异的社会,我们应当充实我们的知识面,方能不被时代的潮流踩在脚下。

介于单片机的重要性,我们应当对单片机的原理,发展以及应用有着一定的了解。所以,我们应当查阅相关资料,从而能够对单片机有个全方位的了解。进而将探讨的领域指向具体的国内,从而能够在科技与经济飞速发展的当今社会更好的应用这项技术。事实上,该项技术在国内有着极为广泛的发展前景,因此,通过对本课题的研究,我们因当能够充分认识到单片机技术的重要性,对单片机未来的发展趋势有所展望。

单片机的形成背景:

1.随着微电子技术的不断创新和发展,大规模集成电路的集成度和工艺水平不断提高。硅材料与人类智慧的结合,生产出大批量的低成本、高可靠性和高精度的微电子结构模块,推动了一个全新的技术领域和产业的发展。在此基础上发展起来的器件可编程思想和微处理(器)技术可以用软件来改变和实现硬件的功能。微处理器和各种可编程大规模集成专用电路、半定制器件的大量应用,开创了一个崭新的应用世界,以至广泛影响着并在逐步改变着人类的生产、生活和学习等社会活动。

2.计算机硬件平台性能的大幅度提高,使很多复杂算法和方便使用的界面得以实现,大大提高了工作效率,给复杂嵌入式系统辅助设计提供了物理基础。

3.高性能的EDA综合开发工具(平台)得到长足发展,而且其自动化和智能化程度不断提高,为复杂的嵌入式系统设计提供了不同用途和不同级别集编辑、布局、布线、编译、综合、模拟、测试、验证和器件编程等一体化的易于学习和方便使用的开发集成环境。

4.硬件描述语言HDL(Hardware Description Language)的发展为复杂电子系统设计提供了建立各种硬件模型的工作媒介。它的描述能力和抽象能力强,给硬件电路,特别是半定制大规模集成电路设计带来了重大的变革。

5.软件技术的进步,特别是嵌入式实时操作系统EOS(Embedded Operation System)的推出,为开发复杂嵌入式系统应用软件提供了底层支持和高效率开发平台。EOS是一种功能强大、应用广泛的实时多任务系统软件。它一般都具有操作系统所具有的各种系统资源管理功能,用户可以通过应用程序接口API调用函数形式来实现各种资源管理。用户程序可以在EOS的基础上开发并运行。

单片机的发展历史:20世纪70年代,微电子技术正处于发展阶段,集成电路属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单,一般均把CPU、RAM有的还包括了一些简单的I/O口集成到芯片上,它还需配上外围的其他处理电路方才构成完整的计算系统。类似的单片机还有Z80微处理器。

1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场。它以体积小,功能全,价格低赢得了广泛的应用,为单片机的发展奠定了基础,成为单片机发展史上重要的里程碑。

在MCS-48的带领下,其后,各大半导体公司相继研制和发展了自己的单片机。到了80年代初,单片机已发展到了高性能阶段,象INTEL公司的MCS-51系列,Motorola公司的6801和6802系列等等,此外,日本的著名电气公司NEC和HITACHI都相继开发了具有自己特色的专用单片机。

80年代,世界各大公司均竞相研制出品种多功能强的单片机,约有几十个系列,300多个品种,此时的单片机均属于真正的单片化,大多集成了CPU、RAM、ROM、数目繁多的I/O接口、多种中断系统,甚至还有一些带A/D转换器的单片机,功能越来越强大,RAM和ROM的容量也越来越大,寻址空间甚至可达64kB,可以说,单片机发展到了一个全新阶段,应用领域更广泛,许多家用电器均走向利用单片机控制的智能化发展道路。

1982年以后,16位单片机问世,代表产品是INTEL公司的MCS-96系列,16位单片机比起8位机,数据宽度增加了一倍,实时处理能力更强,主频更高,集成度达到了12万只晶体管,RAM增加到了232字节,ROM则达到了8kB,并且有8个中断源,同时配置了多路的A/D转换通道,高速的I/O处理单元,适用于更复杂的控制系统。

九十年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户,使人们从INTEL的111条复杂指令集中走出来。PIC单片机获得了快速的发展,在业界中占有一席之地。

随后的事情,熟悉单片机的人士都比较清楚了,更多的单片机种蜂拥而至,MOTOROLA公司相继发布了MC68HC系列单片机,日本的几个著名公司都研制出了性能更强的产品,但日本的单片机一般均用于专用系统控制,而不象INTEL等公司投放到市场形成通用单片机。例如NEC公司生产的uCOM87系列单片机,其代表作uPC7811是一种性能相当优异的单片机。MOTOROLA公司的MC68HC05系列其高速低价等特点赢得了不少用户。

1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放市场,成为单片机发展史上又一个重要的里程碑。

我国开始使用单片机是在1982年,短短五年时间里发展极为迅速。1986年在上海召开了全国首届单片机开发与应用交流会,有的地区还成立了单片微型计算机应用协会,那是全国形成的第一次高潮。截止今日,单片机应用技术飞速发展,我们上因特网输入一个“单片机”的搜 索,将会看到上万个介绍单片机的网站,这还不包括国外的。随着微电子技术的高速发展,单片机在国民经济的各个领域得到了广泛的应用。首先,单片机技术不断进步,出现了许多新的技术和新的产品。本文以Intel MCS-51系列单片机为模型,阐述单片机的一般原理、应用以及单片机的影响,较为详细地介绍当前主要单片机厂家的产品系列及发展动向。主要内容包括:单片机的基本原理、硬件结构、发展趋势以及具体的应用介绍。本文主要目的是想让大家对单片机有一个更为深入的了解。

科技的进步需要技术不断的提升。试想,曾经一块大而复杂的模拟电路花费了您巨大的精力,繁多的元器件增加了您的成本。而现在,只需要一块几厘米见方的单片机,写入简单的程序,就可以使您以前的电路简单很多。相信您在使用并掌握了单片机技术后,不管在您今后开发或是工作上,一定会带来意想不到的惊喜。

数字钟的发展:1350年6月6日,意大利人乔万尼·德·党笛制造了世界上第一台结构简单的机械打点多功能数字钟,由于数字钟报价便宜,功能齐全,因此很快受到众多用户的喜爱。1657年,荷兰人惠更斯率先把重力摆引入机械钟,进而才创立了摆钟。

