首页 > 学术期刊知识库 > 论文范文人口预测数学建模论文

论文范文人口预测数学建模论文

发布时间:

论文范文人口预测数学建模论文

中国人口增长预测的数学模型 摘要: 本文针对中国的实际情况及人口增长的主要特点建立了数学模型,分别对中国人口增长的中短期和长期趋势做出预测。 文中共涉及两个基本模型,灰色预测模型和基于系统要素法的预测模型。首先,由于人口增长的规律受到多种复杂因素的影响,可以先把人口系统看作一个灰色系统,通过对原始人口总数的生成处理来寻求人口总数变动的规律,得到具有较强规律性的数据序列,建立相应的优化灰色模型,从而预测人口总数的发展趋势与未来状态,同时采用残差、关联度、后验差三种方法检验模型合理性。然后综合考虑老龄化进程加速、出生人口性别比持续升高及乡村人口城镇化等因素的作用,建立了两个基于系统要素法的子模型,分别用来做人口增长的中短期和长期预测。在初步只考虑老龄化(年龄构成)与出生人口性别比因素条件下,做出合理化假设,认为在短期内从乡村迁往城镇的人口数为零,建立要素法短期模型,采用多种方法拟合确定相关参数后,与原始数据相结合得到对于中短期人口总数的预测,并与灰色预测模型所得结果相互比较印证;进一步兼顾乡村人口城镇化的影响,基于系统要素法做长期预测时,加入了三个控制因子:总和生育率、出生人口性别比和乡村与城镇之间的人口迁移率,分别对三个因子进行单因素分析,考虑其不同取值对人口发展趋势的影响,得到人口发展趋势与三个控制因子的定量或定性关系,再结合政府可能采取的政策及控制力度,对人口发展趋势做出长期预测。利用 Matlab 和 Excel 软件联合求解,给出各项指标下的图表与曲线,有效的分析了各因素的作用,如人口金字塔图直观表明总和生育率对年龄结构的影响等。 最后,针对相应模型预测的可信性与有效性的分析指出模型的优缺点。 关键词:人口预测、灰色预测、要素法、单因素分析 1 --------------------------------------------------------------------------------Page 2 目录 1 问题的提出 ............................................................3 2 问题的分析 ............................................................3 3 模型假设及概念说明.....................................................34 符号说明 ...........................................................4 5 模型建立及求解........................ ...............................5 灰色预测模型 模型建立 ................... ............................... 5 模型求解及分析...............................................6 基于系统要素法的短期预测模型 模型建立.....................................................7 参数确定.....................................................8 模型求解与分析...............................................9 基于系统要素法的长期预测模型 模型建立.....................................................9 参数确定.....................................................9 模型求解与分析..............................................10 6 模型扩展 ...........................................................16 7 模型评价 ...........................................................16 8 参考文献 ...........................................................17 9 附录 ...........................................................17 2 --------------------------------------------------------------------------------Page 3 1问题的提出中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。虽然我国自 1973 年全面推行计划生育以来,生育率迅速下降,取得了一些举世瞩目的成就,一是实现了人口再生产类型的历史性转变、二是有效缓解了人口增长对经济社会资源环境的压力、三是人口素质状况明显改善、四是生育率下降导致人口抚养比下降 1/3 ,为经济增长创造了 40年左右的“人口红利 ”期、五是为世界人口与发展做出了重要贡献,但是人口发展面临着的严峻挑战仍然不容小视:人口总量持续增长影响全面建设小康社会目标的实现、人口素质难以适应日趋激烈的综合国力竞争、人口结构性矛盾对社会稳定与和谐的影响日益显现、人口调控和管理难度不断加大,低生育水平面临反弹风险。因此,根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。可以试从中国的实际情况和人口增长的上述特点出发,参考相关数据、搜索相关文献和补充新的数据,建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;并指出模型中的优点与不足之处。 2 问题的分析 本题是一个中国人口增长的预测问题。所谓预测,是指根据客观事物的发展趋势和变化规律对特定的对象未来发展的趋势或状态做出科学的推测和判断。我们通过分析相关数据认识人口数量的变化规律,建立人口增长预测模型,做出较准确的预报,可以有效控制人口的增长,而这里需要考虑到中国的实际情况及人口增长中老龄化加速、出生人口性别比升高、农村人口城镇化等的因素的影响,建立综合考虑这些因素的模型对中国人口增长的趋势做出预测。 预测都是建立在对以往数据的分析统计上做出事先的推测或测定,本题所给调查数据包括 2001 至 2005 年的市、镇和乡的不同性别的人在该类人口中所占的百分比、各年龄段的死亡率及生育率,但这些相关信息往往具有不完全性,且个别数据有异常,在允许一定统计漏报率的条件下通过与国家统计局的一些相关数据[1]的比对提取所需数据并做出相应的简化假设,从而建立相应模型。 首先是数据的分析,题给数据中关于市、镇、乡男女人口总数的数值所给统计指标不准确,统计数据的调查百分比也有偏差,通过网上查阅国家统计局相关资料获得所需数据。在数据中可以统计获得 01~05 年老龄化指标、出生性别比及城镇化水平;从这 5年的数据里也可以得到市、镇、乡的总和生育率及各年龄段死亡率的指标进而预测以后的总和生育率及死亡率;另外从总的人口的变化趋势可以基本判断未来人口总数的走势。 其次是模型的建立。利用资料中提取的数据和网上搜集到的信息,可以在考虑系统间因素对系统未来影响的预测建立要素法模型,同时也考虑灰色系统建立相应模型共同预测我国人口增长。最后分析了相关模型在预测时的应用上的优劣以及模型考虑长短 3 模型假设及概念说明 表中的统计数据具有代表性和典型性,即能正确反映01年至05年出生人口性别比及生育率和死亡率 表中的统计数据与实际情况大致相同,即数据具有正确性统计误差很小 3 -----------------------------------------------------------------------..............................见:

我们也在作这个题 感觉数据有点问题啊

公共交通管理系统中查询是非常重要的操作。例如:用户甲要从A站点出发,最终到达B站点。而在中途必须经过c站点,这时用户甲应如何选择自己的路径呢?最短路径算法可以求得从A站点到达B站点的最短、最快路径。可是这条路径中不一定会经过C站点。对于外地游客,他们更希望从起点到终点的路途中在尽可能短的时间里经过更多的风景点,或者尽可能不在两站点间转车。本文所设计的算法就是为了满足这种个性化的需求。它能够将从A站点到B站点的所有路径都查找出来并给出相应的时间或费用方面的代价,再由用户自己进行选取。如图1所示,以A为起点,A∞为终点,找出所有通路为例,说明算法。怎么不多给悬赏分数啊,做着也没有意思啊!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!给分的话后面的也给你

你可以到中国知网去查一查,上面有不少这方面的论文,也许能给你点提示.

