首页 > 学术期刊知识库 > 图像检测最新论文

图像检测最新论文

发布时间:

图像检测最新论文

关于医学影像的论文范文

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!

前 言

数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。

1 关键技术在数字图像处理中的应用

医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。

图像获取

图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].

图像处理

在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。

图像识别与重建

在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。

2 医学影像中数字图像处理技术

数字图像处理技术的辅助治疗

当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].

提升放射治疗的疗效

在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。

加深对脑组织以其功能认识

脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。

实现了数字解剖功能

数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。

3 结 论

综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。

参考文献:

[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.

[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.

[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.

随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,为人们的生活、工作和学习提供了极大的便利。然而我们该如何写有关计算机图形图像处理的论文呢?下面是我给大家推荐的计算机图形图像处理相关的论文,希望大家喜欢!

《计算机图形图像处理技术分析》

摘 要:随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,Photoshop、CAE、CAD等计算机图形图像处理软件被广泛的应用在各个领域,为人们的生活、工作和学习提供了极大的便利。在未来的发展过程中,要不断改进和完善计算机图形图像处理技术,推动计算机图形图像处理技术更加广泛的应用和发展。本文简要介绍了计算机图形图像处理技术,阐述了计算机图形图像处理技术的应用。

关键词:计算机;图形图像;处理技术

中图分类号:

计算机图形图像技术以计算机网络系统为平台,实现了人们主观意识中图像和真实存在的图形之间的相互结合,各种各样的计算机图形图像处理软件,为人们的主观处理和操作提供了很多的便利,随着现代化科学技术的快速发展,计算机图形图像处理技术的应用前景会更加广阔。

1 计算机图形图像处理技术概述

基本含义

计算机图形图像处理技术是指通过几何模型和数据将描述性的形象或者概念在计算机系统软件中进行存储、定稿、优化、修改和显现。计算机图形图像处理技术可以用来设计图形的色彩、做纹理和明暗的贴图处理、对图像进行建模设计和造型、消除图像隐线和隐面、对图形曲线和曲面进行拟合操作、数字化的图像存储、图像分割、分析、编码、增强、复原等操作[1],以及对图像进行形式转换,如投影、缩放、旋转、平移等几何形式。

基本组成

计算机图形图像处理技术的基本组成主要包括计算机硬件设备和计算机图形图像处理软件。计算机硬件设备性能的好坏对于计算机图形图像处理效果有着直接的影响,计算机图形图像处理软件将终端的显示和计算机结合在一起,由于计算机图形图像处理技术自身具有设计、存储、修改等功能,可以迅速整合图片数据,不仅可以保障计算机图形图像的处理效果,也可以有效地提高计算机中央处理器和计算机图形图像处理软件的运行效果。键盘和鼠标作为终端的输入设备,可以完成对图形的修改和定位,并且利用显示器、绘图仪、打印机等显示设备和输出设备,可以完整的保存计算机图片。

基本功能

计算机图形图像处理技术主要具有五个基本功能:对话、输入、输出、存储和计算。对话功能是指利用通讯交互设备和计算机显示器实现人机交流。输入和输出功能是指计算机图形图像处理软件可以随时输入和输出相关的图形图像。存数功能是指实时监控计算机的图形图像数据进行有效的检索和维护。计算功能是指计算机图形图像处理软件对相关的图形图像进行必要的数据交换和计算分析。

计算机图形图像处理技术的运行环境

计算机图形图像处理技术的硬件配置主要包括工作站和微型机,软件配置就是建立在工作站和微型机上的运行软件。计算机图形图像处理技术的工作站软件主要有TDI和Alias两种,工作站的软件主要负责处理计算机工作站中的各种图形图像处理。微型机上的计算机图形图像处理软件主要包括3DStudio、Winimage:morph和Photoshop等,3DStudio是微型机上的一种最主要的图形图像处理软件,被广泛的应用在多个计算机系统中;Winimage:morph是一种常用的二维图形图像处理软件,可以将一个图形或者图像制作成另外一个图形或者图像;Photoshop是一个非常专业的图形图像处理软件,其支持图形图像资料的分色制版,给人们进行图形图像处理带来很多的便利。

2 计算机图形图像处理技术的应用

用户接口

人们利用计算机系统的用户接口来操作多种计算机软件,计算机图形图像处理技术和用户接口的有效结合,借助于计算机操作系统构建友好的人机交互用户图形界面,极大地提高了计算机图形图像处理的简便性和易用性。近年来,微软公司普及和推广的图像化windows系统,充分发挥了计算机图形图像处理技术和用户接口全面融合的重要作用。

动画与艺术

随着计算机科学技术的快速发展,计算机硬件设备和计算机图形学也在蓬勃发展,静态的图形图像已经很难再满足人们对高质量、优质的、动态的图形图像的巨大需求,因此近年来,计算机动画技术蓬勃发展,特别是一些美术设计人员,多是依靠计算机图形图像处理软件来进行艺术创作。计算机图形图像处理技术的快速发展,同时推动了艺术设计技术的应用和开发,例如,3DS Studio Max三维设计软件和Photoshop二维平面设计软件[2]。

可视化科学计算

近年来,我国社会主义市场经济快速发展,各个领域的信息通信越来越频繁,计算机网络技术的广泛应用和普及,使得计算机系统数据库中的信息量日益庞大,计算机数据处理和分析技术面临着严峻的考验。相关的技术操作人员利用计算机数据处理和分析软件,很难准确、快速地从计算机的数据库系统中检索出需要的信息数据,难以总结出数据信息的共性和特征。通过将计算机数据处理技术和计算机图形图像处理技术有效的结合起来,可以通过计算机图形图像技术将大量的复杂结构的信息数据进行归类,操作人员通过计算机数据处理软件可以对有共性特征和本质特征的数据信息进行快速检索,极大地提高了计算机数据处理和分析的效率。可视化的科学计算技术最早出现在美国的科学协会研讨中,目前,可视化的科学计算技术被广泛的应用在气象分析、流体力学、医学等领域中[3],特别是在医学领域,利用可视化的科学计算技术可以实现高精度的远程控制和操作,可以应用在远程的脑部手术中,突破医学难题。在未来的发展过程中,可视化的科学计算技术将会在更多的领域发挥更加重要的作用。

工业制造和设计

目前,计算机图形图像处理技术在工业制造和设计领域应用的最为广泛,特别是二维三维CAD和CAE等计算机图形图像处理软件,不仅在工业生产的产品制造和产品设计过程中,还有土木工程领域,甚至是集成电路、网络分析和电子线路等电子电工领域都有着广泛的应用。在高精度的工业制造和设计领域中,利用计算机图形图像处理软件,可以在很短的时间内完成高精度的图形图像设计和画图,极大地提高了技术人员的工作效率,同时,标准的计算机图形图像处理程序,提高了工业制造和设计的精确度,有效地降低了设计误差。由于工业产品多是批量化的制造和生产,利用计算机图形图像处理技术,可以极大地提高企业批量化的运行效率和生产质量,降低工业产品的质量检测投入成本,为工业企业带来了更大的经济效益。

3 结束语

计算机图形图像处理技术的广泛应用和快速发展,推动了多个领域的技术革新,充分发挥人们的想象和创造力,创造出很多独特新奇的图形图像效果,丰富人们的日常生活,同时也为企业节约了很多的图形图像处理成本,提高了产品竞争力。在未来的发展过程中,计算机图形图像处理技术的应用前景会更加广阔。

参考文献:

[1]韩晓颖.浅谈计算机图形图像处理技术[J].福建电脑,2011(10):83-84.

[2]和晓娟.计算机图形图像处理技术的探讨[J].信息与电脑(理论版),2013(11):164-165.

[3]王应荣,王静漪.计算机图形图像处理技术[J].天津理工学院学报,2012(03):6-10.

作者简介:刘倩(1981-),女,满族,硕士,讲师,研究方向:图形图像处理与多媒体技术。

作者单位:宁夏大学 数学计算机学院,银川 750001

图像篡改检测论文

会。论文查重主要是看一句话里面的重复率,一般来说一句话里面只要超过13个字相同就会被认为是重复。但是实际上可能不到13个字也认为重复。会被所以最好是用自己的话把你参考的观点重新解释一遍。

他们可以用PS的一个工具查出来。国内杂志这方面审查较少.163,有不合格的处理,国外好的杂志这方面比较严.。nbmedicine。关于图片PS处理,可以看我的博客,主要是局部增强等,有些是允许的看你做的什么操作

主要看查重系统,一般的查重系统这样是检测不到什么重复的,不过放到知网就不一定了,知网计算重复率的方式有好几种,除了我们熟知的连续13个字判定为重复,还有模糊算法,看的是你整篇论文的重复率,所以就算是降重,最好也不要用这种固定的方式去修改论文,保留句子意思进行转述是最好的。

论文查重主要以下几个方面来:检测论文的段落于格式、 检测数据库 、 检测章节变换、 检测字数匹配,一般的只要高于20个字数匹配一致就会被认定为抄袭,你这样7个字改一下虽然查不出来但是会相当的麻烦。建议你使用PaperPaper进行论文查重检测,这个平台检测严谨,可根据相识片段的分布和相似文献的重复度进行查找和修改。

论文图片像素检测

首先一篇完整的论文里面肯定是包含图片的,那么就能让内容更加的清晰起到一定的指导好处,所以大部分文章里面都会加入必要的图片。其实对于图片的检测来说,其他检测系统会显得非常薄弱,甚至连检测图片的作用都很小。因此,在对论文上的图片进行鉴定时,不是检测不到,就是全部加了扰码。

其实,图片能不能被系统识别到,关键还是取决于图片内容是不是能转换成文字内容,尽管目前技术很早就达到了一定的水平,但部分查重系统还是存在一些不足。如今大部分查重系统都无法对图片进行识别查重,但是我们会注意到,实际上检测系统是做不到这一点的,但是论文检测软件已经开始可以对其进行检测了,说明论文检测软件的权威性。