到了20世纪以后,随着电子工业的快速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表以及数字显示式石英钟表相继问世,数字钟报价非常合理,再加上产品的不断改良,多功能数字钟的日差已经小于秒,因此受到广大用户的青睐。尤其是原子钟的出现,它是使用原子的振动来控制计时的,是目前世界上最精准的时钟,即使经过将近100万年,其偏差也不可能超过1秒钟。

多功能数字钟最早是在欧洲中世纪的教堂,属于完全机械式结构,动力使用重锤,打点钟声完全使用人工进行撞击铸钟,所以当时一个多功能数字钟工程在建筑与机械结构方面是非常复杂的,进而影响了数字钟报价。进入电子时代以后,电子多功能数字钟也相继问世。我国电子多功能数字钟行业从80年代开始渐渐成长壮大,目前不仅数字钟报价合理,在技术和应用水平上也已经达到世界同类水平。

4. 国内外现状和发展趋势:

纵观单片机的发展过程,可以预示单片机的发展趋势,大致有:

1.低功耗CMOS化

MCS-51系列的8031推出时的功耗达630mW,而现在的单片机普遍都在100mW左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺)。象80C51就采用了HMOS(即高密度金属氧化物半导体工艺)和CHMOS(互补高密度金属氧化物半导体工艺)。CMOS虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合。所以这种工艺将是今后一段时期单片机发展的主要途径。

2.微型单片化

现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大。甚至单片机厂商还可以根据用户的要求量身定做,制造出具有自己特色的单片机芯片。

此外,现在的产品普遍要求体积小、重量轻,这就要求单片机除了功能强和功耗低外,还要求其体积要小。现在的许多单片机都具有多种封装形式,其中SMD(表面封装)越来越受欢迎,使得由单片机构成的系统正朝微型化方向发展。

3.主流与多品种共存

现在虽然单片机的品种繁多,各具特色,但仍以80C51为核心的单片机占主流。所以C8051为核心的单片机占据了半壁江山。而Microchip公司的PIC精简指令集(RISC)也有着强劲的发展势头,中国台湾的HOLTEK公司近年的单片机产量与日俱增,与其低价质优的优势,占据一定的市场分额。此外还有MOTOROLA公司的产品,日本几大公司的专用单片机。在一定的时期内,这种情形将得以延续,将不存在某个单片机一统天下的垄断局面,走的是依存互补,相辅相成、共同发展的道路。

单片机电子琴论文参考文献

手边有一些你需要的关于单片机的论文设计资料 需要的话加QQ 晚上7点以后隐身在线,直接加就行,说明要的资料名字就好。嘿嘿 楼主 要是觉的好的话 可别忘了给分哦。

音色(Tone)PIANO 钢琴 ELECPIANO 电子钢琴 HARPSICHORD 古钢琴 CELESTA 钢琴片 ORGAN 风琴 ELEC ORGAN 电子风琴 PIPE ORGAN 管风琴 JAZZ ORGAN 爵士风琴 ACCORDION 手风琴 SYNTHORGAN 合成风琴 ORCHESTRA 管弦乐 STRING 弦乐 VIOLIN 小提琴 CELLO 大提琴 PICCOLO 短笛 FLUTE 长笛 JAZZFLUTE 爵士长笛 CLARINET 单簧管 OBOE 双簧管 BASSOON 大管 SAXPHONE 萨克管 BRASS 铜管乐 TRUMPET 小号 HORN 圆号 TROMBONE 长号 TUBA 大号 WAH BRASS 哇声铜管乐 GUITAR 吉他 BASS 倍大提琴 BAGPIPE 风笛 BASS GUITAR 低音吉他 MANDOLIN 曼陀林 BANJO 班卓 VIRES 振琴 VIBRAPHONE 电颤振铁琴 HARP 竖琴 FANTASY 幻想音 WAH 哇音 FUNNY 滑稽音 COSMIC TONE 宇宙音 ELECSYNTHE 电子合成音乐 FUNNYSYNTH 合成滑稽音 ELECGUITAR 电吉他 JAZZ GUITAR 爵士吉他 XYLOPHONE 木琴 GLOCKENSPIEL钟琴 HARMONICA 口琴 MUSIC 百音盒 SYMPHONIC 交响乐 CHORUS 合唱队 VOICES 人声 RHYTHNIC 律动性音乐拨钮 DIAPASON 管风琴音栓 VIBES 颤动的声音 RERCUSSION 打击乐 SYNTHETIC 合成打击乐 PERCUSSION §2,节奏同步.音色添加效果(EFFECT)以下这些功能主要是用来修饰音色 VIBRATO 颤音 SUSTAIN 持续音 CRESCENDO VIBRATO 渐强 REVERBERATION 混响§3节奏(RHYTHM)WALTZ 华尔兹 RHUMBA 伦巴 SAMBA 桑巴 MAMBO 曼波舞 CHA-CHA 恰恰 SWING 摇摆舞 DISCO 迪斯科 LATIN SWING 拉丁摇摆 POLKA 波尔卡 MARCH POLKA 波尔卡进行曲 BOLONASE 波罗涅兹 BEGUINE 贝圭英 HABANERA 哈巴涅拉 MARCH 进行曲 MARCH SPEED 快速进行 BOSSA NOVA 博萨诺瓦 SHUFFLE 曳步舞 SLOW ROCK 慢摇滚 JAZZ ROCK 爵士摇滚 LATIN ROCK 拉丁摇滚 JAZZ MARCH 爵士进行曲 JAZZ WALTZ 爵士华尔兹 POPS 波普 BIG BAND 爵士大乐团 REGGAE 雷盖 BALLAD 叙事曲 COUNTRY 乡土音乐 16BEAT 十六步舞 TANGO 探戈 ROCK 摇滚乐 §4.节奏的辅助功能指自动节奏的开始与停止,节奏填充等功能. START 开始 STOP 停止 SYNCHRO 节奏同步 FILL IN 节奏填充 §5.和弦(CHORD)SINGLE FINGER 单指和弦 FINGDERED CHORD 多指和弦 §6电子琴各种功能及中英文对照§1