人口预测模型研究论文

都市城乡居民消费行为的数学模型。2、建立数学模型寻找影响成都市城乡居民消费差异的主要因素或指标。3、利用数学模型分析在近几年的时间内成都市城乡居民消费差异是扩大、缩小还是维持不变?4、消费结构是在一定的社会经济条件下,人们在消费过程中所消费的各种不同类型的消费资料(包括劳务)的比例关系。请从消费结构的角度出发,建立有关成都市城乡居民消费结构变动的数学模型,并根据此模型预测仿真未来三年时间内成都市城乡居民消费结构的变动情况。5、根据所建立的数学模型和结果,对缩小成都市城乡居民消费差距提出你们的合

都市城乡居民消费行为的数学模型。2、建立数学模型寻找影响成都市城乡居民消费差异的主要因素或指标。3、利用数学模型分析在近几年的时间内成都市城乡居民消费差异是扩大、缩小还是维持不变?4、消费结构是在一定的社会经济条件下,人们在消费过程中所消费的各种不同类型的消费资料(包括劳务)的比例关系。请从消费结构的角度出发,建立有关成都市城乡居民消费结构变动的数学模型,并根据此模型预测仿真未来三年时间内成都市城乡居民消费结构的变动情况。5、根据所建立的数学模型和结果,对缩小成都市城乡居民消费差距提出你们的这是一个论文的模板 你可以参考下 还望采纳 谢谢!江西省人口预测模型的建立与分析一、摘要: 本文建立了两个人口增长预测模型,对未来人口问题和未来人口结构进行了分析与预测,并综合分析了未来我们人口发展中可能出现的问题及社会影响。模型I: 无论是对于我国目前的经济发展状况还是未来的远景规划,人口问题的研究都具有十分重要的意义,马尔萨斯人口的模型的局限性,就因为它没有考虑到有限的生存空间与资源,生产力,文化水平等因素对出生率的影响,在考虑到有限的生存空间及资源后,于是本文又给出了模型Ⅱ。模型Ⅱ:建立只考虑现有的人口基数和人口增长率两个因素用于短期预测的阻滞增长人口预测模型(Logistic),并利用2001-2009年人口数据对该模型进行检验,2001年到2009年数据检验出总体上预测数据与实际数据符合程度较好,误差全都控制在以内。用此模型对未来20年内人口数据进行了预测,计算出未来各年总人口数,其中2015年社会总人数为万人,2020年人数为万人。关键词:分析与预测 马尔萨斯模型 Logistic模型二、问题的背景:人口问题不仅是21世纪我省所面临的最重大的问题之一,而且在新世纪中将继续存在。无论是对我省目前经济发展状况的认识,还是对未来经济发展的预测,人口问题的研究都具有十分重要的意义。对人口进行预测是随着社会经济发展而提出来的。过去几千年,人类社会生产力水平低,生产发展缓慢,人口变动和增长也很迟缓,因而客观上对人口未来的发展变化的探讨显得必要性较小。当前生产力发展达到空前的水平,生产已经不是为满足生产者个人的需求,而是要面向社会的需求,所以必须了解需求和供应的未来趋势,协调人口、资源与环境的持续发展。为了加快江西省的经济建设进程,全面落实科学的发展观。按照构建社会主义和谐社会的要求,坚持以人为本,推进体制改革,优先投资于人的全面发展:稳定低生育水平,提高人口素质,改善人口结构,引导人口合理分布。保障人口安全,实现人口大国向人力资本强国的转变,实现人口与的协调和可持续发展。我们确定人口发展战略,必须既着眼于人口本身的问题,又处理好人口与经济社会资源环境之间的相互关系,构建社会主义和谐社会,统筹解决人口数量、素质、结构、分布问题。因此建立一个人口增长预测的数学模型对中国人口增长的中短期和长期趋势做出预测就显得尤为重要了。三、问题重述: 人口是反映省情、省力基本情况的重要指标,是区域研究所必须考虑的重要因素之一,分析现状、制定规划时首先要考虑的基本问题。例如评价一个国家或一个地区的发展潜力时离不开现在与今后各类人口数量、比例指数和年龄分布。故人口预测是制定和顺利实现社会经济各项战略设想的基础和出发点, 制定正确人口政策的科学依据。江西省是一个人口大省,人口问题始终是制约我省发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。近年来我省的人口发展出现了一些新的特点,例如,老龄化进程速度加快、出生人口性别比持续升高、乡村人口城镇化、医疗卫生的提高等因素,这些都影响着中国人口的增长。关于江西省人口问题已有多方面的研究,并积累了大量数据资料。根据我省的实际情况和人口增长的上述特点,参考相关数据(同时也搜索相关文献和补充新的数据),提出以下问题:(1) 建立江西省人口增长的数学模型,并由此对江西省人口增长的中短期和长期趋势做出预测.(2) 分析模型中的优点和缺点。四、模型假设: (1)假设题中所给数据基本真实有效(2)假设没有重大的自然灾害发生(3)在较近一段时期,政府政策基本不发生重大变化(4)在较近一段时期,医疗卫生条件保持不变(5)所研究的问题没有太大的人口迁入与迁出(6)男性比率之和和女性比例之和的总和在1附近。可以近似认为1(7)假设现今有关人口方面的国策在长时间内不会发生重大的改变(8)把研究的社会人口当作一个系统考虑,不考虑其与系统外的人口流动模型Ⅰ建立只考虑现有的人口基数和人口增长率两个因素用于短期预测的阻滞增(),得到了本论文中计算所用到的所有数据。五、分析与建立模型模型I:指数增长模型(马尔萨斯人口模型malthus)模型的建立 记时刻t=0时人口数为 ,时刻t的人口为x(t),由于量大,x(t)可视为连续、可微函数。t到 时间段内人口是增量为: 于是x(t)满足微分方程: ……………(1)模型的求解:解微分方程(1),得: ……………………………………….(2)表明: 模型的参数估计:要用模型的结果(2)来预报人口,必须对其中的参数r进行估计,这可以用附录中附件1的表1中的数据通过拟合得到。通过2000-2009年的数据拟合得r=拟合图如图1: 图模型的检验: 将 代入公式(2),求出用指数增长模型预测的2000-2020年的人口数见图2和表2。图2江西省实际人口与按指数增长模型计算的人口比较年(公元) 实际人口(万) 指数增长模型 预测人口(万) 误差(%).21 4186 4222 4254 4284 4311 4339 4368 4400 4432 表2从表2中可以看出,2006-2009年间的预测人口数与实际人口数吻合较好,但2001-2005年的误差越来越大。