论文查重系统会不断的升级,已经比较完善。其实这方面的技术人员会因为缺乏图像识别而不断改进,论文查重一定要按照学校的要求提交。

图中最主要的看图中的内容。如果图片是全文的话,检测的时候可以转换一下,再检测一下。所以选择论文检测软件在完成定稿时进行论文检测,保证最优的论文检测报告。

不能。毕业论文一般都是进行论文正文的内容进行查重的,也就是把论文跟系统数据库进行查重比对,而且市面上大部分的论文查重系统都是没办法进行图片查重的。总之就算是国际上的查重系统目前也是没办法查出图片的重复,国内的知网也是无法对所有图片进行查重的,可以利用这一特点来进行论文的降重处理,这样可以更好的通过。但是如果想更好的通过学校的论文答辩,最好的方法还是进行论文的原创写作,这样才是万全之策。图片是由很多的像素组合构成的平面媒体,它的格式有很多,总体上分为矢量图和点阵图这两大类,比较常见的就是jpg、png等格式的图片一般就是点阵图,而gif、swf等格式的图形一般称作矢量图形。现在越来越多的图片以数字的状态进行储存,图片在论文的查重中至关重要。

您好,论文查重不进行查重图片。论文查重只会对论文的纯文本内容进行检测,对于图片部分是 不进 行查重的。学生在引用图片时,虽然图片不会查重,但是建议学生在引用图片时注明好引用来源, 不 能随意复制别人的图片导致侵权现象。如果学生担心论文纯文本内容会提升论文重复率,可以将纯文 本内容采用图片的形式展现出来,并且需要注意替换后看论文总字数是否达到学校的标准。众所周知,图片是由图形、图像等构成的平面媒体,图片的格式多种多样,但从总体上看,可分为 两类:一类是点阵图,如 BMP、 JPG等格式都是点阵图,而 SWF、 CDR和 AI等属于矢量图形。图 画在文章中可以起到很大的辅助作用尽管现在在网上可以搜索到很多的论文查重系统,但大多数的论文查重系统并不支持对论文中图片内。容的检测,目前只有知网有对论文图片进行检测的技术。因此现在大家要用除知网之外的论文查重系统的话,里面的论文图片就不能查重了,希望回答对您有帮助。

期刊对SCI论文图片质量有严格的要求,审稿编辑在阅读论文时,如果发现图片质量太差,就会让作者返回修改。所以,为了避免不必要的麻烦,论文作者在投稿前最好先把图片处理好,如何处理图片可以符合期刊的要求呢?优助医学整理了图片处理的要点,供论文作者们参考。一、拍照的图片拍照的图片一般是彩图,分辨率不低于 300DPI,包括显微镜下拍照、扫描仪及摄像机等所拍照片,这一部分照片就是你的第一手资料,所以拍过后可能会无法再重复,因此一定要在最刚开始时就拍成高清的(设置成高分辨率),也就是保证了原始图片的高分辨率,接下来处理图片就会比较方便,免得因为图片质量不行而重复实验。另外,必要的话,把每张图片拍成 TIF 和JPG 两种格式(以防部分杂志特殊要求)。二、数据生成的图由数据生成的图一般是黑白和点线图,分辨率不低于 600DPI,主要包括各种点线图、柱状图、饼图和各种统计图等。由数据生成的图的图片是可重复修改的,因此一定要保存好原始数据,一旦发现图片有任何问题随时可以再修改。 所谓“知己知彼百战不殆”,论文作者要想图片处理能符合期刊要求,就要知道期刊对论文图片有什么要求。杂志期刊对论文图片质量的要求是非常高的,一般来说,期刊对论文图片的要求包括:1、表达清晰。图片中各元素都清楚无误,不能出现多个字母堆在一起难在分辨的情况。2、分辨率要高。这里所说的分辨率不是我们拍照时所说的总像素数,它的单位是dpi(dot per inch),它代表了一英寸中的点数,科技杂志的要求是600dpi,这也是打印机的最高分辨率。3、线条一致。所有图中的字号、箭头大小要保持一致,粗线、细线分明,各种线型粗细一致。4、数值清晰。横纵坐标的物理量要标清楚,一些关键的临界值,需要标明其数值。优助医学-sci基础实验委托,科研立项5、尽量用白底的图片,一定不能用黑底的图。黑底的图费墨,这是出版社很忌讳的事情,所以在作图前将软件的背景设置为白色是很有必要的,如果只能得到黑底的图片,可以用Photoshop反相处理。所以,论文作者在处理以上两类图片时,就要按照期刊的要求进行处理,为了图片处理更方便,论文作者可以掌握一些图片编辑技巧:(1)文章中的图片一般要保存成TIFF格式的TIFF格式的图片较JPG格式或者PDF图片所包含的图片信息大,便于后期图片各种编辑;TIFF格式图片转化成JPG格式的容易,而JPG格式转化成TIFF格式就比较难了,通常信息损失很大。在RevMan, Stata,R软件中都可以输出TIFF格式的图片。(2)图片的分辨率一般的要求达到300dpi平时图片保存时,一般要保存成300dpi的,基本满足杂志对图片的要求。在R软件中可以通过res调整图片的分辨率。(3)创建文件夹分类保存图片文件原始图片、原始数据及可修改文件要保存好,避免要用时找不到素材。

图像直线检测论文

工程测量被广泛应用于测绘、国土规划、土建工程等多领域,包含普通测量、控制测量、地形测量、海洋测量、大地测量、道路测量、建筑测量、地下工程测量、桥梁工程测量、隧道工程测量等技能的专业技术。下面是我为大家整理的有关工程测量论文 范文 ,供大家参考。

《 工程测量在水电水利工程建设中的作用 》

摘要:工程测量可为水利工程建设提供准确的数据、资料,对水利工程建设具有重要意义,保持水利水电工程的安全运行,为人民生命财产安全提供着技术性的支持,对促进水利水电事业起着至关重要的作用。本文从以下几个方面对工程测量在水电水利工程建设中的重要作用进行了详细论述。

关键词:工程建设;工程测量;测量数据;作用

在水利水电工程中,测量是一项很重要的工作,它贯穿着水利水电工程建设全过程。经过准确、周密的测量后,水利工程可以顺利的按图施工,还可以为施工质量提供重要的技术支持与保障,更是质量检查的主要手段与 方法 。在规划设计水利工程时,需要进行地形资料的收集与整理,要提供提供中、小比例尺的地形图以及相关的信息,在进行建筑物的设计时需要注意,应该提供的是大比例尺地形图。所以,工程建设与工程测量是确保水利工程项目建设,能够取得成功的重要基础与关键。

1水电水利工程建设中工程测量重要性

(1)现今测量作为一门专业技术,以其能够将设备、建筑物等按照大小、形状、位置等不同设计要求在实地进行标定,以及够准确的采集和表示各种地貌及地物的几何信息等显著特点,被广泛应用到了各种工程建设之中。水利工程施工测量是保证工程施工测量过程处于受控状态,并严格按设计图纸、修改通知、技术规范和合同等的具体要求,进行控制测量的作业。通过资料和图纸进行规划和设计,同时选定最为经济、合理的方案,再通过测量与各项工程的施工相配合,并确保设计意图的正确执行。为满足竣工后工程在管理、使用、维修乃至扩建时的需要,还需编绘竣工图。工程测量数据还可为确定水利工程的堤坝高度、设计水利工程中的各项水工建筑等提供依据。

(2)水利工程结构定型的依据即工程测量,工程测量决定了水利工程的设计和定位,可以利用工程测量来确定水利工程基础、诊断水利工程问题,并且是诊断水利工程质量的最重要手段,各种测量数据可尽早的发现水利工程存在的问题,其意义十分重大。施工测量准备工作是保证整个工程施工测量工作顺利进行的重要环节,包括施工图纸的审核,监理单位提供的平面坐标点和高程点的交接及校核,施工测量方案的编制与数据的整理等。测量在高程放样方面可为模板施工提供准确的基准点,能够保证模板施工的平整度以及混凝土施工提供标高控制线,以确保其在施工后和平整度。工程测量可以为工程施工管理提供可靠的资料以及技术支持,并可对水利工程项目混凝土施工中混凝土种类的使用、混凝土厚度等提供精确的数据。

2水电水利工程测量存在的问题

(1)在水利工程建设要达到水利工程项目建设质量不断提升的目标,就需要进行详细的工程测量,并将工程测量的数据予以应用,以消除那些不可预见的因素确保工程质量。水利工程的施工质量对区域性经济发展和居民的生命安全有重要的影响,在水利水电工程建设阶段需要明确各个控制要点,满足工程实际测量体系的具体要求。在水利水电工程开工建设前期的测量工作,必须按照建设单位的建设规模和具体要求,以及按照项目所在地的自然条件和预期目的进行规模设计。否则将会出现测量数据的误差,就有可能导致水利工程在施工过程中出现严重的质量问题,甚至是引发重大的安全事故造成严重的经济损失,同时对社会方面也会增加严重的负面舆情。

(2)主体结构的施工过程中,要重视工程测量对多方面数据确定的影响,要做好水利工程的轴线、坡面的平整度、 渠道 的中线、大型水利工程建筑物垂直度控制以及主体标高控制等项工作,以防止出现、变形、偏位、渗漏等常见病害的发生,造成对水利工程质量的严重伤害,从而使水利工程项目在日常运行过程的安全性能受到影响。还要作好水工建筑物的变形观测,杜绝由于水工建筑物沉降、位移所引起的安全质量事故发生,以确保水利工程安全的稳定性。工程测量对水利水电工程建设有一定的指导性意义,因此需要结合施工工程设计形式的要求,对不同的设计环节进行分析,适应水利水电工程的建设需求。

3工程测量在水电水利工程建设中的管理与应用

(1)工程测量不但广泛的应用于建筑、土地测量等领域,其在水利工程建设也占据着重要的位置。工程测量能够为水利工程建设提供各项数据,可能保证水利工程建设基础的质量,从而确保整个水利工程项目的质量。随着计算机技术的飞速发展以及“互联网+”时代的到来,出现了地面测量、数字化测绘和RS、GIS、3S、GPS等,先进技术设备和集成测绘新技术的深入应用,使水利水电工程测量的手段和方法进行着快速的更新换代,同时也在不断的开拓着服务领域。这些测量方法最大的特点就是可对数据进行修正,能够让测量对象的参数得到及时修正,提升测量数据的精准度和连续性。