上有好多,要的话我还有流程图

/*********************************************************************************************

程序名:    DoToy系列作品 MidTouch21电子琴程序

编写人:    杜洋

编写时间:  2009年6月3日

硬件支持:  STC11L60XE 外部12MHZ晶振 电源3V

接口说明:  详见《DoToy_MidTouch21电路原理图》

修改日志:

 完成电子琴21键的测试(20090603_1备)

 改为第二次新板的硬件电路(20090604_2备)

/*********************************************************************************************

说明:

用STC11Fxx单片机I/O接口的高阻态输入功能,扫描I/O接口电平。

手指将VCC线和I/O接口线半连接,产生高电平信号。

/*********************************************************************************************/

void INIT(void);

#include <>

/*********************************************************************************************/

sbit SPEAKER  = P1^0;//扬声器,低使能

sbit LED   = P3^0;//LED正极,强推

sbit LED2   = P3^1;//LED负极

sbit KEY11   = P2^0;

sbit KEY12   = P2^1;

sbit KEY13   = P2^2;

sbit KEY14   = P2^3;

sbit KEY15   = P2^4;

sbit KEY16   = P2^5;

sbit KEY17   = P2^6;

sbit KEY21   = P2^7;

sbit KEY22   = P4^4;

sbit KEY23   = P4^5;

sbit KEY24   = P4^6;

sbit KEY25   = P0^7;

sbit KEY26   = P0^6;

sbit KEY27   = P0^5;

sbit KEY31   = P0^4;

sbit KEY32   = P0^3;

sbit KEY33   = P0^2;

sbit KEY34   = P0^1;

sbit KEY35   = P0^0;

sbit KEY36   = P3^3;

sbit KEY37   = P3^2;

/*********************************************************************************************/

unsigned char MUSIC;

unsigned char STH0,STL0;

unsigned int code tab[]={ //音阶表

63628,63835,64021,64103,64260,64400,64524,  //低音1-7

64580,64684,64777,64820,64898,64968,65030, //中音1-7

65058,65110,65157,65178,65217,65252,65283 //高音1-7

};

/*********************************************************************************************/

void delay1ms (unsigned int a){ // 1ms延时程序(12MHz 10倍于51单片机速度时)

unsigned int i;

while( --a != 0){

for(i = 0; i < 600; i++);

}

}/***************************************************************************************/

void INIT(void){//初始化程序

TMOD=0x11;

ET0=1;

ET1=1;

EA=1;

P0M1 = 0xff;//I/O接口工作方式

P0M0 = 0x00;//P0全为高阻输入

P1M1 = 0xfe;//为准双向,其他为高阻输入

P1M0 = 0x00;

P2M1 = 0xff;//P2全为高阻输入

P2M0 = 0x00;

P3M1 = 0xfc;//为强推,其他为标准双向

P3M0 = 0x01;

P4M1 = 0xff;//P4全为高阻输入

P4M0 = 0x00;

P4SW = 0xff;

LED = 1;

LED2 = 0;

SPEAKER = 0;

}

/***************************************************************************************/

void main(void){

INIT(); //初始化

while(1){

if(KEY37 == 1){delay1ms(20);if(KEY37 == 1){MUSIC = 20;}} //高音B(37)

if(KEY36 == 1){delay1ms(20);if(KEY36 == 1){MUSIC = 19;}}

if(KEY35 == 1){delay1ms(20);if(KEY35 == 1){MUSIC = 18;}}

if(KEY34 == 1){delay1ms(20);if(KEY34 == 1){MUSIC = 17;}}

if(KEY33 == 1){delay1ms(20);if(KEY33 == 1){MUSIC = 16;}}

if(KEY32 == 1){delay1ms(20);if(KEY32 == 1){MUSIC = 15;}}

if(KEY31 == 1){delay1ms(20);if(KEY31 == 1){MUSIC = 14;}}

//3

if(KEY27 == 1){delay1ms(20);if(KEY27 == 1){MUSIC = 13;}}

if(KEY26 == 1){delay1ms(20);if(KEY26 == 1){MUSIC = 12;}}

if(KEY25 == 1){delay1ms(20);if(KEY25 == 1){MUSIC = 11;}}

if(KEY24 == 1){delay1ms(20);if(KEY24 == 1){MUSIC = 10;}}

if(KEY23 == 1){delay1ms(20);if(KEY23 == 1){MUSIC = 9;}}

if(KEY22 == 1){delay1ms(20);if(KEY22 == 1){MUSIC = 8;}}

if(KEY21 == 1){delay1ms(20);if(KEY21 == 1){MUSIC = 7;}}

//2

if(KEY17 == 1){delay1ms(20);if(KEY17 == 1){MUSIC = 6;}}

if(KEY16 == 1){delay1ms(20);if(KEY16 == 1){MUSIC = 5;}}

if(KEY15 == 1){delay1ms(20);if(KEY15 == 1){MUSIC = 4;}}

if(KEY14 == 1){delay1ms(20);if(KEY14 == 1){MUSIC = 3;}}

if(KEY13 == 1){delay1ms(20);if(KEY13 == 1){MUSIC = 2;}}

if(KEY12 == 1){delay1ms(20);if(KEY12 == 1){MUSIC = 1;}}

if(KEY11 == 1){delay1ms(20);if(KEY11 == 1){MUSIC = 0;}}

//1

if(MUSIC != 0xff){ //如果有音阶数值(非0XFF时)

STH0=tab[MUSIC]/256; //将音阶的频率值装入定时器T0

STL0=tab[MUSIC]%256;

TR0=1; //启动定时器

MUSIC = 0xff; //清除寄存器

}else{ //否则

SPEAKER = 1; //关扬声器

LED = 1;

TR0=0; //关定时器

}

}

}

/***************************************************************************************/

void t0(void) interrupt 1 using 0{//定时器0产生音频

TH0=STH0;

TL0=STL0;

SPEAKER=~SPEAKER; //取反频率产生音调

LED = SPEAKER; //LED同频闪烁

}

/***************************************************************************************/