分析原因,该模型的结果说明人口将以指数规律无限增长,而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制越来越显著。如果当人口较少的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少,于是应该对指数增长模型关于人口净增长率是常数的假设进行修改。模型推广利用上述模型对2010-2020年江西人口总数的预测,预测结果见表32010-2020江西预测人口年(公元) 2013 2014预测人口(万) 年(公元) 2018 2019预测人口(万) 年(公元) 2020 预测人口(万) 表35.2 模型I :Logistic人口预测模型 模型的建立 logistic是根据malthus人口模型改进得来的,其中引入常数 (最大人口容量),用来表示自然环境条件所能容许的最大人口数。并假设:人口增长率r为人口x(t)的函数r(x)(减函数),x(t)为t时刻的人口,由于量大,x(t)可视为连续、可微函数,记时刻t=0时人口为 最简单地可假定r(x)=r-sx,r,s>0(线性函数),r叫做固有增长率。 自然资源和环境条件年容纳的最大人口容量为 。当x= 时,增长率应为0,即r( )=0,于是s= ,代入r(x)=r-sx,得: r(x)=r(1- )………………………(2)将(2)式代入(1)式得: 模型: ……………(3)模型的求解 解方程(3)得: X(t)= …………………(4) 根据方程(3)作出 的曲线图,见图1,由该图可看出人口增长率随人口数的变化规律,根据(4)的结果做出x-t曲线,见图2,由该图可看出人口数随时间的变化规律。 图2 图模型的参数估计 利用表1中2000-2009年的数据对r和 拟合得: r=, 18540 图5 模型的检验 将r=, =18540代入公式(4),求出用指数增长模型预测的2000-2009年的人口数,见表4第3、4列,见图6。也可将方程(3)离散化,得: x(t+1)=x(t)+ =x(t)+r[1- ]x(t),t=0,1,2,…… (5)江西人口与按阻滞增长模型计算的人口比较年(万) 实际人口(万) 阻滞增长模型 公式(4) 公式(5) 预测人口(万) 相对误差 预测人口(万) 相对误差.98 .23 4222 4254 4284 4311 4156 4339 4368 4400 4432 表4图模型应用 现应用该模型预测人口,用表1中2000-2009年的全部数据重新估计参数,可得r=, 13040,用公式(4)作2010-2020年的人口预测得:见图7和表5:图82010-2020年江西预测人口年(公元) 2013 2014预测人口(万) 年(公元) 2018 2019预测人口(万) 年(公元) 2020 预测人口(万) 表5【模型评价】 优点: [1]马尔萨斯人口预测模型是在当人口较少时人口自然增长率可以看做常数的话这是马尔萨斯模型对人口的预测比较方便简单准确。[2]人口增长短期预测方面Lotistic模型效果比较好,理论比较成熟,且运算求解方法简单且Logistic模型所描述的变化过程符合人口的增长模式。运用阻滞增长模型原理,设立阈值,使预测结果与实际情况更接近。 缺点: [1] 没有考虑到男女出生性别比例、城镇化程度、生育率和人口数量的关系,从而不能有效地避免了预测期太长导致误差出现累积效应而过大。 [2]随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著,我们这两个模型对人口的预测的误差就会越来越大。六、参考文献[1] 谭永基等,数学模型,[M],上海:复旦大学出版社。[2] 姜启源等,大学数学实验,[M],北京:清华大学出版社。[3] 赵静,但琦,数学建模与数学实验[M]第3版,高等教育出版社。[4] 盛聚等,概率论与数理统计[M],北京:高等教育出版社。[5] 中华人民共和国国家统计局()[6] 薛定宇,陈阳泉,高等应用数学问题的MATLAB求解,[M],北京:清华大学出版社,2004[7]九江大论坛()七、附录附件1: 2000-2009年江西人口统计表 年(公元) 2003 2004人口(万) 4254 4284年(公元) 2008 2009人口(万) 4400 4432表1附件2:拟合程序 years=2000:1:2009;population=[ 4432];y=2001:1:2008;P=interp1(years,population,y,'spline');plot(years,population,'+',y,P,years,population,'r:')附件3:马尔萨斯人口预测模型程序 #include""#include""void main(void){ int gvelocity; int dvelocity; int year,total; clrscr(); printf("total population of this year.\n"); scanf("%d",&total); printf("per year grow velocity.\n"); scanf("%d",&gvelocity); printf("per year die velocity.\n"); scanf("%d",&dvelocity); printf("the result is after.\n”); }附件4:阻滞增长模型(Logistic模型)程序 Logistic模型 -x曲线程序: xm=input('请输入xm=');r=input('请输入r=');n=1;for x=0: p(n)=r*x*(1-(x/xm)); n=n+1;endx=0:;Plot(x,p);Logistic模型曲线程序:xm=input('请输入xm=');r=input('请输入r=');x0=input('请输入x0=');n=input('请输入x坐标长度=');i=1;for t=0:; k=(xm/x0-1)*exp((-r)*t); p=xm/(1+k); x(i)=p; i=i+1;endt=0:(t,x)