(2)在结合实际对测量工作进行合理的安排,有效提升测量精度,推动水利水电工程建设、促进区域经济健康发展的同时,还应该注重加强包括测量技术水平提高、责任意提升等施工管理人员综合能力素养方面的培养,这样有助于在具体的工作中,采取切实有效的 措施 与方法,以确保工程测量的准确性。需对具体管理人员以及施工人员的工程测量意识进行巩固与加强,通过培训等对他们的质量意识和责任意识进行不断完善,使其在工作能够做到按部就班、不出纰漏,按照流程根据施工图纸进行放样,确定控制高程,以为后面的施工奠定基础,从而加强工程质量。

(3)现阶段对大坝水底地形的测量,主要还是技术人员根据卫星定位技术与多波束探测仪之间的紧密配合来进行的。近年来,我国水利水电工程测量研究投入增多,发展很快,进步很大,取得了显著成绩,在此基础之上我们还应注意,要加强管理人员以及施工人员的测量意识,要进一步提高对测量工作的重视度,从而达到各个环节工程测量水平的全面提升。随着测量数据传播与应用的多样化、网络化及社会化和测量数据采集与处理的实时化、自动化及数字化,还有测量数据管理的标准化、规格化与科学化,水利水电工程测量技术一定会有一个辉煌的未来。

4结束语

工程测量精准的观测成果,为水利水电工程质量和人民生命财产的安全提供了坚实的保障。水利工程的规划、设计和施工以及运行管理等各环节、各阶段都离不开测量工作。工程测量工作要不断的 总结 工作 经验 ,提升专业素质,引用、掌握先进测量仪器,以满足不同时期水利水电工程的不同需求。

参考文献:

[1]杨玉平,杨玉华.论工程测量在水利水电工程建设中的重要性[J].江西测绘,2014,(4):53-54+57.

[2]李添萍.浅析水利水电工程质量检测的重要作用[J].青海科技,2010,(4):136-138.

《 建筑工程测量施工放样方法及应用 》

摘要:随着我国经济发展水平的不断提高,建筑行业得到了显著发展,建筑工程测量作为建筑工程的重要组成,在整个建筑施工前期阶段发挥着重要作用,需要不断对工程测量施工放样技术进行改进与创新才能满足建筑项目需求。本文将对建筑工程测量施工的放样方法与应用进行分析,从而表现做好测量放样处理对工程的重要性。

关键词:建筑工程测量施工放样方法技术探讨

建筑工程开展过程中对尺寸与施工范围有着严格要求与控制,这就需要应用测量放样技术,工程测量存在于整个施工阶段,对施工质量与施工开展有重要意义,需要对放样精度与测量结果反复对比,增强测量放样的精度。鉴于测量施工结果是施工依据与参照,一旦放样测量出现误差,将会影响立模、打桩、钢筋混凝土施工方方面面,在施工位置上容易出现偏差,对施工方带来损失。

1建筑工程测量施工放样概述

内涵

施工放样就是按照设计图标注的内容实地定标的过程。此过程需要使用到全站仪、测量仪器等设备,需要明确设计图纸上平面位置与高程,使用测量仪将实地位置标记出来,按照建筑物间几何关系将距离与特征确定出来,得到距离、高程、角度等数据,再结合控制点位置,在实际建筑中将建筑物特征点标定出来。

施工放样的主要方式

(1)平面放样。

施工放样分为平面位置放样与高程放样两种。平面位置放样较为常见的方法有直角坐标法、方向线交法以及交汇法,每一种方法基本操作方法都需要按照长度与角度进行;极坐标法则是使用数学极坐标原理将极轴确定为连线轴,将其中的某一极点作为放样控制坐标,将极点距离与放样极点连线方向到极点的夹角计算出来,将其作为放样参考[1]。通常,放样点距离控制点很近,需要极坐标与其保持120米距离,这样在测量时将更加方便,角度测量可以使用经纬仪或者测距仪,在使用电子测距仪时需要将控制点的距离延长,这样才能使放样作业更加方便、灵活;直角坐标法主要就是保持坐标轴的平行控制线,先沿横坐标放样,再沿控制线方向放样,只需将直角测设出来便可。

(2)高程放样。

几何水准测量法应用时需要先控制高程点,将控制点精度引入到施工范围内,使用方便固定与保存的方法,在水准点的保密上可以使用一次仪器完成高程放样。常规测量方法为:放样点附近到控制点存在高差,此时,需要使用较长钢尺对高程测设。具体施工中需要使用木桩将放样高程固定下来,使用红线对木桩侧面标记,需要结合具体情况注记高程。三角高程测量法:对水平距离与天顶距两点进行观测,将两点的高差计算出来,这种观测方法虽然简单,但受条件限制需对大地控制点高程测量。基本原理为:将地面两点设为a、b,站在a点观测b点标高,将竖向角度设为α,两点水平距离为S0,a点仪器高设为i1,i2作为标高,此时a、b两点间高差表示为:S0tgα,假设地球表面是一个平面结构,能利用上述公式将直线条件计算出来,大地测量时,还需要对地球弯曲与大气垂直折光度充分考虑[2]。为将三角高程测量精度提高,可以使用对向观测法,将两点高差推导出来。

建筑工程总定位放样方法

可以使用经纬仪将放样方向确定下来,再使用钢尺将测量距离,对地势较平坦的地区需要将定向设置在平缓点位置,再使用测距仪完成测量。曲线定位放线也是常用手段,分为直线、圆曲线等,先将圆曲线桩坐标设计出来,再对坐标加密处理,利用公式进一步对坐标测算。

2放样中注意的问题

放样工作中,有很多内容需要注意:首先,在主轴点放样中,可以使用三点交会法、三边测距法,不能仅使用两点测角定点法,需要选择至少三个方向,将校核点设定为第三点。如果使用测角定点,则要在观测时从四个方向出发,丈量好轮廓距离,不管使用哪种放样法,都需要与理论值对比,防止出现误差。在使用光电测距法放样定点式,现场至少选择一个放样点,丈量设计间距时,能够使校核作用增强。如果通过规则图放样使,则首先要考虑的是放样点间的几何关系,并反复检查几何关系,使用方向法放样时,在使用仪器时可以确定至少两个方向,对方位观察看是否合格,如果精度过低或者存在倾斜,要使用天顶距观测法,防止出现校核偏差。

3放样过程中的现场平差

现场平差就是指在现场放样,现场测量存在偏差消除时可以使用现场平差法。比如,在测放某一个方向时,需要先定点倒镜与正镜,最终将两个方向中点方向值确定下来。在建筑施工中,对测量放样精度有较高要求,分为严密性与松散性要求,从建筑物角度看,严密性与构件存在相关性,如果放样存在的误差较大,将使建筑质量降低。而建筑各部分间的联系则能体现松弛关系,这种情况下需要对建筑各部分有深入了解,将三维数据规定确定下来,也可以结合施工具体情况将放样影响度降低[3]。要想更深刻了解放样精度特征,需要使放样保持严密性,多对严密性进行考虑。如果针对松散构件,则要将误差分散开,确保总体工程质量不会受到影响。与现场平差不同的是,不是将误差全部消除,而是将其放样到质量相关的地方,对其进行吸纳。如果是精密性较高的建筑部位,则要从控制主轴线上实施放样工作,不用考虑控制网精度设计,在完成对主轴线测设后,就可以将建筑部位设定为主轴线基础,将主轴为基准才能确保建筑具备严密性,减少测设带来的精度误差,保证测设的严密性。在具体施工中,还能在主轴基础上将误差分散到建筑各个部分,防止误差过于集中。

4防范误差的对策

受多种因素的影响,测量经常出现误差,极大影响到了建筑施工的顺利开展,人员组成、操作以及施工管理都是重要的影响因素,必须切实做好这些内容的管理与防范才能减少误差。要想将测量放样误差减少,首先就要做好测量准备工作,反复校核设计图纸中的数据,并核实总平面数据与坐标,将基础图与平面图轴线位置确定下来,对符号与标高尺寸进行检查,确保各项数据、参数的准确,对总平面布设位置与分段尺寸进行设定,使分段长度与各段长度一致。其次,还要在人员组织分配上尽量选择技术精湛、有高度责任心的施工人员,将这些人员分为5组。在具体测量中,需要准备好测量仪器与工具,并调整好仪器的温度,增强仪器使用的效率与准确性。及时将测量结果记录下来,确保测量的数据能够更加真实、准确,并能在核对中及时发现问题、解决问题,必须经过两个人反复核对以后才能将最终结果确定下来,使用加减相消法能够及时发现错误。针对问题采取科学、有效的定位复测措施,完成定位以后,复测建筑平面几何尺寸与角度坐标,对建筑物图纸设计与标高是否相符进行核对,对建筑方向准确性进行检查,发现存在的问题。质量监督机构要定期对放样操作进行监督,将质量管理检查机构建设起来,采取自检、互检以及复检方法使放样精度得到保证。

5结束语

建筑工程测量施工是一个复杂且漫长的过程,是建筑施工中必不可少的组成,一个环节出现误差或者遗漏就会对整个施工质量造成影响,为施工单位带来损失。为此,加强放样管理,强化放样操作,做好校核平差工作显得非常重要。这有这样,才能将测量误差消除,确保建筑工程质量与测量精度。

参考文献

[1]邓志永,冯显征.建筑施工测量误差分析及对施工放样精度要求的探讨[J].建筑工程技术与设计,2014(22):779-779.

[2]袁俊利.采用传统测量技术进行复杂立交桥工程测量的方法和措施[J].建筑技术,2012,43(9):806-809.