/*************************************************************

* 杜洋工作室 

/*************************************************************/

基于单片机的交通灯控制器1 引言当今,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。但这一技术在19世纪就已出现了。1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。这是世界上最早的交通信号灯。1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。它由红绿两以旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。电气启动的红绿灯出现在美国,这种红绿灯由红绿黄三色圆形的投光器组成,1914年始安装于纽约市5号大街的一座高塔上。红灯亮表示“停止”,绿灯亮表示“通行”。1918年,又出现了带控制的红绿灯和红外线红绿灯。带控制的红绿灯,一种是把压力探测器安在地下,车辆一接近红灯便变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯时按一下嗽叭,就使红灯变为绿灯。红外线红绿灯当行人踏上对压力敏感的路面时,它就能察觉到有人要过马路。红外光束能把信号灯的红灯延长一段时间,推迟汽车放行,以免发生交通事故。信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。左右转弯车辆都必须让合法地正在路口内行驶的车辆和过人行横道的行人优先通行。红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。黄灯是警告信号,面对黄灯的车辆不能越过停车线,但车辆已十分接近停车线而不能安全停车时可以进入交叉路口。2 单片机概述单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。单片机经过1、2、3、3代的发展,目前单片机正朝着高性能和多品种方向发展,它们的CPU功能在增强,内部资源在增多,引角的多功能化,以及低电压底功耗。3 芯片简介 MSC-51芯片简介MCS-51单片机内部结构8051是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。8051单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明:•中央处理器:中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。•数据存储器(RAM)8051内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。图1•程序存储器(ROM):8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。•定时/计数器(ROM):8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。•并行输入输出(I/O)口:8051共有4组8位I/O口(P0、 P1、P2或P3),用于对外部数据的传输。•全双工串行口:8051内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。•中断系统:8051具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。•时钟电路:8051内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8051单片机需外置振荡电容。单片机的结构有两种类型,一种是程序存储器和数据存储器分开的形式,即哈佛(Harvard)结构,另一种是采用通用计算机广泛使用的程序存储器与数据存储器合二为一的结构,即普林斯顿(Princeton)结构。INTEL的MCS-51系列单片机采用的是哈佛结构的形式,而后续产品16位的MCS-96系列单片机则采用普林斯顿结构。下图是MCS-51系列单片机的内部结构示意图2。MCS-51的引脚说明:MCS-51系列单片机中的8031、8051及8751均采用40Pin封装的双列直接DIP结构,右图是它们的引脚配置,40个引脚中,正电源和地线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O口,中断口线与P3口线复用。现在我们对这些引脚的功能加以说明:MCS-51的引脚说明:MCS-51系列单片机中的8031、8051及8751均采用40Pin封装的双列直接DIP结构,右图是它们的引脚配置,40个引脚中,正电源和地线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O口,中断口线与P3口线复用。现在我们对这些引脚的功能加以说明:如图3Pin9:RESET/Vpd复位信号复用脚,当8051通电,时钟电路开始工作,在RESET引脚上出现24个时钟周期以上的高电平,系统即初始复位。初始化后,程序计数器PC指向0000H,P0-P3输出口全部为高电平,堆栈指针写入07H,其它专用寄存器被清“0”。RESET由高电平下降为低电平后,系统即从0000H地址开始执行程序。然而,初始复位不改变RAM(包括工作寄存器R0-R7)的状态,8051的初始态。8051的复位方式可以是自动复位,也可以是手动复位,见下图4。此外,RESET/Vpd还是一复用脚,Vcc掉电其间,此脚可接上备用电源,以保证单片机内部RAM的数据不丢失。•Pin30:ALE/ 当访问外部程序器时,ALE(地址锁存)的输出用于锁存地址的低位字节。而访问内部程序存储器时,ALE端将有一个1/6时钟频率的正脉冲信号,这个信号可以用于识别单片机是否工作,也可以当作一个时钟向外输出。