这是一个论文的模板 你可以参考下 还望采纳 谢谢!江西省人口预测模型的建立与分析一、摘要: 本文建立了两个人口增长预测模型,对未来人口问题和未来人口结构进行了分析与预测,并综合分析了未来我们人口发展中可能出现的问题及社会影响。模型I: 无论是对于我国目前的经济发展状况还是未来的远景规划,人口问题的研究都具有十分重要的意义,马尔萨斯人口的模型的局限性,就因为它没有考虑到有限的生存空间与资源,生产力,文化水平等因素对出生率的影响,在考虑到有限的生存空间及资源后,于是本文又给出了模型Ⅱ。模型Ⅱ:建立只考虑现有的人口基数和人口增长率两个因素用于短期预测的阻滞增长人口预测模型(Logistic),并利用2001-2009年人口数据对该模型进行检验,2001年到2009年数据检验出总体上预测数据与实际数据符合程度较好,误差全都控制在以内。用此模型对未来20年内人口数据进行了预测,计算出未来各年总人口数,其中2015年社会总人数为万人,2020年人数为万人。关键词:分析与预测 马尔萨斯模型 Logistic模型二、问题的背景:人口问题不仅是21世纪我省所面临的最重大的问题之一,而且在新世纪中将继续存在。无论是对我省目前经济发展状况的认识,还是对未来经济发展的预测,人口问题的研究都具有十分重要的意义。对人口进行预测是随着社会经济发展而提出来的。过去几千年,人类社会生产力水平低,生产发展缓慢,人口变动和增长也很迟缓,因而客观上对人口未来的发展变化的探讨显得必要性较小。当前生产力发展达到空前的水平,生产已经不是为满足生产者个人的需求,而是要面向社会的需求,所以必须了解需求和供应的未来趋势,协调人口、资源与环境的持续发展。为了加快江西省的经济建设进程,全面落实科学的发展观。按照构建社会主义和谐社会的要求,坚持以人为本,推进体制改革,优先投资于人的全面发展:稳定低生育水平,提高人口素质,改善人口结构,引导人口合理分布。保障人口安全,实现人口大国向人力资本强国的转变,实现人口与的协调和可持续发展。我们确定人口发展战略,必须既着眼于人口本身的问题,又处理好人口与经济社会资源环境之间的相互关系,构建社会主义和谐社会,统筹解决人口数量、素质、结构、分布问题。因此建立一个人口增长预测的数学模型对中国人口增长的中短期和长期趋势做出预测就显得尤为重要了。三、问题重述: 人口是反映省情、省力基本情况的重要指标,是区域研究所必须考虑的重要因素之一,分析现状、制定规划时首先要考虑的基本问题。例如评价一个国家或一个地区的发展潜力时离不开现在与今后各类人口数量、比例指数和年龄分布。故人口预测是制定和顺利实现社会经济各项战略设想的基础和出发点, 制定正确人口政策的科学依据。江西省是一个人口大省,人口问题始终是制约我省发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。近年来我省的人口发展出现了一些新的特点,例如,老龄化进程速度加快、出生人口性别比持续升高、乡村人口城镇化、医疗卫生的提高等因素,这些都影响着中国人口的增长。关于江西省人口问题已有多方面的研究,并积累了大量数据资料。根据我省的实际情况和人口增长的上述特点,参考相关数据(同时也搜索相关文献和补充新的数据),提出以下问题:(1) 建立江西省人口增长的数学模型,并由此对江西省人口增长的中短期和长期趋势做出预测.(2) 分析模型中的优点和缺点。四、模型假设: (1)假设题中所给数据基本真实有效(2)假设没有重大的自然灾害发生(3)在较近一段时期,政府政策基本不发生重大变化(4)在较近一段时期,医疗卫生条件保持不变(5)所研究的问题没有太大的人口迁入与迁出(6)男性比率之和和女性比例之和的总和在1附近。可以近似认为1(7)假设现今有关人口方面的国策在长时间内不会发生重大的改变(8)把研究的社会人口当作一个系统考虑,不考虑其与系统外的人口流动模型Ⅰ建立只考虑现有的人口基数和人口增长率两个因素用于短期预测的阻滞增(),得到了本论文中计算所用到的所有数据。五、分析与建立模型模型I:指数增长模型(马尔萨斯人口模型malthus)模型的建立 记时刻t=0时人口数为 ,时刻t的人口为x(t),由于量大,x(t)可视为连续、可微函数。t到 时间段内人口是增量为: 于是x(t)满足微分方程: ……………(1)模型的求解:解微分方程(1),得: ……………………………………….(2)表明: 模型的参数估计:要用模型的结果(2)来预报人口,必须对其中的参数r进行估计,这可以用附录中附件1的表1中的数据通过拟合得到。通过2000-2009年的数据拟合得r=拟合图如图1: 图模型的检验: 将 代入公式(2),求出用指数增长模型预测的2000-2020年的人口数见图2和表2。图2江西省实际人口与按指数增长模型计算的人口比较年(公元) 实际人口(万) 指数增长模型 预测人口(万) 误差(%).21 4186 4222 4254 4284 4311 4339 4368 4400 4432 表2从表2中可以看出,2006-2009年间的预测人口数与实际人口数吻合较好,但2001-2005年的误差越来越大。分析原因,该模型的结果说明人口将以指数规律无限增长,而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制越来越显著。如果当人口较少的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少,于是应该对指数增长模型关于人口净增长率是常数的假设进行修改。模型推广利用上述模型对2010-2020年江西人口总数的预测,预测结果见表32010-2020江西预测人口年(公元) 2013 2014预测人口(万) 年(公元) 2018 2019预测人口(万) 年(公元) 2020 预测人口(万) 表35.2 模型I :Logistic人口预测模型 模型的建立 logistic是根据malthus人口模型改进得来的,其中引入常数 (最大人口容量),用来表示自然环境条件所能容许的最大人口数。并假设:人口增长率r为人口x(t)的函数r(x)(减函数),x(t)为t时刻的人口,由于量大,x(t)可视为连续、可微函数,记时刻t=0时人口为 最简单地可假定r(x)=r-sx,r,s>0(线性函数),r叫做固有增长率。 自然资源和环境条件年容纳的最大人口容量为 。当x= 时,增长率应为0,即r( )=0,于是s= ,代入r(x)=r-sx,得: r(x)=r(1- )………………………(2)将(2)式代入(1)式得: 模型: ……………(3)模型的求解 解方程(3)得: X(t)= …………………(4) 根据方程(3)作出 的曲线图,见图1,由该图可看出人口增长率随人口数的变化规律,根据(4)的结果做出x-t曲线,见图2,由该图可看出人口数随时间的变化规律。 图2 图模型的参数估计 利用表1中2000-2009年的数据对r和 拟合得: r=, 18540 图5 模型的检验 将r=, =18540代入公式(4),求出用指数增长模型预测的2000-2009年的人口数,见表4第3、4列,见图6。也可将方程(3)离散化,得: x(t+1)=x(t)+ =x(t)+r[1- ]x(t),t=0,1,2,…… (5)江西人口与按阻滞增长模型计算的人口比较年(万) 实际人口(万) 阻滞增长模型 公式(4) 公式(5) 预测人口(万) 相对误差 预测人口(万) 相对误差.98 .23 4222 4254 4284 4311 4156 4339 4368 4400 4432 表4图模型应用 现应用该模型预测人口,用表1中2000-2009年的全部数据重新估计参数,可得r=, 13040,用公式(4)作2010-2020年的人口预测得:见图7和表5:图82010-2020年江西预测人口年(公元) 2013 2014预测人口(万) 年(公元) 2018 2019预测人口(万) 年(公元) 2020 预测人口(万) 表5【模型评价】 优点: [1]马尔萨斯人口预测模型是在当人口较少时人口自然增长率可以看做常数的话这是马尔萨斯模型对人口的预测比较方便简单准确。[2]人口增长短期预测方面Lotistic模型效果比较好,理论比较成熟,且运算求解方法简单且Logistic模型所描述的变化过程符合人口的增长模式。运用阻滞增长模型原理,设立阈值,使预测结果与实际情况更接近。 缺点: [1] 没有考虑到男女出生性别比例、城镇化程度、生育率和人口数量的关系,从而不能有效地避免了预测期太长导致误差出现累积效应而过大。 [2]随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著,我们这两个模型对人口的预测的误差就会越来越大。六、参考文献[1] 谭永基等,数学模型,[M],上海:复旦大学出版社。[2] 姜启源等,大学数学实验,[M],北京:清华大学出版社。[3] 赵静,但琦,数学建模与数学实验[M]第3版,高等教育出版社。[4] 盛聚等,概率论与数理统计[M],北京:高等教育出版社。[5] 中华人民共和国国家统计局()[6] 薛定宇,陈阳泉,高等应用数学问题的MATLAB求解,[M],北京:清华大学出版社,2004[7]九江大论坛()七、附录附件1: 2000-2009年江西人口统计表 年(公元) 2003 2004人口(万) 4254 4284年(公元) 2008 2009人口(万) 4400 4432表1附件2:拟合程序 years=2000:1:2009;population=[ 4432];y=2001:1:2008;P=interp1(years,population,y,'spline');plot(years,population,'+',y,P,years,population,'r:')附件3:马尔萨斯人口预测模型程序 #include""#include""void main(void){ int gvelocity; int dvelocity; int year,total; clrscr(); printf("total population of this year.\n"); scanf("%d",&total); printf("per year grow velocity.\n"); scanf("%d",&gvelocity); printf("per year die velocity.\n"); scanf("%d",&dvelocity); printf("the result is after.\n”); }附件4:阻滞增长模型(Logistic模型)程序 Logistic模型 -x曲线程序: xm=input('请输入xm=');r=input('请输入r=');n=1;for x=0: p(n)=r*x*(1-(x/xm)); n=n+1;endx=0:;Plot(x,p);Logistic模型曲线程序:xm=input('请输入xm=');r=input('请输入r=');x0=input('请输入x0=');n=input('请输入x坐标长度=');i=1;for t=0:; k=(xm/x0-1)*exp((-r)*t); p=xm/(1+k); x(i)=p; i=i+1;endt=0:(t,x)