[3]郝安华,贾涛.试论市政道路工程测量放样控制工作的要点与对策[J].商品与质量•建筑与发展,2014(5):

《 地铁工程测量技术及应用 》

摘要:在地铁工程项目中,地铁测绘工作及测量技术是项目建设的基础工作,它不仅贯穿于整个地铁工程建设始终,还对地铁工程质量产生重要影响。本文结合地铁测绘工作的实践经验,分析了常见的地铁工程测量技术,就具体的实践应用进行了分析探讨,以期对相关的地铁工程测绘工作有所启示作用。

关键词:地铁测绘;测量技术;地铁工程

伴随我国经济建设的蓬勃发展,各地城市交通建设也面临着全新的发展局面,作为城市交通的最基础建设之一,地铁工程与百姓生活密切相关,其工程质量自然也备受社会关注。地铁测绘工作是地铁工程的一项重要环节,它贯穿于整个地铁工程,从地铁工程开始筹划直到工程的后续运营,几乎都离不开测绘工作的支持。因此作为工程施工单位,需重视地铁工程测量技术的应用,保证测量的准确性,提高工程建设水平。本文结合具体工程实例,对上述问题进行探析,具有一定的参考价值。

1.地铁工程概述

为方便本次研究分析,本文选取了某地铁工程的具体实践建设作为研究参考对象。工程为某城市的地铁线路,是南北方向的主干线,线路全长约,其中地下线长约,地上线长约,该项工程是解决主城南北客运主流向出行需求的南北主轴线。结合本次地铁工程概述及以往的施工经验,总结本次地铁工程测绘工作和测量技术工作具有以下特点。首先,本次地铁工程项目属于城市地铁线路主干线,对城市交通影响较大;而且地铁项目投资大,工程建设周期长,因此地铁测绘工作要贯穿于整个项目始终,从地铁工程开始筹划直到工程的后续运营,都需要测量技术支持。其次,地铁工程界限规定严格,施工过程中存在的误差都必须受到严格控制,测量技术必须有精确性和可靠性的保障。最后,地铁测量工作必须抓好每一个细节,要通过测量技术的管理提高项目管理质量,对于施工过程中一些关键环节如铺轨基标测量、隧道施工方面测量等,都要做好严格把控,从整体上提高测量技术水平,为地铁工程打下良好的基础。

2.地铁工程测量技术分析

地铁测绘工作贯穿于整个地铁工程建设项目始终,具体包括工程勘测阶段、地铁施工图设计阶段、地铁施工测量阶段、地铁的运营期等几个方面。本文主要从施工阶段对地铁工程测量技术的应用进行分析,具体如下。

测量机器人的应用

测量机器人是本次地铁工程施工阶段的主要测量技术,其具体实质上属于一种智能型电子全站仪,它能够代替人工来进行一系列的测量工作,如自动搜索、跟踪、识别,此外它还能精确照准目标并获取角度、距离、三维坐标以及影像等信息,在实际工程中取得了良好的测量效果。该项技术的测量优势在于测量精度高,智能自动化,自动照准,锁定跟踪,遥控测量及自动调焦等。本次工程测量实例中应用了测量机器人,对于本次地铁工程测量的可靠性和效率都有明显提升,测量精度度高,测量与绘制工作可以一体化进行。在实际工程中发现,测量机器人有着良好的对数据实时分析处理能力,这对于提高本次工程数据处理能力,提升测量精度发挥了重要作用。此外,电子全站仪的应用实现了集成化管理,可以有效确保数据的共享交换,施工放样的质量和效率都大幅提升,安装误差控制在一个很小的范围内。

定向测量

传统的竖井定向测量手段均采用全站仪、垂准仪和陀螺经纬仪联合的方式,而在本次工程的具体实例中,应用了定向测量系统,在隧道盾构的情况下,利用自动化引导系统进行隧道开挖,而且定向测量能够实现实时显示,对于隧道轴线的点偏移值能够及时发现并处理,保证了隧道开挖的可靠性,提高了隧道开挖的精度程度,对于工程中所存在的误差值也能控制在理想的范围内。此外,在本次工程的地下顶管施工过程中,考虑到传统的施工手段技术(即人工测量)费时费力,施工效益低下,因此在本次实际施工中采用了顶管自动引导测量系统,由计算机远程控制测量机器人来自动完成作业,取得了非常理想的施工效果。

断面测量

在本次工程的断面测量上,施工单位综合采取了断面测量系统,该系统的具体内容包括了全站仪、数据采集器、计算机和觇牌等等。在隧道施工中的各个环节上,该断面测量系统取得了良好的实践效果,放样、测量、检测和计算等诸多环节上都没有出现问题。在隧道的初砌和开挖工作中,测量准确性得到了保证,同时测量效率提升,节约了大量的人力物力。本次施工发现,利用断面测量来保证隧道施工的测量工作,一方面可以大大提高施工进度,测量速度有保障;另一方面,在同等的施工时间内,测量精度可以控制在理想范围内,一般精度范围可控制在毫米,测量精准度大大提升。此外在本次施工工程中,还利用到了无反射和全自动棱镜三维断面测量,一方面保证了测量数据采集的高效性,另一方面由于实现了多断面共同测量,且操作简便高效,可靠性强,因此又进一步提高了测量效率。

无棱镜测量的应用

在本次的地铁工程施工中,还涉及到了无棱镜测量机器人的具体应用。该项技术通过辐射测量极坐标的方式,准确并高效地完成了一系列的工测量工作,具体包括了隧道掘进放样、断面测量、围岩净空位移量测等等,测量精确度高,测量效率好。该项测量技术进行了有针对性的创新,在工程中利用计算机自动处理,有效减少了工程成本,测量起来也十分方便。该项测量技术的一个典型特点是把设计图中的地铁相应物体的位置及大小都放到实地中,这种趋近于真实的参考参照,大大提高了本次工程的放样精确程度。此外,施工基坑监测系统能够实现对数据的及时分析管理,对于地铁基坑监测项目也具有非常高的可行性。

地铁施工铺设阶段

在地铁施工铺设阶段,本次施工也采用了测量机器人。该项技术的主要原理是应用到了无线传输技术,通过它将测量数据持续传输到机载计算机,然后再利用计算机实现对地铁铺设的精确控制。通过该项技术在本次工程施工中的应用,施工铺设的安全性与质量都得到了有效保障。同时在铺设精度得到有效控制的前提下,铺设成本大大降低,工程经济效益得到了有效保证。此外在施工路面扫描系统中,测量机器人也有很高的应用价值,可将监测目标分为圆棱镜,无棱镜和反射贴片三种。

竣工测量阶段

在本次项目的地铁工程竣工阶段,也需要进行大量的数据测量,这些测量的数据将作为竣工验收的参考,并做相应好存档工作。这些具体的测量内容包括了地铁结构的平面位置、埋深、线路等诸多方面。通过测量机器人的应用,可以实现对相关建筑物(包括附属结构)的尺寸测量、线路及高程测量等,提升了轨道测量精度,保障了地铁工程测量放样的顺利实现。

总结

综上所述,地铁测绘工作是一项系统且复杂的内容,它贯穿于整个工程始终,并对工程质量提供了强有力的保障。在当前各地城市交通建设不断发展的新时期,地铁工程自然占据了十分重要的位置,相关单位需要在保证工程质量的前提下,加强工程测量管理工作,强化对地铁工程测量技术的研究,保证测量各个环节的质量与水平,确保工程顺利开展并取得良好的综合效益,推动我国地铁交通事业的发展迈向一个新高度。

参考文献:

[1]张铁斌.地铁工程测量技术及应用分析[J].科技展望,2015,09:39.

[2]龚振文,龙晓敏,胡朝英.昆明地铁工程测量技术分析及测绘新技术应用[J].山西建筑,2013,33:208-210.

[3]程栋.地铁工程测量中平面联系测量的应用[J].科技展望,2015,35:35.

有关有关工程测量论文范文推荐:

1. 有关工程测量论文范文

2. 有关工程测量毕业论文范文

3. 工程测量毕业论文范文

4. 工程测量工程论文范文精选

5. 浅谈工程测量论文范文

6. 工程测量毕业论文例文

7. 工程测量技术论文

★ 计算机辅助设计,统编教材,机械工业出版社 1994★ 机械设计手册(第二版)计算机辅助设计篇,机械工业出版社98页22万字,主编(全国科技图书二等奖,1995)★ 机械工程手册(第二版)计算机辅助设计篇,机械工业出版社1996年14万字,主编★ CAD/CAM技术,高教机电类规划教材,机械工业出版社,万字,副主编(2002全国高校优秀教材二等奖) (包括与指导的研究生合作)(其中EI检索66篇;SCI检索10篇):; Tang,Xusheng; Su,Tieming; Zhao,Pengfei,Cascade AdaBoost classifiers with stage optimization for face detection,Lecture Notes in Computer Science,v 3832 LNCS,Advances in Biometrics - International Conference,ICB 2006,Proceedings,2006,p121-128(SCI、EI收录); Ou,Zongying; Su,Tieming; Zhao,Pengfei,Cascade AdaBoost classifiers with stage features optimization for cellular phone embedded face detection system,Lecture Notes in Computer Science,v 3612,n PART Ⅲ,Advances in Natural Computation: First International Conference,ICNC 2005. Proceedings,2005,p688-697(SCI、EI收录); Ou,Zongying; Su,Tieming; Sun,Haibo; Zhao,Pengfei,Robust precise eye location by adaboost and SVM techniques,Lecture Notes in Computer Science,v 3497,n Ⅱ,Advances in Neural Networks - ISSN 2005: Second International Symposium on Neural Networks. Proceedings,2005,p 93-98(SCI、EI收录); Zhang,Jing; Ou,Zongying,Novel view generation from two reference images based on the same optical axis,Proceedings - The Fourth International Conference on Computer and Information Technology,CIT 2004,2004,p 801-806(EI收录); Ou,Zongying; Wang,Guoqiang,Face recognition using Gabor features and Support Vector Machines,Lecture Notes in Computer Science,v 3611,n PART Ⅱ,Advances in Natural Computation: First International Conference,ICNC 2005. Proceedings,2005,p119-122(SCI、EI收录); Zhang,Jing; Ou,Zongying,Novel view generation from two reference images based on the same optical axis,The Fourth International Conference on Computer and Information Technology (CIT 2004),2004,p801-806(EI收录); Tang,Xusheng; Ou,Zongying; Xi,Ning,A hierarchical FloatBoost and MLP classifier for mobile phone embedded eye location system,Lecture Notes in Computer Science,v 3972 LNCS,Advances in Neural Networks - ISNN 2006: Third International Symposium on Neural Networks,ISNN 2006,Proceedings - Part Ⅱ,2006,p 20-25(EI收录); Ou,Zongying; Chen,Weiqing,A panoramic image mosaics algorithm based on wavelet decomposition and equidistant matching,Fourth International Conference on Virtual Reality and Its Applications in Industry,2004,p145-148(EI收录); Ou,Zongying; Guo,Mingen,Neural network based fairing of digitized curves and its application,Lecture Notes in Computer Science,v 3497,n Ⅱ,Advances in Neural Networks - ISSN 2005: Second International Symposium on Neural Networks. Proceedings,2005,p854-859(SCI、EI收录); Ou,Zongying; Wang,Xiaodong,Constructing full view panoramic image based on spherical model,Fourth International Conference on Virtual Reality and Its Applications in Industry,2004,p 117-122(EI收录) ZY,Guo H,Wei HL,Fingerprint classifier using embedded hidden Markov models,LECTURE NOTES IN COMPUTER SCIENCE 3338: (SCI收录) YF,Ou ZY,Eyes location by hierarchical SVM classifiers,LECTURE NOTES IN COMPUTER SCIENCE 3173: (SCI收录)王亮申; 欧宗瑛,图像纹理分析的灰度-基元共生矩阵法,计算机工程,2004(23)(EI收录)13.曹新建; 张鹏; 王小东; 刘长宝; 李刚; 欧宗瑛,房地产信息管理系统开发研究,计算机工程与设计,2004⑼14.何洋; 欧宗瑛; 郭浩,基于方向场和频率场的自适应指纹图像增强算法,大连理工大学学报,2004⑸(EI收录)15.华顺刚; 逄岭; 欧宗瑛,特征点提取及视图变形技术研究,大连理工大学学报,2004⑸(EI收录)16.何洋; 欧宗瑛,基于场结构的指纹图像细节特征提取算法,石油大学学报(自然科学版),2004⑶(EI收录)17.张恒博; 欧宗瑛,一种基于色彩和灰度直方图的图像检索方法,计算机工程,2004⑽(EI收录)18.王小东; 李刚; 欧宗瑛,一维下料优化的一种新算法,大连理工大学学报,2004⑶(EI收录)19.金霞; 欧宗瑛,基于HL7标准医疗信息交换消息的构建/解析,焦作大学学报,2004⑴20.唐棣; 孙岩; 韩丽; 欧宗瑛,一种基于显示空间的圆窗口的图形裁剪算法,小型微型计算机系统,2004⑷21.张恒博; 欧宗瑛,一种改进的扫描线真实感图形显示算法,计算机工程,2004⑹22.张恒博; 欧宗瑛,一种利用多特征向量的彩色图像检索方法,计算机工程与应用,2004⑵23.李晖; 欧宗瑛,异构分布环境下数据获取与多态发布,计算机工程与设计,2004⑴24.王宏漫; 欧宗瑛,基于支持向量机的人脸识别方法研究,小型微型计算机系统,2004⑴25.柴玉森; 欧宗瑛; 韩风武; 陆培德; 韩锋,基于CAPP的模具报价系统的开发,模具工业,2004⑴26.韩峰; 张静; 欧宗瑛,基于摄像机纵向运动的序列图像的实时漫游,小型微型计算机系统,2005⑽27.刘文琦; 杨建华; 张鹏; 欧宗瑛,一种基于椭圆曲线的门限代理签名方案,大连理工大学学报,2005⑹(EI收录)28.袁野; 欧宗瑛,一种基于单个神经元的摄像机标定自适应算法,大连理工大学学报,2005⑹(EI收录)29.何洋; 欧宗瑛,基于局部细节邻接图的指纹匹配算法研究,哈尔滨工业大学学报,2005⑽(EI收录)30.宋涛; 欧宗瑛; 陈伟卿,基于模糊连通性的彩色图像切片序列分割方法,小型微型计算机系统,2005⑼31.王亮申; 朱玉才; 陈少华; 侯杰; 于京诺; 苏子林; 欧宗瑛,利用SVM进行车型识别,计算机工程与设计,2005⑼32.胡志萍; 欧宗瑛; 王虹,基于图像合成的虚拟制造环境描述,机械设计与研究,2005⑷33.李云峰; 欧宗瑛,基于相位信息的图像特征定位,光电技术应用,2005⑸34.韩锋; 苏铁明; 欧宗瑛; 罗丹,SolidWorks环境下三维冲模标准件库的开发,大连轻工业学院学报,2005⑶35.宋涛; 欧宗瑛; 王瑜; 李冠华; 刘斌,八叉树编码体数据的快速体绘制算法,计算机辅助设计与图形学学报,2005⑼(EI收录)36.王亮申; 欧宗瑛; 侯杰; 于京诺; 朱玉才; 曲衍国; 王保卫; 宋进桂,基于遗传算法的最优直方图阈值图像分割算法,数据采集与处理,2005⑵(EI收录)37.张静; 胡志萍; 欧宗瑛,基于异常匹配点去除的基本矩阵优化估计,计算机工程,2005⒀(EI收录)38.王亮申; 欧宗瑛; 侯杰; 于京诺; 曲衍国; 宋进桂; 朱玉才,基于金字塔结构颜色特征的图像数据库检索,计算机工程与设计,2005⑷39.王亮申; 于京诺; 侯杰; 欧宗瑛; 朱玉才; 陈燕,目标形状特征的新定义,计算机工程与应用,2005⒄40.宋涛; 欧宗瑛; 陈伟卿,中国虚拟人三维模型重建和可视化,大连理工大学学报,2005⑶(EI收录)41.华顺刚; 张洁玉; 欧宗瑛,基于图像的光照,计算机工程与设计,2005⑶158.王亮申; 欧宗瑛; 朱玉才; 侯杰; 于京诺,基于SVM的图像分类,计算机应用与软件,2005⑸42.胡延平; 马德成; 何鸿鹏; 欧宗瑛,基于模型重建技术的图形匹配原理与方法,大连理工大学学报,2005⑵(EI收录)43.王宏漫; 欧宗瑛; 胡志萍,自由差分运算与直交型Snake模型,计算机辅助设计与图形学学报,2005⑶(EI收录)44.张静; 胡志萍; 刘志泰; 欧宗瑛,基于轮廓相位相关的图像自动拼接,大连理工大学学报,2005⑴(EI收录)45.郭浩; 欧宗瑛; 何洋,一个新的基于细节特征的指纹匹配方法,大连理工大学学报,2005⑴(EI收录)46.魏鸿磊; 欧宗瑛; 甘树坤; 张海东,采用逐级配准和分值加权的指纹匹配算法,计算机辅助设计与图形学学报,2006⑹(EI收录)47.胡志萍; 郭明恩; 欧宗瑛,一种基于图像轮廓信息的新视点图像生成算,大连理工大学学报,2006⑶48.侯建华; 欧宗瑛,基于边缘曲线光顺连续性恢复的灰度图像放大算法,小型微型计算机系统,2006⑷49.甘树坤; 欧宗瑛; 魏鸿磊,基于灰度特性的指纹图像分割算法,吉林化工学院学报,2006⑴50.宋卫卫; 李冠华; 欧宗瑛,医学体数据三维可视化技术,计算机工程与应用,2006⒅51. Variant Geometry Analysis and Synthesis in MCAD,ADG’98 Proceedings. Lecture Notes in Artificial Intelligence Series,Springer-Verlag. 1999(SCI)52. Interactive Form Synthesis of Gear Coupling Teeth. ASME Journal Computers in Mechanical Engineering. . (EI收录)53. Analysis and Synthesis of Circular Arc Gears by Interactive Graphics. American Society of Mechanical Engineers. 1984 (EI收录)54. Analysis and Synthesis of Circular Arc Gears by Interactive Graphics. Transaction of ASME Journal of Mechanisms Transmission and Automation in Design. . (EI收录)55. Method of Equivalent Element in Parametric CAD. Proceedings of SPIE – The International Society for Optical Engineering. V2644. 1996(EI收录)56. Smoothing Enlarged Image Based on Fractal Geometry. International Conference on Signal Processing Proceedings. V2. 1998. (EI收录)57. Holo-extraction of information from paper drawings for 3D reconstruction. CAD Computer Aided Design. . (EI收录)58. Assembly sequence planning and assembling simulation of stamping tools. Proceeding of SPIE- the International Society for Optical Engineering. V4756. 200259. Recognition of digital curves scanned from paper drawings using genetic algorithms. . 2003 (EI收录)60. 用邻域运算从CT图像中分割骨骼. 中国生物医学工程学报. 2003⑶(EI收录)61. 应用径向基函数网络进行足球机器人视觉系统的标定. 计算机工程与应用. 2003(06)62. 采用PCA/ICA特征和SVM分类的人脸识别. 计算机辅助设计与图形学学报. 2003(04)63. 支持向量机在人脸识别中的应用. 计算机工程与应用. 39⑾. 200364. 基于支持向量机的人脸识别方法研究. 小型微型计算机系统. 已录用65. 基于Solid Works 平台的冲压成型模具CAD系统. 大连轻工业学院学报. 2003(01)66. 基于径向基函数网络的二维平面标定方法. 大连理工大学学报. 2003(02)67. 协同CAD系统结构及关键技术. 大连理工大学学报. 2003(02)(EI收录)68. 应用神经网络隐式视觉模型进行立体视觉的三维重建. 计算机辅助设计与图形学学报.2003(03)69. 基于CT、MRI断层图像的人体三维建模.2002年国际康复工程与临床康复学术讨论会.2002⑻70. 基于主动轮廓模型的医学图像边界跟踪. 仪器仪表学报. 2002(S1)(EI收录)71. 基于区域直方图的图像数据库检索. 计算机工程与应用. 2002⒇72. 一种由二维轮廓线重建物体表面的方法. 小型微型计算机系统. 2002⑿73. E-HMM/ANN混合网络人脸识别. 计算机辅助设计与图形学学报. 2002⑾ (EI收录)74. 基于组件的三维冲模CAD系统开发. 锻压技术. 2002⑸75. 关于小波分形压缩算法若干相关技术的研究. 工程图学学报. 2002⑵76. 矩常量——几何形状标识的新方法. 机械科学与技术. 2002⑸77. 一种足球机器人中指定颜色属性物体的识别方法. 小型微型计算机系统. 2002⑻78. 基于物质分类的三维空间断层图像匹配插值. 计算机辅助设计与图形学学报. 2002⑺79. 基于小波变换和模糊算法医学图像边缘检测算法. 大连理工大学学报. 2002⑷ (EI收录)80. 基于模糊推理的条形域形状分类. 计算机工程与应用. 2002⑽81. 基于学习向量量化网络的指定颜色物体的识别. 计算机工程与应用. 2002⑽82. 加权合成的嵌入式隐Markov模型人脸识别. 大连理工大学学报. 2002⑶ (EI收录)83. 一种基于斜率的摄像机畸变校正方法. 小型微型计算机系统. 2002⑸84. 保持轮廓清晰光滑的灰度图像放大算法. 计算机辅助设计与图形学学报. 2002⑷85. 基于顶点的冲裁零件排样系统. 机械科学与技术. 2002⑵86. 网络环境下三维参数化冲裁模标准件图形库. 机械科学与技术. 2002⑴87. 一种基于CT图像反求技术的实体几何造型方法. 机械科学与技术. 2002⑴88. 医学图像三维重建模型的剖切与立体视窗剪裁. 计算机辅助与图形学学报. 2002⑶89. 医学图像三维重建系统的数据结构表达及表面模型的构建. 生物医学工程学杂志. . . 基于遗传算法的以线段和圆弧为基元的曲线拟合. 计算机辅助与图形学学报. 2002⑵91. 基于Windows平台的视频捕捉技术研究. 计算机工程与设计. 2002⑶92. 面向整体设计的客车件冲模CAD系统的实现. 机械科学与技术. 2002⑷93. 冲模CAD系统中基于功能部件的层次化装配模型和相关技术研究. 模具工业. 2002⑹94. 进化算法在DNA序列比对中的应用. 数据采集与处理. 2002⑷95. 关于核苷酸序列频谱分析方法的探讨. 信号处理. 2002⑷96. 一种新的DNA序列映射规则及其分析应用. 信号处理. 2002⑵97. 基于BP网络的足球机器人视觉系统的标定. 机器人. 2001(S1)98. 面向企业应用的密钥管理技术研究. 计算机工程与设计. 2001⑹99. 给予矢量邻接图的剖面域识别与重建. 工程图学学报. 2001⑷100. 以Solid Works为支撑软件的模具标准件库的开发. 大连轻工业学院学报. 2001⑷101. 多叶光栅适形放射治疗系统图像图形处理软件研究与开发. 大连理工大学学报. 2001⑹102. 体素几何模型中物体表面的绘制算法. 机械科学与技术. 2001⑹ (EI收录)103. Dividing Cubes算法生成的物体表面的法向量方向的光顺操作. 计算机辅助设计与图形学学报. 2001⑿ (EI收录)104. 一种新的摄像机线性标定方法. 中国图像图形学报. 2001⑻105. 基于投影的断层间多连通物体轮廓表面重建. 大连理工大学学报. 2001⑸ (EI收录)106. 机车电气CAD系统及其关键技术. 机械科学与技术. 2001⑷ (EI收录)107. 一种新的敏感数字水印技术. 小型微型计算机系统. 2001⑺ (EI收录)108. 由基于轮廓重建的表面模型构建实体几何模型. 机械设计与研究. 2001⑵(EI收录)109. 医学图像的交互分割及三维表面重建. 工程图学学报. 2001⑵110. 三维医学图像MT表面重建的相关性处理及模型简化. 中国生物医学工程学报. 2001⑸111. 医学图像三维重建系统的数据结构表达及表面模型的构建. 生物医学工程学杂志. 2002⑵112. 用体素边界表面表示的体素模型及其显示算法. 机械科学与技术. . . 基于Delauny三角剖分的层析图像离散数据表面重建算法. 工程图学学报. 2001⑵114. 基于区域投影的微型足球机器人系统识别. 机械科学与技术. 2001⑵ (EI收录)115. 面向对象的柔性约束关系几何系统的建模研究及实现. 机械设计与研究. 2001⑴ (EI收录)116. CT图像表面重建技术中的边缘检测和跟踪补偿. 机械科学与技术. 2001⑹(EI收录)117. 基于B-rep模型的三维实体的真实感显示. 机械科学与技术. 2001⑵(EI收录)118. 基于柔性约束关系的二维几何系统的建模及求解. 机械科学与技术. 2001⑹(EI收录)119. 基于约束的机械产品零件参数化特征建模技术研究及实现. 组合机床与自动化加工技术. 2001⑷120. 机床夹具参数化零部件图形库及其系统. 制造技术与机床. 2001⑶121. 机械图纸扫描图像尺寸信息提取. 机械科学与技术. 2001⑵ (EI收录)122. 一种等级系统的密钥管理方法. 信息安全与通信保密. 2001⑵123. 泵水力模型数字化CAD系统——工程图中的曲线识别与数字化的研究. 机械科学与技术. . 扫描工程图像的浏览、圈阅与编辑技术研究. 组合机床与自动化加工技术. 2000⑴125. CAD系统中签名管理的设计与实现. 机械科学与技术. 2000⑹126. 工程图样管理系统及其关键技术. 机械科学与技术.. .(EI收录)127. 面向对象的特征模型研究与实现. 机械科学与技术. . .(EI收录)128. 基于特征技术的智能产品信息模型框架及其实现. 大连理工大学学报. . .(EI收录)129. 基于单义域邻接图的工程图纸扫描图像的字符提取. 工程图学学报. . . 基于单义域邻接图的圆弧与圆识别. 中国图像图形学报. 2000⑴131. 基于SQL Server的POS系统的开发与实现. 计算机应用研究. 2000⑵132. 基于CT图像反求技术的实体几何造型. 计算机应用. 2000(S1)133. 利用加密技术和网卡进行软件保护. 计算机应用. 2000(01)134. 工程图纸扫描图像的线段完整识别算法. 计算机工程.. .(EI收录)135. 描述工程图纸扫描图像的单义域邻接图的构建方法. 计算机工程与应用. 2000(08)136. 基于个人特征的省份认证技术的发展与应用. 计算机工程. 2000⑿137. 基于颜色信息足球机器人视觉跟踪算法. 大连理工大学学报. 2000(06)138. 机车电气元件智能建库环境研究. 内燃机车. 2000⑾139. 产品信息模型中形状特征的表达研究. 组合机床与自动化加工技术. 1999⑻140. Pro/Engineer特征造型分析与应用. 工程设计CAD与智能建筑. 1999⑻141. 地理信息系统的研制开发. 计算机工程. 1999⑴142. 工程图扫描图像中交叉区域识别处理方法的研究. 中国图像图形学报. 1999⑼143. 工程图图像的骨架提取和识别技术综述. 计算机工程. 1999⑹144. 扫描图像的圆弧的定位识别算法. 中国图像图形学报. 1999⑹145. 网络环境下工程图纸的“电子签字”技术. 组合机床与自动化加工技术. 1999⑼146. Windows95/NT下加密和数字签名的开发与应用. 通信保密. 1999⑷147. 工程扫描图像的直线整体识别算法. 中国图像图形学报. 1998⑾148. 基于分形几何模型的图像放大. 中国图像图形学报. 1998⑾149. 二维参数化CAD中的过约束及欠约束检查策略与实现. 大连理工大学学报. 1998⑸(EI收录)150. 手绘CAD图形输入的识别. 机械科学与技术.. (EI收录)151. 彩色印染图像的新的分组分段色分解技术. 计算机应用研究. 1998⑴152. 消防建筑图纸的审核管理. 计算机应用. 1998⑵153. 彩色图像颜色量化的优化. 大连理工大学学报. 1998⑴(EI收录)154. 网络环境下轴承CAD系统的开发. 计算机应用研究. 1998155. 联机手绘CAD图形的输入. 机械科学与技术. 1998⑵156. 彩色图像印染CAD系统. 计算机工程与应用. 1997⑿157. 数字曲线的线性逼近和分段识别. 大连理工大学学报. 1997⑸158. 基于多面体的过渡操作. 计算机应用与软件. 1996⑶159. 参数化CAD中基于当量图素的约束处理策略. 大连理工大学学报. 1995⑸160. 工程图样描述语言DDL. 大连理工大学学报. 1995⑸(EI收录)161. 实体造型中的回退原理及其应用. 大连理工大学学报. 1995⑸(EI收录)162. CAD图形数据库中特征关系和约束关系的自动识别和提取. 计算机工程. 1995⑹163. 基于ΓOCT21354-87标准的齿轮强度计算软件的开发. 机械科学与技术. 1995⑸ (EI收录)164. 二值和多值图像的边界跟踪和逼近. 大连理工大学学报. . (EI收录)165. 基于变异几何的平面连杆机构分析与仿真专家系统. 大连理工大学学报. 1995⑵166. 平面连杆机构分析与仿真专家系统. 计算机辅助设计与图形学学报. 1995⑴ (EI收录)