更有一个特点,当访问外部程序存储器,ALE会跳过一个脉冲。如果单片机是EPROM,在编程其间, 将用于输入编程脉冲。•Pin29: 当访问外部程序存储器时,此脚输出负脉冲选通信号,PC的16位地址数据将出现在P0和P2口上,外部程序存储器则把指令数据放到P0口上,由CPU读入并执行。•Pin31:EA/Vpp程序存储器的内外部选通线,8051和8751单片机,内置有4kB的程序存储器,当EA为高电平并且程序地址小于4kB时,读取内部程序存储器指令数据,而超过4kB地址则读取外部指令数据。如EA为低电平,则不管地址大小,一律读取外部程序存储器指令。显然,对内部无程序存储器的8031,EA端必须接地。在编程时,EA/Vpp脚还需加上21V的编程电压。 8255芯片简介8255可编程并行接口芯片简介:8255可编程并行接口芯片有三个输入输出端口,即A口、B口和C口,对应于引脚PA7~PA0、PB7~PB0和PC7~PC0。其内部还有一个控制寄存器,即控制口。通常A口、B口作为输入输出的数据端口。C口作为控制或状态信息的端口,它在方式字的控制下,可以分成4位的端口,每个端口包含一个4位锁存器。它们分别与端口A/B配合使用,可以用作控制信号输出或作为状态信号输入。8255可编程并行接口芯片方式控制字格式说明:8255有两种控制命令字;一个是方式选择控制字;另一个是C口按位置位/复位控制字。其中C口按位置位/复位控制字方式使用较为繁难,说明也较冗长,故在此不作叙述,需要时用户可自行查找有关资料。方式控制字格式说明如表1:表1D7 D6 D5 D4 D3 D2 D1 D0D7:设定工作方式标志,1有效。D6、D5:A口方式选择0 0 —方式00 1 —方式11 ×—方式2D4:A口功能 (1=输入,0=输出)D3:C口高4位功能 (1=输入,0=输出)D2:B口方式选择 (0=方式0,1=方式1)D1:B口功能 (1=输入,0=输出)D0:C口低4位功能 (1=输入,0=输出)8255可编程并行接口芯片工作方式说明:方式0:基本输入/输出方式。适用于三个端口中的任何一个。每一个端口都可以用作输入或输出。输出可被锁存,输入不能锁存。方式1:选通输入/输出方式。这时A口或B口的8位外设线用作输入或输出,C口的4条线中三条用作数据传输的联络信号和中断请求信号。方式2 :双向总线方式。只有A口具备双向总线方式,8位外设线用作输入或输出,此时C口的5条线用作通讯联络信号和中断请求信号。 74LS373简介74LS373 是一种带三态门的8D锁存器,其管脚示意图如下示:其中:1D-8D为8个输入端。1Q-8Q为8个输出端。LE为数据打入端:当LE为“1”时,锁存器输出状态同输入状态;当LE由“1”变“0”时,数据打入锁存器OE为输出允许端:当OE=0时,三态门打开;当OE=1时,三态门关闭,输出高阻。4 系统硬件设计交通管理的方案论证东西、南北两干道交于一个十字路口,各干道有一组红、黄、绿三色的指示灯,指挥车辆和行人安全通行。红灯亮禁止通行,绿灯亮允许通行。黄灯亮提示人们注意红、绿灯的状态即将切换,且黄灯燃亮时间为东西、南北两干道的公共停车时间。设东西道比南北道的车流量大,指示灯燃亮的方案如表2。60S 5S 80S 5S ……东西道 红灯亮 黄灯亮 绿灯亮 黄灯亮 ……南北道 绿灯亮 黄灯亮 红灯亮 黄灯亮 ……表2说明:(1)当东西方向为红灯,此道车辆禁止通行,东西道行人可通过;南北道为绿灯,此道车辆通过,行人禁止通行。时间为60秒。(2)黄灯闪烁5秒,警示车辆和行人红、绿灯的状态即将切换。(3)当东西方向为绿灯,此道车辆通行;南北方向为红灯,南北道车辆禁止通过,行人通行。时间为80秒。 东西方向车流大 通行时间长。(4)这样如上表的时间和红、绿、黄出现的顺序依次出现这样行人和车辆就能安全畅通的通行。(5)此表可根据车流量动态设定红绿灯初始值。系统硬件设计选用设备8031单片机一片选用设备:8031弹片机一片,8255并行通用接口芯片一片,74LS07两片,MAX692‘看门狗’一片,共阴极的七段数码管两个双向晶闸管若干,7805三端稳压电源一个,红、黄、绿交通灯各两个,开关键盘、连线若干。4.2.1 系统总框图如下:4.2.2 交通灯硬件线路图4.2.3 系统工作原理(1)开关键盘输入交通灯初始时间,通过8051单片机P1输入到系统(2) 由8051单片机的定时器每秒钟通过P0口向8255的数据口送信息,由8255的PA 口显示红、绿、黄灯的燃亮情况;由8255的PC口显示每个灯的燃亮时间。(3)8051通过 设置 各个信号等的燃亮时间、通过8031设置,绿、红时间分别为60秒、80秒循环由8051的 P0口向8255的数据口输出。(4) 通过8051单片机的位来控制系统是工作或设置初值,当.牌位0就对系统进行初始化,为1系统就开始工作。(5)红灯倒计时时间,当有车辆闯红灯时,启动蜂鸣器进行报警,3S后然后恢复正常。(6)增加每次绿灯时间车流量检测的功能,并且通过查询端口的电平是否为低,开关按下为低电平,双位数码管显示车流量,直到下一次绿灯时间重新记入。(7)绿灯时间倒计时完毕,重新循环。5.控制器的软件设计每秒钟的设定延时方法可以有两种一中是利用MCS-51内部定时器才生溢出中断来确定1秒的时间,另一种是采用软延时的方法。计数器硬件延时 计数器初值计算定时器工作时必须给计数器送计数器初值,这个值是送到TH和TL中的。他是以加法记数的,并能从全1到全0时自动产生溢出中断请求。因此,我们可以把计数器记满为零所需的计数值设定为C和计数初值设定为TC 可得到如下计算通式:TC=M-C式中,M为计数器摸值,该值和计数器工作方式有关。在方式0时M为213 ;在方式1时M的值为216;在方式2和3为 计算公式T=(M-TC)T计数或TC=M-T/T计数T计数是单片机时钟周期TCLK的12倍;TC为定时初值如单片机的主脉冲频率为TCLK12MHZ ,经过12分频方式0 TMAX=213 *1微秒=8.192毫秒方式1 TMAX=216 *1微秒=65.536毫秒显然1秒钟已经超过了计数器的最大定时间,所以我们只有采用定时器和软件相结合的办法才能解决这个问题. 1秒的方法我们采用在主程序中设定一个初值为20的软件计数器和使T0定时50毫秒.