问题一:论文中的摘要是指什么? 论文摘要是对你论文内容的综合分析。要突出重点内容与论述思想。论文的展开必须围绕论文题目与摘要中心思想展开。如果说论文内容与摘要思想偏差太多,就无法得到弗可,如果是毕业论文不用等答辩就会被导师打回重写了。 问题二:一般论文中的摘要要写什么? 一、论文摘要的定义 摘要一般应说明研究工作目的、实验方法、结果和最终结论等.而重点是结果和结论。中文摘要一般不宜超过300字,外文摘要不宜超过250个实词。除了实在迫不得已,摘要中不用图、表、化学结构式、非公知公用的符号和术语。摘要可用另页置于题名页(页上无正文)之前,学术论文的摘要一般置于题名和作者之后,论文正文之前。 论文摘要又称概要、内容提要。摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。其基本要素包括研究目的、方法、结果和结论。具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息。摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息。摘要不容赘言,故需逐字推敲。内容必须完整、具体、使人一目了然。英文摘要虽以中文摘要为基础,但要考虑到不能阅读中文的读者的需求,实质性的内容不能遗漏。 二、论文摘要的分类 根据内容的不同, 摘要可分为以下三大类: 报道性摘要、指示性摘要和报道-指示性摘要 (1) 报道性摘要: 也常称作信息性摘要或资料性摘要, 其特点是全面、简要地概括论文的目的、方法、主要数据和结论. 通常, 这种摘要可以部分地取代阅读全文. (2) 指示性摘要: 也常称为说明性摘要、描述性摘要或论点摘要, 一般只用二三句话概括论文的主题, 而不涉及论据和结论, 多用于综述、会议报告等. 该类摘要可用于帮助潜在的读者来决定是否需要阅读全文. (3) 报道-指示性摘要: 以报道性摘要的形式表述一次文献中的信息价值较高的部分, 以指示性摘要的形式表述其余部分. 三、论文摘要的写法 目前,我国期刊上发表的论文,多采用报道性摘要。即包括论文的目的、方法、结果和结论等四部分内容。而毕业论文的摘要的写法多是采用指示性摘要的写法,即概括文章的主题和主要内容。在指示性摘要的写作过程中,作者首先应该对论文的写作背景做简单介绍,然后应该对文章的主要内容进行简单的介绍,主要是对文章的提纲做简要的介绍,最后要对文章的研究意义进行介绍。 四、论文摘要写作的注意事项 (1)摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。 (2)不得简单重复题名中已有的信息。比如一篇文章的题名是《几种中国兰种子试管培养根状茎发生的研究》,摘要的开头就不要再写:“为了……,对几种中国兰种子试管培养根状茎的发生进行了研究”。 (3)结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。摘要慎用长句,句型应力求简单。每句话要表意明白,无空泛、笼统、含混之词,但摘要毕竟是一篇完整的短文,电报式的写法亦不足取。摘要不分段。 (4)用第三人称。建议采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法标明一次文献的性质和文献主题,不必使用“本文”、“作者”等作为主语。 (5)要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。 (6)除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。 (7)不用引文,除非该文献证实或否定了他人已出版的著作。 (8))缩略语、略称、代号,除了相邻专业的读者也能清楚理解的以外,在首次出现时必须加以说明。科技论文写作时应注意的其他事......>> 问题三:论文的简介与摘要有什么区别? 在研究论文中,对“论文摘要”和“论文简介”的含混不清现象,只要浏览者稍加注意就可发现,不论在自然科学抑或是社会科学各门学科中都普遍存在。作为“论文摘要”――我想这无需引经据典解释大家都懂 ――“摘其要点而发”之意。但是,很多期刊杂志对此并没有严格要求,从而使得“论文摘要”往往成了“论文简介”,即,不是提炼语言以准确反映文章的内容,而是用概括、综述性语言甚至站在旁观者的立场作评价性介绍(我将一些学者包括有些名家输入百度搜索,情况表明,我们的学者写得了论文但做不好论文摘要者占相当大的比例)。信手拈来,如,北京大学人口所主办的《市场与人口分析》2007年第1期发在首篇的论文《中国人口、人力资本变化趋势》这样写到(请作者不要怪罪,我无意贬损作者,也并不代表我否定其研究论文,下面我会公正客观地评价问题): 摘要:利用多状态人口预测模型,以2000年人口普查为基础依据,在对数据进行评估和修订的基础上,综合相关研究成果对未来生育水平、死亡水平、人口迁移和教育转换等参数进行估计,预测了2000年到2030年人口规模的变化,对未来人口的年龄结构特别是老龄化和未来人口和劳动年龄人口的人力资本进行了预测,并分析了城市化和人口迁移对我国未来人口发展的影响。预测结果对我国编制人口规划、制定应对老龄化、提高人力资本和合理利用劳动力的有关政策具有重要意义。 这是典型的论文简介而非“摘其要点而发”的论文摘要,并且,后面的一句话还是自我褒扬式的简介。――这样的自我评价本来应该是由别人阅后来做的。但这期杂志所载的11篇刊有论文摘要的文章中,也有3篇(第2、10、11篇)论文摘要的确是“摘其要点而发”者(约占30%)。