随着人工智能的热度上升,图像识别这一分领域也渐渐被人们所关注。图像识别中最贴近我们生活的可能就是 OCR 技术了。可能很多同学还不知道什么是 OCR。我们先来看下 OCR 的定义:

今天就来简单分析下 OCR 技术的原理,不会涉及具体的算法讲解和推导,毕竟每一个算法都能占很长的篇幅,每一个算法都能重新开一篇来写。

从整体上来说,OCR一般分为两个大步骤:图像处理以及文字识别。

识别文字前,我们要对原始图片进行预处理,以便后续的特征提取和学习。这个过程通常包含:灰度化、二值化、降噪、倾斜矫正、文字切分等子步骤。每一个步骤都涉及了不同的算法。我们以下面这张原始图片为例,进行每个步骤的讲解。

灰度化(gray processing),在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。说通俗一点,就是将一张彩色图片变为黑白图片。

灰度化一般有分量法、最大值法、平均值法、加权平均法四种方法对彩色图像进行灰度化。

一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,最常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(binaryzation)。

二值化的黑白图片不包含灰色,只有纯白和纯黑两种颜色。

二值化里最重要的就是阈值的选取,一般分为固定阈值和自适应阈值。 比较常用的二值化方法则有:双峰法、P参数法、迭代法和OTSU法等。

现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。减少数字图像中噪声的过程称为图像降噪(Image Denoising)。

图像中噪声的来源有许多种,这些噪声来源于图像采集、传输、压缩等各个方面。噪声的种类也各不相同,比如椒盐噪声,高斯噪声等,针对不同的噪声有不同的处理算法。

在上一步得到的图像中可以看到很多零星的小黑点,这就是图像中的噪声,会极大干扰到我们程序对于图片的切割和识别,因此我们需要降噪处理。降噪在这个阶段非常重要,降噪算法的好坏对特征提取的影响很大。