这样每当T0到50毫秒时CPU就响应它的溢出中断请求,进入他的中断服务子程序。在中断服务子程序中,CPU先使软件计数器减1,然后判断它是否为零。为零表示1秒已到可以返回到输出时间显示程序。相应程序代码(1)主程序定时器需定时50毫秒,故T0工作于方式1。 初值:TC=M-T/ T计数 =216 -50ms/1us=15536=3CBOHORG 1000HSTART: MOV TMOD, #01H ; 令TO为定时器方式1MOV TH0, #3CH ;装入定时器初值MOV TL0, #BOH ;MOV IE, #82H ;开T0中断SEBT TRO ;启动T0计数器MOV RO, #14H ;软件计数器赋初值LOOP: SJMP $ ;等待中断(2)中断服务子程序ORG 000BHAJMP BRT0ORG 00BHBRTO:DJNZ R0,NEXTAJMP TIME ; 跳转到时间及信号灯显示子程序DJNZ:MOV RO,#14H ;恢复R0值MOV TH0, #3CH ;重装入定时器初值MOV TL0, #BOH ;MOV IE, # 软件延时MCS-51的工作频率为2-12MHZ,我们选用的8031单片机的工作频率为6MHZ。机器周期与主频有关,机器周期是主频的12倍,所以一个机器周期的时间为12*(1/6M)=2us。我们可以知道具体每条指令的周期数,这样我们就可以通过指令的执行条数来确定1秒的时间。具体的延时程序分析:DELAY:MOV R4,#08H 延时1秒子程序DE2:LCALL DELAY1DJNZ R4,DE2RETDELAY1:MOV R6,#0 延时125ms 子程序MOV R5,#0DE1: DJNZ R5,$DJNZ R6,DE1RETMOV RN,#DATA 字节数数为2 机器周期数为1所以此指令的执行时间为2msDELAY1 为一个双重循坏 循环次数为256*256=65536 所以延时时间=65536*2=131072us 约为125usDELAY R4设置的初值为8 主延时程序循环8次,所以125us*8= 1秒由于单片机的运行速度很快其他的指令执行时间可以忽略不计。 时间及信号灯的显示 8051并行口的扩展8051虽然有4个8位I/O端口,但真正能提供借用的只有P1口,因为P2和P0口通常用于传送外部传送地址和数据,P3口也有它的第二功能。因此,8031通常需要扩展。由于我们用外部输入设定红绿灯倒计时初值、数码管的输出显示、红绿黄信号灯的显示都要用到一个I/O端口,显然8031的端口是不够,需要扩展。扩展的方法有两种:(1)借用外部RAM地址来扩展I/O端口;(2)采用I/O接口新片来扩充。我们用8255并行接口信片来扩展I/O端口。显示原理:当定时器定时为1秒,时程序跳转到时间显示及信号灯显示子程序,它将依次显示信号灯时间 ,同时一直显示信号灯的颜色,这时在返回定时子程序定时一秒,在显示黄灯的下一个时间,这样依次把所有的灯色的时间显示完后在重新给时间计数器赋初值 ,重新进入循环。 8255PA口输出信号接信号灯:由于发光二极管为共阳极接法,输出端口为低电平,对应的二极管发光,所以可以用置位方法点亮红,绿,黄发光二极管。 8255输出信号与数码管的连接:LED 灯的显示原理:通过同名管脚上所加电平的高低来控制发光二极管是否点量而显示不同的字形如 SP,g,f,e,d,c,b,a 管角上加上7FH所以 SP上为0伏,不亮其余为TTL高电平,全亮则显示为8采用共阴级连接:其中 PC0\PB0-a,PC1\PB1-b,PC2\PB2-c,PC3\PB3-d,PC4\PB4-e,PC5\PB5-f,PC6\PB6-gPC7\PB7 -SP接地显示数值 dop g f e d c b a 驱动代码(16进制)0 0 0 1 1 1 1 1 1 3FH1 0 0 0 0 0 1 1 0 06H2 0 1 0 1 1 0 1 1 5BH3 0 1 0 0 1 1 1 1 4FH4 0 1 1 0 0 1 1 0 66H5 0 1 1 0 1 1 0 0 6DH6 0 1 1 1 1 1 0 0 7DH7 0 0 0 0 0 1 1 1 07H8 0 1 1 1 1 1 1 1 7FH表 3 驱动代码表 8255与8051的连接:用8051的P0 口的 连接8255的片选信号cs 我们用8031的地址采用全译码方式,当 =0 时片选有效, 其他无效, 用于选择8255端口 A6 A5 A4 A3 A2 A1 A01 X X X X X 0 0 00H为8255 的PA口1 X X X X X 0 1 01H 为8255的PB口1 X X X X X 1 0 02H 为8255的PC口1 X X X X X 1 1 03H 为8255的控制口由于8051是分时对8255和储存器进行访问所以8051的P0口不会发生冲突 程序设计流程图如图所示图8图9 程序流程图 程序源代码ORG 0000H ;主程序的入口地址LJMP MAIN ;跳转到主程序的开始处ORG 0003H ;外部中断0的中断程序入口地址ORG 000BH ;定时器0的中断程序入口地址LJMP T0_INT ;跳转到中断服务程序处ORG 0013H ;外部中断1的中断程序入口地址MAIN : MOV SP,#50HMOV IE,#8EH ;CPU开中断,允许T0中断,T1中断和外部中断1中断MOV TMOD,#51H ;设置T1为计数方式,T0为定时方式,且都工作于模式1MOV TH1,#00H ;T1计数器清零MOV TL1,#00HSETB TR1 ;启动T1计时器SETB EX1 ;允许INT1中断SETB IT1 ;选择边沿触发方式MOV DPTR ,#0003HMOV A, #80H ;给8255赋初值,8255工作于方式0MOVX @DPTR, AAGAIN: JB ;判断是否要设定东西方向红绿灯时间的初值,若为1 则跳转MOV A,P1JB ;判断是否为1,若为1则设定红灯时间,否则设定绿灯时间MOV R0,#00H ;R0清零MOV R0,A ;存入东西方向绿灯初始时间MOV R3,ALCALL DISP1LCALL DELAYAJMP AGAINRED: MOV A,P1ANL A,#7FH ;置0MOV R7,#00H ;R7清零MOV R7,A ;存入东西方向红灯初始时间MOV R3,ALCALL DISP1LCALL DELAYAJMP AGAIN;-------------------------------------------N0: SETB TR0 ;启动T0计时器MOV 76H,R7 ;红灯时间存入76HN00: MOV A,76H ;东西方向禁止,南北方向通行MOV R3,AMOV DPTR,#0000H ;置8255A口,东西方向红灯亮,南北方向绿灯亮MOV A,#0DDHMOVX @DPTR, AN01: JB : SETB R3,#00H,N01 ;比较R3中的值是否为0,不为0转到当前指令处执行;------黄灯闪烁5秒程序------N1: SETB R3,#05HMOV DPTR,#0000H ;置8255A口,东西,南北方向黄灯亮MOV A,#0D4HMOVX @DPTR,AN11: MOV R4,#00HN12: CJNE R4,#7DH,$ ;黄灯持续亮秒N13: MOV DPTR,#0000H ; 置8255A口,南北方向黄灯灭MOV A,#0DDHMOVX @DPTR,AN14: MOV R4,#00HCJNE R4,#7DH,$ ;黄灯持续灭秒CJNE R3,#00H,N1 ;闪烁时间达5秒则退出;------------------------------------------------------------N2: MOV R7,#00HMOV A,R0 ;东西通行,南北禁止MOV R3,AMOV DPTR,#0000H ; 置8255A口,东西方向绿灯亮,南北方向红灯亮MOV A,#0EBHMOVX @DPTR,AN21: JB : CJNE R3,#00H,N21;------黄灯闪烁5秒程序------N3: MOV R3,#05HMOV DPTR,#0000H ;置8255A口,东西,南北方向黄灯亮MOV A,#0E2HMOVX @DPTR,AN31: MOV R4,#00HCJNE R4,#7DH,$ ;黄灯持续亮秒N32: MOV DPTR,#0000H ; 置8255A口,南北方向黄灯灭MOV A,#0EBHMOVX @DPTR,AN33: MOV R4,#00HCJNE R4,#7DH,$ ;黄灯持续灭秒CJNE R3,#00H,N3 ;闪烁时间达5秒则退出SJMP N00;------闯红灯报警程序------B0: MOV R2,#03H ;报警持续时间3秒B01: MOV A,R3JZ N1 ;若倒计时完毕,不再报警CLR ;报警CJNE R2,#00H,B01 ;判断3秒是否结束SJMP N02;------1秒延时子程序-------N7: RETIT0_INT:MOV TL0,#9AH ;给定时器T0送定时10ms的初值MOV TH0,#0F1HINC R4INC R5CJNE R5,#0FAH,T01 ;判断延时是否够一秒,不够则调用显示子程序MOV R5,#00H ;R5清零DEC R3 ;倒计时初值减一DEC R2 ;报警初值减一T01: ACALL DISP ;调用显示子程序RETI ;中断返回;------显示子程序------DISP: JNB : MOV B,#0AHMOV A,R3 ;R3中值二转十显示转换DIV ABMOV 79H,AMOV 7AH,BDIS: MOV A,79H ;显示十位MOV DPTR,#TABMOVC A,@A+DPTRMOV DPTR,#0002HMOVX @DPTR,AMOV DPTR,#0001HMOV A,#0F7HMOVX @DPTR,ALCALL DELAYDS2: MOV A,7AH ;显示个位MOV DPTR,#TABMOVC A,@A+DPTRMOV DPTR,#0002HMOVX @DPTR,AMOV DPTR,#0001HMOV A,#0FBHMOVX @DPTR,ARET;------东西方向车流量检测程序------T03: MOV A,R3SUBB A,#00H ;若绿灯倒计时完毕,不再检测车流量JZ N3JB R7CJNE R7,#64H,E1MOV R7,#00H ;中断到100次则清零E1: SJMP N22;------东西方向车流量显示程序------T02: MOV B,#0AHMOV A,R7 ;R7中值二转十显示转换DIV ABMOV 79H,AMOV 7AH,BDIS3: MOV A,79H ;显示十位MOV DPTR,#TABMOVC A,@A+DPTRMOV DPTR,#0002HMOVX @DPTR,AMOV DPTR,#0001HMOV A,#0F7HMOVX @DPTR,ALCALL DELAYDS4: MOV A,7AH ;显示个位MOV DPTR,#TABMOVC A,@A+DPTRMOV DPTR,#0002HMOVX @DPTR,AMOV DPTR,#0001HMOV A,#0FBHMOVX @DPTR,ALJMP N7;------延时4MS子程序----------DELAY: MOV R1,#0AHLOOP: MOV R6,#64HNOPLOOP1: DJNZ R6,LOOP1DJNZ R1,LOOPRET;------字符表------TAB: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FHEND6 结论本系统就是充分利用了8051和8255芯片的I/O引脚。系统统采用MSC-51系列单片机Intel8051和可编程并行I/O接口芯片8255A为中心器件来设计交通灯控制器,实现了能根据实际车流量通过8031芯片的P1口设置红、绿灯燃亮时间的功能;红绿灯循环点亮,倒计时剩5秒时黄灯闪烁警示(交通灯信号通过PA口输出,显示时间直接通过8255的PC口输出至双位数码管);车辆闯红灯报警;绿灯时间可检测车流量并可通过双位数码管显示。。系统不足之处不能控制车的左、右转、以及自动根据车流改变红绿灯时间等。这是由于本身地理位子以及车流量情况所定,如果有需要可以设计扩充原系统来实现 。