如第10篇《全球化进程中世界就业若干特征分析》开头写到: 摘要:随着经济全球化的深度推进,世界就业呈现出一系列规律性特征。主要表现在就业方式、就业结构以及劳资关系的变革上。正确认识全球化进程中劳动就业的规律性特征,对于制定正确的对外开放以及就业战略具有重要的意义。 问题四:《论文摘要怎么写例子》 论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其他读者不阅读论文全文即能获得必要的信息。 摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。 论文摘要虽然要反映以上内容,但文字必须十分简炼,内容亦需充分概括,篇幅大小一般限制其字数不超过论文字数的5%。例如,对于6000字的一篇论文,其摘要一般不超出300字。 论文摘要不要列举例证,不讲研究过程,不用图表,不给化学结构式,也不要作自我评价。 [示例] 论文题目:天体对地球重力加速度的影响 论文摘要:地球重力加速度是一个极其重要的物理量,随着对重力加速度测量精度要求的日益提高,必须考虑天体对地球重力加速度的影响。本文介绍了天体(包含日、月及太阳系行星)对地球重力加速度影响的基本概念,推导了影响的计算公式,并经过误差分析,证明此公式的相对误差小于1×10-9,完全可满足现代精密重力加速度测量的要求。 撰写论文摘要的常见毛病,一是照搬论文正文中的小标题(目录)或论文结论部分的文字;二是内容不浓缩、不概括,文字篇幅过长。 [示例] 论文题目:集成电路热模拟模型和算法 论文提要:众所周知,半导体器件的各种特性参数都是温度的灵敏函数学[诸如ls(T),B(T),C1(T),Cp(T)……]。集成电路将大量元件集成在一块苡片上,电路工作时,元件功耗将产生热量,沿晶片向四周扩散。但是由于半导体片及基座材料具有热阻,因此芯片上各点温度不可能相同。特别对于功率集成电路,大功率元件区域将有较高温度所以在芯片上存在着不均匀的温度分布。 但是为了简化计算,一般在分析集成电路性能时,常常忽略这种温度差别,假定所有元件者处于同一温度下。例如通用的电路模拟程序--SPICE就是这样处理的。显然这一假定对集成电路带来计算误差。对于功率集成电路误差将更大。因此,如何计算集成电路芯片上的温度分布,如何计算元件温度不同时的电路特性,以及如何考虑芯片上热、电相互作用,这就是本文的目的。 本文介绍集成电路的热模拟模型,并将热路问题模拟成电路问题,然后用电路模拟程序求解芯片温度分由。这样做可以利用成熟的电路分析程序,使计算的速度和精度大为提高。作者根据这一模型和算法,编制了一个YM-LiN-3的FORTRAN程序,它可以确定芯片温度分布,也可发计算元件处于不同温度时的电路特性,该程序在微机IBM-PC上通过,得到满意结果。 上述论文提要字数近600,显然过长,只要认真加以修改(例如:第一段可删掉,第二段只保留其中的最后几句话,加上第三段),便可以二三百个字编写论文摘要。 论文摘要范例: 一、 职称论文摘要范例 【题目】字图书馆建设的问题与策略 【摘要】当代图书馆建设的发展方向是数字图书馆,数字图书馆是未来图书馆的存在形式,它的研究与建设水平将直接影响到我国图书馆在未来信息时代的地位和作用。本文针对图书馆数字化发展的客观趋势,从我国数字图书馆面临的问题出发,分析并探讨了数字图书馆建设中应解决的主要战略问题与策略。 【题目】依法进行拆迁 建设和谐城市 【摘要】依法进行拆迁,建设和谐城市是 *** 部门开展城市规划的最终目的,要想实现这一目标,就要研究依法拆迁的意义,探讨各种拆迁矛盾的成因,找出解决各方面利益纠纷的办法,从完善法律法规、争取人民利益的角度出发,为建设和谐社会贡献力量。 二、 毕业论文硕士论文博士论文摘要范例 【论文题目】机动车尾气污染防治对策......>> 问题五:论文摘要怎么写 摘要(Abstract) 论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的 简短陈述。其他用是不阅读论文全文即能获得必要的信息。 摘要应包含以下内容: ①从事这一研究的目的和重要性; ②研究的主要内容,指明完成了哪些工作; ③获得的基本结论和研究成果,突出论文的新见解; ④结论或结果的意义。 论文摘要虽然要反映以上内容,但文字必须十分简炼,内容亦需充分概括,篇幅大小一般限制其字数不超过论文字数的5%。例如,对于6000字的一篇论文,其摘要一般不超出300字。 论文摘要不要列举例证,不讲研究过程,不用图表,不给化学结构式,也不要作自我评价。 撰写论文摘要的常见毛病,一是照搬论文正文中的小标题(目录)或论文结论部分的文字;二是内容不浓缩、不概括,文字篇幅过长。 问题六:论文的摘要必须是论文内容里的吗 摘要是对整个文章的概述,以及文章要说明的问题,不一定要用文章里的语句。。 问题七:论文的摘要,关键字,引文怎么写?什么意思? 论文的摘要就是你的论文要阐述的观点做一个简单的介绍。......本文将对...现象进行阐述。关键字应是关键词吧就是你要阐述的观点概括的出的词语。恭什么内容。就是什么词。一般有3、4个吧。 问题八:论文摘要指的是什么? 论文摘要是对论文内容简短陈述,不阅读论文全文即能获得必要的信息。包括四要素1目的: 研究的目的、范围、重要性; 2 方法: 采用的手段方法; 3 结果: 完成哪些工作取得的数据和结果; 4 结论: 得出的重要结论及主要观点,论文的新见解。 问题九:论文中的中文摘要是什么 摘要是可以正文里的,最好是最能说明主要内容的,能吸引读者,简单明了的。一句话,两句话就行。