图像降噪的方法一般有均值滤波器、自适应维纳滤波器、中值滤波器、形态学噪声滤除器、小波去噪等。

对于用户而言,拍照的时候不可能绝对的水平,所以,我们需要通过程序将图像做旋转处理,来找一个认为最可能水平的位置,这样切出来的图,才有可能是最好的一个效果。

倾斜矫正最常用的方法是霍夫变换,其原理是将图片进行膨胀处理,将断续的文字连成一条直线,便于直线检测。计算出直线的角度后就可以利用旋转算法,将倾斜图片矫正到水平位置。

对于一段多行文本来讲,文字切分包含了行切分与字符切分两个步骤, 倾斜矫正 是文字切分的前提。我们将 倾斜矫正 后的文字投影到 Y轴,并将所有值累加,这样就能得到一个在y轴上的直方图。

直方图的谷底就是背景,峰值则是前景(文字)所在的区域。于是我们就将每行文字的位置给识别出来了。

字符切分和行切分类似,只是这次我们要将每行文字投影到 X轴。

但要注意的是,同一行的两个字符往往挨的比较紧,有些时候会出现垂直方向上的重叠,投影的时候将他们认为是一个字符,从而造成切割的时候出错(多出现在英文字符);也有些时候同一个字符的左右结构在X轴的投影存在一个小间隙,切割的时候误把一个字符切分为两个字符(多出现在中文字符)。所以相较于行切分,字符切分更难。

对于这种情况,我们可以预先设定一个字符宽度的期望值,切出的字符如果投影超出期望值太大,则认为是两个字符;如果远远小于这个期望值,则忽略这个间隙,把间隙左右的“字符”合成一个字符来识别。

预处理完毕后,就到了文字识别的阶段。这个阶段会涉及一些人工智能方面的知识,比较抽象,没法用图片表达,我尽量讲得简单易懂一些。

特征是用来识别文字的关键信息,每个不同的文字都能通过特征来和其他文字进行区分。对于数字和英文字母来说,这个特征提取是比较容易的,总共就 10 + 26 x 2 = 52 个字符,而且都是小字符集。对于汉字来说,特征提取的难度就比较大了,因为首先汉字是大字符集;其次国标中光是最常用的第一级汉字就有3755个;最后汉字结构复杂,形近字多,特征维度就比较大。

在确定了使用何种特征后,还有可能要进行特征降维,这种情况下,如果特征的维数太高,分类器的效率会受到很大的影响,为了提高识别速率,往往就要进行降维,这个过程也很重要,既要降低特征维数,又得使得减少维数后的特征向量还保留了足够的信息量(以区分不同的文字)。

对一个文字图像,提取出特征,丢给分类器,分类器就对其进行分类,告诉你这个特征该识别成哪个文字。分类器的设计就是我们的任务。分类器的设计方法一般有:模板匹配法、判别函数法、神经网络分类法、基于规则推理法等,这里不展开叙述。在进行实际识别前,往往还要对分类器进行训练,这是一个监督学习的过程。成熟的分类器也有很多,有 SVM,CNN 等。

其实就是对于分类器的分类结果进行优化,这一般就要涉及自然语言理解的范畴了。

首先是形近字的处理:举个栗子,“分”和“兮”形近,但是如果遇到“分数”这个词语,就不应该识别为“兮数”,因为“分数”才是一个正常词语。这需要通过语言模型来进行纠正。

其次是对于文字排版的处理:比如一些书籍是分左右两栏的,同一行的左右两栏不属于同一句话,不存在任何语法上的联系。如果按照行切割,就会把左行的末尾和右行的开头连在一起,这是我们不希望看到的,这样的情况需要进行特殊处理。

OCR 的大致原理就是这样。整体上来看,OCR 的步骤繁多,涉及的算法复杂,针对每一个步骤,每一个算法都有许多单独的研究论文,本文无法进行深入探讨。如果从零开始做 OCR,这将是一个浩大的工程。笔者才疏学浅,对于模式识别、机器学习也属于入门阶段,如果有错漏的地方,还请各位斧正。

图像的边缘检测论文

Canny边缘检测教程 作者:比尔绿色( 2002 ) 主页电子邮件 本教程假定读者: ( 1 )知道如何发展的源代码阅读栅格数据 ( 2 )已经阅读我Sobel边缘检测教程 本教程将教你如何: ( 1 )实施Canny边缘检测算法。 导言 边的特点,因此,边界问题,根本的重要性在图像处理中。在图像的边缘地区,强度强的反差?猛增强度从一个像素的下一个。边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么您要检测的边缘。 的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。精明的意图是要加强许多边缘探测器已经在的时候,他开始了他的工作。他很成功地实现他的目标和他的思想和方法中可以找到他的论文“计算方法的边缘检测” 。在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。第一个也是最明显的错误率低。重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。第三个标准是,只有一个回应单一优势。这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。然后认定的形象,以突出地区梯度高空间衍生物。该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。梯度阵列现在进一步减少滞后。磁滞用来追踪沿其余像素,但没有压制。磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。如果是规模以上的高门槛,这是一个优势。如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 第1步 为了落实Canny边缘检测算法,一系列步骤必须遵循。第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。阿卷积掩模通常远远小于实际的形象。因此,该面具是下跌的形象,操纵一个正方形像素的时间。较大的宽度高斯面具,较低的是探测器的敏感性噪音。定位误差检测边缘也略有增加的高斯宽度增加。高斯遮罩使用我在执行下面显示。 第2步 经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。的Sobel算子进行二维空间梯度测量的形象。然后,大约绝对梯度幅度(边缘强度)各点可以找到。 Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。它们如下所示: 的规模,或EDGE强度,梯度近似然后使用公式: | G | = | GX的| + |戈瑞| 第3步 寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。然而,你会产生错误时sumX等于零。因此,在代码中必须有一个限制规定只要发生。每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。如果青的值为零,边缘方向将等于0度。否则边缘方向将等于90度。公式为寻找边缘方向是: 论旨= invtan (戈瑞/ GX的) 第4步 一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x 1 x x x x x x x x x x x x 然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度(水平方向) , 45度(沿积极对角线) , 90度(垂直方向) ,或135度(沿负对角线) 。所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。认为这是采取了半圆形和分裂成5个地区。 因此,任何先进的方向范围内的黄色范围( 0至5月22日& 至180度)设置为0度。任何先进的方向下滑的绿色范围( 至度)设置为45度。任何先进的方向下滑的蓝色范围( 至度)设置为90度。最后,任何先进的方向范围内的红色范围( 到度)设置为135度。 第5步 在被称为边缘方向, nonmaximum制止目前适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将让细线在输出图像。 第6步 最后,滞后是用来作为一种手段,消除条纹。裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将先进的情况下,逢低低于阈值。同样它也将延长超过阈值决策的优势看起来像一个虚线。为了避免这种情况,滞后使用2的门槛,高和低。任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。

HED 论文: Holistically-Nested Edge Detection HED(Holistically-Nested Edge Detection)是一个端到端的边缘检测网络,特点是提取不同尺度的特征,和多输出的多监督及融合。 HED 在产业上应用比较广泛。 Holistic:指该方法的预测和训练都是端到端的;Neted:指通过多层级的输出,渐进地优化最终结果。作者的命名逻辑... 看这篇边缘检测的论文主要是想知道边缘检测的损失函数应该怎么设计。我本来的想法是直接像语义分割一样,用 IoU ,后来想想不对,如果一个边缘检测结果是 GT 平移了几个像素,那它仍可称得上好,但它的 IoU 却会骤降至和随机结果差不了多少。如果对边缘检测问题用 IoU 做优化对象,恐怕在优化时根本找不到可以下降的梯度方向。边缘检测的任务是提取图像内每个对象的边界,而排除对象的纹理。HED 被设计以解决两个问题:(1)对图像整体的训练和预测,End-to-end;(2)多尺度的特征提取。端到端很容易实现,因为边缘检测任务的输入和输出都是一张图片,只是通道数不同,很明显可以应用一个全卷积的网络来实现。HED 的骨干网络采用 VGG,并将 VGG 后面的全连接层结构全部移除,只保留卷积层。一些曾被应用过或正在被应用的多尺度特征提取方法。 (a) 多通路并行网络,通过不同的网络深度得到不同的感受野,输出聚合在一起; (b) 跳线连接,将来自不同卷积层的输出通过跳线连接在一起,作为特征提取结果(实际上跳线连接也可以在各个卷积层之间连接,而不仅限于到输出层,比如 U-Net 结构); (c) 同一个网络,采用不同尺寸的输入; (d) 不同深度的网络完全分立(这个方法感觉最拉跨,各个尺度上的特征没有相关性,也没听说过有人这么搞); (e) HED 提出的结构,在卷积网络的不同深度引出“侧输出”,将这些侧输出聚合成最终输出(和 (b) 的不同在于每个侧输出都能被监督并进行反向传播,这里应用了中继监督的思想,也是一个很泛用的做法)。这篇文章也用了中继监督,之前看的 Stacked Hourglass 也是。不过 Stacked Hourglass 的侧输出是还要被输入到下个特征提取网络里继续 refine 的,旨在迭代地优化输出结果。 HED 的侧输出和 GoogLnet 等一些常见的侧输出比较像,前面也说了,浅层的特征保留了更多的信息,但是相对而言感受野更小,那么 HED 就取多个不同深度的特征,分别在这些位点设置输出层。具体地,HED 在每个 VGG 内尺寸的特征图上引出一个卷积层作为侧输出层。HED 将边缘检测任务归纳为对每个像素点的二分类任务——“边缘”和“非边缘”。对于 HED 的单个输出而言,其损失函数为所有像素点的二分类损失函数的和,另外,由于边缘占的像素总数一般都会少于非边缘,所以实际是边缘的像素提供的二分类损失函数会乘以一个更大的权重,以进行正负样本平衡。HED 整体的损失函数就是它所有输出的损失函数的加权和。 转化成数学语言就是:其中 指特征提取网络(VGG)的权重, 指 HED 第 层输出的输出层权重, 为平衡每层输出为最终损失贡献的系数, 为平衡正负样本的系数, 和 分别指代边缘像素和非边缘像素, 为像素 输出的置信度。 上面的损失函数是针对每个侧输出进行优化,HED 的最终输出是每个侧输出按照一定的权重加总得到的融合输出,这些权重是通过训练学习到的,而非人为设定的。 融合输出的损失函数如下:其中融合输出 , 是每个侧输出在融合时的权重, 计算输出和 GT 之间的距离,这里采用交叉熵函数。 整个模型在训练时的优化目标权重为:可以看到,最终的损失函数中存在一定的冗余,由于融合输出是由侧输出得到的,侧输出似乎被不止一次地惩罚了。不过,先不论这种冗余是不是必要的,据作者言,只对融合输出进行惩罚得到的效果是不够好的,因为模型总会区域学习更大尺度上的特征。 HED 的损失函数是一种很直接的思路,不过任然有这样的问题:当一个被预测为“边缘”的像素点实际上是“非边缘”时,不管它和 GT 离得有多近,体现在损失函数上,都和一个差 GT 十万八千里的像素点没有区别。这种设计——就我个人的理解——会让损失函数的梯度出现大面积的平坦区域,梯度下降难以工作。但目前的工作似乎都是在用交叉熵作为损失函数,虽然今年也提出了 G-IoU、D-IoU 等将 IoU 调整后作为损失函数的方法,但是限于数学表达上的困难,目前只能应用于矩形边界框,而不能应用于像素集分割。