基于单片机电子琴毕业论文

你好,同学。这两个选题都是差不多的,都要用单片机,电路仿真 程序

楼主我这里有电子琴的单片机程序,做毕业设计那个我觉得还是自己做得好,因为你没懂的话论文答辩是过不了的。简易电子琴#include<> //包含51单片机寄存器定义的头文件sbit P14=P1^4; //将P14位定义为引脚sbit P15=P1^5; //将P15位定义为引脚sbit P16=P1^6; //将P16位定义为引脚sbit P17=P1^7; //将P17位定义为引脚unsigned char keyval; //定义变量储存按键值sbit sound=P3^7; //将sound位定义为 int C; //全局变量,储存定时器的定时常数unsigned int f; //全局变量,储存音阶的频率//以下是C调低音的音频宏定义#define l_dao 262 //将“l_dao”宏定义为低音“1”的频率262Hz#define l_re 286 //将“l_re”宏定义为低音“2”的频率286Hz#define l_mi 311 //将“l_mi”宏定义为低音“3”的频率311Hz#define l_fa 349 //将“l_fa”宏定义为低音“4”的频率349Hz#define l_sao 392 //将“l_sao”宏定义为低音“5”的频率392Hz#define l_la 440 //将“l_a”宏定义为低音“6”的频率440Hz#define l_xi 494 //将“l_xi”宏定义为低音“7”的频率494Hz//以下是C调中音的音频宏定义#define dao 523 //将“dao”宏定义为中音“1”的频率523Hz#define re 587 //将“re”宏定义为中音“2”的频率587Hz#define mi 659 //将“mi”宏定义为中音“3”的频率659Hz#define fa 698 //将“fa”宏定义为中音“4”的频率698Hz#define sao 784 //将“sao”宏定义为中音“5”的频率784Hz#define la 880 //将“la”宏定义为中音“6”的频率880Hz#define xi 987 //将“xi”宏定义为中音“7”的频率53//以下是C调高音的音频宏定义#define h_dao 1046 //将“h_dao”宏定义为高音“1”的频率1046Hz#define h_re 1174 //将“h_re”宏定义为高音“2”的频率1174Hz#define h_mi 1318 //将“h_mi”宏定义为高音“3”的频率1318Hz#define h_fa 1396 //将“h_fa”宏定义为高音“4”的频率1396Hz#define h_sao 1567 //将“h_sao”宏定义为高音“5”的频率1567Hz#define h_la 1760 //将“h_la”宏定义为高音“6”的频率1760Hz#define h_xi 1975 //将“h_xi”宏定义为高音“7”的频率1975Hz/**************************************************************函数功能:软件延时子程序**************************************************************/void delay20ms(void) {unsigned char i,j;for(i=0;i<100;i++)for(j=0;j<60;j++);}/*******************************************函数功能:节拍的延时的基本单位,延时200ms******************************************/void delay() {unsigned char i,j;for(i=0;i<250;i++)for(j=0;j<250;j++);}/*******************************************函数功能:输出音频入口参数:F******************************************/void Output_Sound(void){C=(46083/f)*10; //计算定时常数TH0=(8192-C)/32; //可证明这是13位计数器TH0高8位的赋初值方法TL0=(8192-C)%32; //可证明这是13位计数器TL0低5位的赋初值方法TR0=1; //开定时T0delay(); //延时200ms,播放音频TR0=0; //关闭定时器sound=1; //关闭蜂鸣器keyval=0xff; //播放按键音频后,将按键值更改,停止播放}/*******************************************函数功能:主函数******************************************/ void main(void){ EA=1; //开总中断ET0=1; //定时器T0中断允许ET1=1; //定时器T1中断允许TR1=1; //定时器T1启动,开始键盘扫描TMOD=0x10; //分别使用定时器T1的模式1,T0的模式0TH1=(65536-500)/256; //定时器T1的高8位赋初值TL1=(65536-500)%256; //定时器T1的高8位赋初值 while(1) //无限循环{switch(keyval){case 1:f=dao; //如果第1个键按下,将中音1的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 2:f=l_xi; //如果第2个键按下,将低音7的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 3:f=l_la; //如果第3个键按下,将低音6的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 4:f=l_sao; //如果第4个键按下,将低音5的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 5:f=sao; //如果第5个键按下,将中音5的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 6:f=fa; //如果第6个键按下,将中音4的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 7:f=mi; //如果第7个键按下,将中音3的频率赋给fOutput_Sound(); //转去计算定时常数 break; case 8:f=re; //如果第8个键按下,将中音2的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 9:f=h_re; //如果第9个键按下,将高音2的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 10:f=h_dao; //如果第10个键按下,将高音1的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 11:f=xi; //如果第11个键按下,将中音7的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 12:f=la; //如果第12个键按下,将中音6的频率赋给fOutput_Sound(); //转去计算定时常数 break; case 13:f=h_la; //如果第13个键按下,将高音6的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 14:f=h_sao; //如果第14个键按下,将高音5的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 15:f=h_fa; //如果第15个键按下,将高音4的频率赋给fOutput_Sound(); //转去计算定时常数 break;case 16:f=h_mi; //如果第16个键按下,将高音3的频率赋给fOutput_Sound(); //转去计算定时常数 break; } } } /**************************************************************函数功能:定时器T0的中断服务子程序,使引脚输出音频方波**************************************************************/ void Time0_serve(void ) interrupt 1 using 1 {TH0=(8192-C)/32; //可证明这是13位计数器TH0高8位的赋初值方法TL0=(8192-C)%32; //可证明这是13位计数器TL0低5位的赋初值方法 sound=!sound; //将引脚取反,输出音频方波}/**************************************************************函数功能:定时器T1的中断服务子程序,进行键盘扫描,判断键位**************************************************************/ void time1_serve(void) interrupt 3 using 2 //定时器T1的中断编号为3,使用第2组寄存器{TR1=0; //关闭定时器T0P1=0xf0; //所有行线置为低电平“0”,所有列线置为高电平“1”if((P1&0xf0)!=0xf0) //列线中有一位为低电平“0”,说明有键按下{delay20ms(); //延时一段时间、软件消抖if((P1&0xf0)!=0xf0) //确实有键按下{P1=0xfe; //第一行置为低电平“0”(输出低电平“0”)if(P14==0) //如果检测到接引脚的列线为低电平“0”keyval=1; //可判断是S1键被按下if(P15==0) //如果检测到接引脚的列线为低电平“0”keyval=2; //可判断是S2键被按下if(P16==0) //如果检测到接引脚的列线为低电平“0”keyval=3; //可判断是S3键被按下if(P17==0) //如果检测到接引脚的列线为低电平“0”keyval=4; //可判断是S4键被按下P1=0xfd; //第二行置为低电平“0”(输出低电平“0”)if(P14==0) //如果检测到接引脚的列线为低电平“0”keyval=5; //可判断是S5键被按下if(P15==0) //如果检测到接引脚的列线为低电平“0”keyval=6; //可判断是S6键被按下if(P16==0) //如果检测到接引脚的列线为低电平“0”keyval=7; //可判断是S7键被按下if(P17==0) //如果检测到接引脚的列线为低电平“0”keyval=8; //可判断是S8键被按下P1=0xfb; //第三行置为低电平“0”(输出低电平“0”)if(P14==0) //如果检测到接引脚的列线为低电平“0”keyval=9; //可判断是S9键被按下if(P15==0) //如果检测到接引脚的列线为低电平“0”keyval=10; //可判断是S10键被按下if(P16==0) //如果检测到接引脚的列线为低电平“0”keyval=11; //可判断是S11键被按下if(P17==0) //如果检测到接引脚的列线为低电平“0”keyval=12; //可判断是S12键被按下P1=0xf7; //第四行置为低电平“0”(输出低电平“0”)if(P14==0) //如果检测到接引脚的列线为低电平“0”keyval=13; //可判断是S13键被按下if(P15==0) //如果检测到接引脚的列线为低电平“0”keyval=14; //可判断是S14键被按下if(P16==0) //如果检测到接引脚的列线为低电平“0”keyval=15; //可判断是S15键被按下if(P17==0) //如果检测到接引脚的列线为低电平“0”keyval=16; //可判断是S16键被按下}}TR1=1; //开启定时器T1TH1=(65536-500)/256; //定时器T1的高8位赋初值TL1=(65536-500)%256; //定时器T1的高8位赋初值 }

电子琴好整,芯片都是现成的

密码锁没那么多硬件,做起来比较方便

  • 索引序列
  • 单片机电子钟论文素材
  • 单片机数字电子钟毕业论文
  • 电子类单片机毕业论文
  • 单片机电子琴论文参考文献
  • 基于单片机电子琴毕业论文
  • 返回顶部