人口增长数学建模优秀论文范文

全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。

下载一片获奖论文,之后的所有基本就都解决了吧!!

你说的是数学建模论文吧看看这个你可以借鉴一下黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则°——°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。格式:摘要;基本假设;问题提出;符号说明;问题分析;模型建立及求解;模型评价及推广;参考文献;附录。

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

人口预测毕业论文答辩ppt

关于内容:1、一般概括性内容:课题标题、答辩人、课题执行时间、课题指导教师、课题的归属、致谢等。2、课题研究内容:研究目的、方案设计(流程图)、运行过程、研究结果、创新性、应用价值、有关课题延续的新看法等。3、PPT要图文并茂,突出重点,让答辩老师明白哪些是自己独立完成的,页数不要太多,30页左右足够,不要出现太多文字,老师对文字和公式都不怎么感兴趣;4、凡是贴在PPT上的图和公式,要能够自圆其说,没有把握的坚决不要往上面贴。5、每页下面记得标页码,这样比较方便评委老师提问的时候review关于模板:1、可以去像素网选择一套合适的论文答辩ppt模板,不要用太华丽的企业商务模板,学术ppt最好低调简洁一些;2、推荐底色白底(黑字、红字和蓝字)、蓝底(白字或黄字)、黑底(白字和黄字),这三种配色方式可保证幻灯质量。我个人觉得学术ppt还是白底好;3、动手能力强的大牛可以自己做附和课题主题的模板,其实很简单,就是把喜欢的图在“幻灯片母版”模式下插入就行了。关于文字:1、首先就是:不要太多!!!图优于表,表优于文字,答辩的时候照着ppt念的人最逊了;2、字体大小最好选ppt默认的,标题用44号或40号,正文用32号,一般不要小于20号。标题推荐黑体,正文推荐宋体,如果一定要用少见字体,记得答辩的时候一起copy到答辩电脑上,不然会显示不出来;3、正文内的文字排列,一般一行字数在20~25个左右,不要超过6~7行。更不要超过10行。行与行之间、段与段之间要有一定的间距,标题之间的距离(段间距)要大于行间距;关于图片:1、图片在ppt里的位置最好统一,整个ppt里的版式安排不要超过3种。图片最好统一格式,一方面很精制,另一方面也显示出做学问的严谨态度。图片的外周,有时候加上阴影或外框,会有意想不到的效果;2、关于格式,tif格式主要用于印刷,它的高质量在ppt上体现不出来,照片选用jpg就可以了,示意图我推荐bmp格式,直接在windows画笔里按照需要的大小画,不要缩放,出来的都是矢量效果,比较pro,相关的箭头元素可以直接从word里copy过来;3、流程图,用viso画就可以了,这个地球人都知道;4、ppt里出现图片的动画方式最好简洁到2种以下,还是那句话,低调朴素为主;5、动手能力允许的话,学习一下photoshop里的基本操作,一些照片类的图片,在ps里做一下曲线和对比度的基本调整,质量会好很多。windos画笔+ps,基本可以搞定一切学术图片。关于提问环节:评委老师一般提问主要从以下几个方面:1.他本人的研究方向及其擅长的领域;2.可能来自课题的问题:是确实切合本研究涉及到的学术问题(包括选题意义、重要观点及概念、课题新意、课题细节、课题薄弱环节、建议可行性以及对自己所做工作的提问);3.来自论文的问题:论文书写的规范性,数据来源,对论文提到的重要参考文献以及有争议的某些观察标准等;4.来自幻灯的问题:某些图片或图表,要求进一步解释;5.不大容易估计到的问题:和课题完全不相干的问题。似乎相干,但是答辩者根本未做过,也不是课题涉及的问题。答辩者没有做的,但是评委想到了的东西,答辩者进一步打算怎么做。提问环节很容易因为紧张被老师误导,如果老师指出你xx地方做错了,先冷静想一下,别立马就附和说啊我错了啊我没有考虑到。一般来说答辩老师提的问题,很少有你做课题这几年之中都没考虑到的。想好了再回答,不要顶撞老师,实在不会的问题,千万不要“蒙”,态度一定要谦虚,哪怕直接说“自己没有考虑到这点,请老师指正”。

谁有PPT模板网盘资源?很多朋友上网百度搜索。可是效果差强人意,下载来的不是拼凑版就是不清晰。不仅费时费力,还让人苦恼不已。可以说PPT模板需求是大的,在我们生产生活中的应用也是非常广泛。自己收集整理了各种风格的ppt模板合辑,现在分享给大家。希望可以帮到你,根据需要选择自己喜欢的下载就行了。