Canny边缘检测教程 Author: Bill Green (2002) 作者:比尔绿色( 2002 ) HOME EMAIL 主页 电子邮件 This tutorial assumes the reader: 本教程假定读者: (1) Knows how to develop source code to read raster data ( 1 )知道如何发展的源代码阅读栅格数据 (2) Has already read my Sobel edge detection tutorial ( 2 )已经阅读我Sobel边缘检测教程 This tutorial will teach you how to:本教程将教你如何: (1) Implement the Canny edge detection algorithm. ( 1 )实施Canny边缘检测算法。 INTRODUCTION 导言 Edges characterize boundaries and are therefore a problem of fundamental importance in image processing.边的特点,因此,边界问题,根本的重要性在图像处理中。 Edges in images are areas with strong intensity contrasts – a jump in intensity from one pixel to the next.在图像的边缘地区,强度强的反差-一个跳转的强度从一个像素的下一个。 Edge detecting an image significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. This was also stated in my Sobel and Laplace edge detection tutorial, but I just wanted reemphasize the point of why you would want to detect edges.边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么你会要检测的边缘。 The Canny edge detection algorithm is known to many as the optimal edge detector. Canny's intentions were to enhance the many edge detectors already out at the time he started his work.的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。坎尼的意图是要加强许多先进的探测器已经在的时候,他开始他的工作。 He was very successful in achieving his goal and his ideas and methods can be found in his paper, " A Computational Approach to Edge Detection ".他很成功地实现他的目标和他的思想和方法中可以找到他的论文“ 计算方法的边缘检测 ” 。 In his paper, he followed a list of criteria to improve current methods of edge detection.在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。 The first and most obvious is low error rate.第一个也是最明显的错误率低。 It is important that edges occuring in images should not be missed and that there be NO responses to non-edges.重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。 The second criterion is that the edge points be well localized. In other words, the distance between the edge pixels as found by the detector and the actual edge is to be at a minimum.第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。 A third criterion is to have only one response to a single edge.第三个标准是,只有一个回应单一优势。 This was implemented because the first 2 were not substantial enough to completely eliminate the possibility of multiple responses to an edge.这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 Based on these criteria, the canny edge detector first smoothes the image to eliminate and noise.根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。 It then finds the image gradient to highlight regions with high spatial derivatives.然后认定的形象,以突出地区梯度高空间衍生物。 The algorithm then tracks along these regions and suppresses any pixel that is not at the maximum (nonmaximum suppression).该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。 The gradient array is now further reduced by hysteresis.梯度阵列现在进一步减少滞后。 Hysteresis is used to track along the remaining pixels that have not been suppressed.磁滞用来追踪沿其余像素,但没有压制。 Hysteresis uses two thresholds and if the magnitude is below the first threshold, it is set to zero (made a nonedge).磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。 If the magnitude is above the high threshold, it is made an edge.如果是规模以上的高门槛,这是一个优势。 And if the magnitude is between the 2 thresholds, then it is set to zero unless there is a path from this pixel to a pixel with a gradient above T2.如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 Step 1 第1步 In order to implement the canny edge detector algorithm, a series of steps must be followed.为了落实Canny边缘检测算法,一系列步骤必须遵循。 The first step is to filter out any noise in the original image before trying to locate and detect any edges.第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。 And because the Gaussian filter can be computed using a simple mask, it is used exclusively in the Canny algorithm.而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。 Once a suitable mask has been calculated, the Gaussian smoothing can be performed using standard convolution methods.一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。 A convolution mask is usually much smaller than the actual image.阿卷积掩模通常远远小于实际的形象。 As a result, the mask is slid over the image, manipulating a square of pixels at a time. The larger the width of the Gaussian mask, the lower is the detector's sensitivity to noise .因此,该面具是下跌的形象,操纵一个正方形的像素上。 较大的宽度高斯面具,较低的是探测器的敏感性噪音 。 The localization error in the detected edges also increases slightly as the Gaussian width is increased.定位误差检测边缘也略有增加的高斯宽度增加。 The Gaussian mask used in my implementation is shown below.高斯遮罩使用我在执行下面显示。 Step 2 第2步 After smoothing the image and eliminating the noise, the next step is to find the edge strength by taking the gradient of the image.经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。 The Sobel operator performs a 2-D spatial gradient measurement on an image.的Sobel算子进行二维空间梯度测量的形象。 Then, the approximate absolute gradient magnitude (edge strength) at each point can be found.然后,大约绝对梯度幅度(边缘强度)各点可以找到。 The Sobel operator uses a pair of 3x3 convolution masks, one estimating the gradient in the x-direction (columns) and the other estimating the gradient in the y-direction (rows). Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。 They are shown below:它们如下所示: The magnitude, or EDGE STRENGTH, of the gradient is then approximated using the formula:的规模,或EDGE强度,梯度近似然后使用公式: |G| = |Gx| + |Gy| | G | = | GX的| + |戈瑞| Step 3 第3步 Finding the edge direction is trivial once the gradient in the x and y directions are known.寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。 However, you will generate an error whenever sumX is equal to zero.然而,你会产生错误时sumX等于零。 So in the code there has to be a restriction set whenever this takes place.因此,在代码中必须有一个限制规定只要发生。 Whenever the gradient in the x direction is equal to zero, the edge direction has to be equal to 90 degrees or 0 degrees, depending on what the value of the gradient in the y-direction is equal to.每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。 If GY has a value of zero, the edge direction will equal 0 degrees.如果青的值为零,边缘方向将等于0度。 Otherwise the edge direction will equal 90 degrees.否则边缘方向将等于90度。 The formula for finding the edge direction is just:公式为寻找边缘方向是: theta = invtan (Gy / Gx)论旨= invtan (戈瑞/ GX的) Step 4 第4步 Once the edge direction is known, the next step is to relate the edge direction to a direction that can be traced in an image.一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。 So if the pixels of a 5x5 image are aligned as follows:因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x x x x x x x x x x x a x x x x 1 x x x x x x x x x x x x x x x x x x x x x x Then, it can be seen by looking at pixel " a ", there are only four possible directions when describing the surrounding pixels - 0 degrees (in the horizontal direction), 45 degrees (along the positive diagonal), 90 degrees (in the vertical direction), or 135 degrees (along the negative diagonal).然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度 (水平方向) , 45度 (沿积极对角线) , 90度 (垂直方向) ,或135度 (沿负对角线) 。 So now the edge orientation has to be resolved into one of these four directions depending on which direction it is closest to (eg if the orientation angle is found to be 3 degrees, make it zero degrees).所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。 Think of this as taking a semicircle and dividing it into 5 regions.认为这是采取了半圆形和分裂成5个地区。 Therefore, any edge direction falling within the yellow range (0 to & to 180 degrees) is set to 0 degrees.因此,任何先进的方向范围内的黄色范围 ( 0至5月22日& 至180度)设置为0度。 Any edge direction falling in the green range ( to degrees) is set to 45 degrees. Any edge direction falling in the blue range ( to degrees) is set to 90 degrees.任何先进的方向下滑的绿色范围 ( 至度)设置为45度。任何优势的方向下滑的蓝色范围 ( 至度)设置为90度。 And finally, any edge direction falling within the red range ( to degrees) is set to 135 degrees.最后,任何先进的方向范围内的红色范围 ( 到度)设置为135度。 Step 5 第5步 After the edge directions are known, nonmaximum suppression now has to be applied. Nonmaximum suppression is used to trace along the edge in the edge direction and suppress any pixel value (sets it equal to 0) that is not considered to be an edge. This will give a thin line in the output image.在被称为边缘方向, nonmaximum抑制现在必须适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将给细线的输出图像。 Step 6 第6步 Finally, hysteresis is used as a means of eliminating streaking.最后,滞后是用来作为一种手段,消除条纹。 Streaking is the breaking up of an edge contour caused by the operator output fluctuating above and below the threshold.裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。 If a single threshold, T1 is applied to an image, and an edge has an average strength equal to T1, then due to noise, there will be instances where the edge dips below the threshold.如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将有情况下,边逢低低于阈值。 Equally it will also extend above the threshold making an edge look like a dashed line.同样它也将延长超过阈值决策的优势看起来像一个虚线。 To avoid this, hysteresis uses 2 thresholds, a high and a low.为了避免这种情况,滞后使用2的门槛,高和低。 Any pixel in the image that has a value greater than T1 is presumed to be an edge pixel, and is marked as such immediately.任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。 Then, any pixels that are connected to this edge pixel and that have a value greater than T2 are also selected as edge pixels.然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。 If you think of following an edge, you need a gradient of T2 to start but you don't stop till you hit a gradient below T1.如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。 You are visitor number: 你是第位访客人数:

  • 索引序列
  • 图像检测最新论文
  • 图像篡改检测论文
  • 论文图片像素检测
  • 图像直线检测论文
  • 图像的边缘检测论文
  • 返回顶部