点击下载2000套精美PPT模板

产品简介:PPT模板是指Powerpoint所用的模板,一套好的PPT模板可以让一篇PPT文稿的形象迅速提升,大大增加可观赏性。 同时又可以让PPT思路更清晰,逻辑更严谨,更方便处理图表、文字、图片等内容,ppt模板又分为动态模板和静态模板,动态模板是通过设置动作和各种动画展示达到表达思想同步的一种时尚式模板。

各位童鞋好,如果你看到这个回答,恭喜你,找到干货了,说到内容的话,一份完整的毕业答辩PPT大致可以包含7个部分:

1、封面

2、目录

3、选题背景和意义

4、研究方法和过程

5、研究成果和应用

6、论文总结和建议

7、致谢

这点好像没什么特别要说的,大家应该都清楚,就是论文题目、学院和专业信息、答辩人姓名、导师姓名以及答辩日期。

目录好像也不用多说,约定俗成的一般都是4部分或5部分,当然了,你要分得更详细也可以。

从这开始就比较重要了,此部分主要写论文选题的研究背景、意义、目标及国内外相关研究成果。考虑到答辩时间,一定要选择最重要的信息写。文字内容较多时,建议采用分点分段排版。

这是毕业答辩需要重点突出的部分,主要包括:

采用的方法是什么?

在哪里展开?

怎么实施?

怎样获取资料?

参考文献如何处理?

主要是对论文种一些概念界定和理论依据,概念界定不需要多,讲清楚就行了,至于理论依据,只要和论文非常密切的理论依据表达出来就行了,记得要简练。

还有其中涉及到的方法有:文献调查法、问卷调查法、定性分析法和定量分析法相结合、案例分析法、实验法、模拟法,是不是很多,其实只要列举3~4条就OK了,精简易懂。

这部分少用文字表述,主要是阐述论文研究成果的,要尽可能的多的使用图表、数据进行说明和论证。这样也方便老师理解,而且看着条理也非常清晰,显得简明扼要。不擅长制作各种图表的同学,可以网络搜索一些专业制表工具,网上很多的,这点肯定难不倒你。

总结可以说毕业答辩PPT的核心内容,前面的所有内容,比如研究背景、方法、成果等,都是为了总结。为了方便老师的理解,最好分点列出,一目了然。

还有建议,绝对不能凭空产生,需要阐述怎么由数据分析的结果产生这些建议,一定要有可操作性,主要就是4点:

①直接性,直截了当不含糊,越具体越好

②相关性,和论文研究有关联,由A推理到B,或者由B反推到A

③可行性,论文具有可行性,让人信服

④必然性,根据论文的研究结果,能得到建议

最后一部分,可算是结束了,这里主要表达对老师的感谢,感谢导师的辛苦指导。建议把导师、答辩人的姓名都加上。

制作环节

模板的选择:

不要选择华丽的企业商务模板,推荐大家使用扁平化模板,不仅常见,而且设计起来非常方便,整体显得低调、简洁,非常符合学术风格。

颜色的把控:

一般毕业答辩PPT的颜色最好在2-4种之间,这样也比较容易驾驭。给大家一个建议,可以打开学校的官网,或者看看学校的校徽,看看主体颜色是什么,就用这个颜色就对了。另外,毕业答辩的时候通常灯光较明亮,所以幻灯片背景不要使用深色,否则会出现反光,字体就看不清了,最好用白色或浅灰色。

字体的选择:

对比很明显

一般来说,字号选择20号,保证第一排观众可以看清,标题可以用32号。至于用什么字体,不建议使用宋体,我对计算机还是比较熟悉的,宋体在屏幕端识别性较低,在屏幕上主要使用无衬线字体,比如微软雅黑、冬青黑体、方正兰亭等,都是不错的。

标题的起法:

要把重点清晰地向老师展示,这样才有助于别人了解你的观点,大家要知道,答辩时间是有限的,每一秒都非常重要。标题的起法完全可以参考新闻、报纸。

看一下上图的对比,第二个标题是不是更直观,更能看到重点。

对齐和行距:

对齐是很多人忽视的一个缓解,其实没什么说的。还有行距不要使用默认的,行距不要使用默认的,因为看着不舒服,建议调成。

反复练习:

PPT一定要多练,要非常流畅,不要出现卡壳,要展示出自信。

抓住重点:

不要什么都讲,说最有把握的内容,没把握的可以不讲,要学会舍弃。

重点通俗:

也就是讲重点,讲的通俗易懂,特别是学术项目答辩,不要把过程一五一十讲出来,直接讲结论,分点、通俗地进行讲解。

露出破绽:

是适当的露出破绽,为什么这么做,就是要让专家提问,如果你的答辩太完美,你遇到的问题可能比较刁钻,到时候不好回答,露出破绽降低提问难度。

控制时长:

这点非常重要,我建议控制在30分钟-45分钟之间,45分钟真的是集中注意力的极限了,时间太长会起到反作用。

拍马屁:

夸专家绝对没错。第一步要接住问题,“感谢您的提问,这个问题正是本研究的核心,也是我们反复讨论的问题”,这样有一个作用,专家心里会认为,我的提问太牛了,直接切中要害啊,一下就看到问题的本质了。

换概念:

能回答的就回答,回答不了要学会偷换概念。大家要记住,当你回答不了的时候,千万不能说这个问题没有考虑到或做得还不到位,一旦说了可能会出现很多问题,影响毕业啊。可以这么说:“您提的这个问题其实不是本课题的研究范围,因为我们这个课题的研究主要局限于xxx,重点研究xxx,不过您提的这个问题也是非常关键的,目前我们课题组其他师弟师妹正在研究。”

不反驳:

对专家不争辩,不反驳,自己说自己的观点就行了。如果真的遇到低级问题,或者坚持错误的结论,此时不要过于急躁,可以简要解释一下嘛,如果接着追问,你就再解释,几个回合大家都懂得。

先押题

大家应该知道是什么意思,就是事先准备一些问题,比如“你的研究有哪些创新点?”、“国内外研究现状如何?”、“你的研究成果有哪些意义?”等等,都是一些比较大类通俗的问题。

用数据:

我们回答问题的时候尽量避免用定性的话,要多用定量的数据。比如专家问“你的研究表明,柴油机用EGR好还是不用EGR好?”一般同学会分析有无EGR的优缺点,这样回答没什么亮点。你可以这样回答,“本研究结果表明,EGR率每增加1%,油耗升高xx%,NOX降低xx%,本文建议EGR率的范围保持在xx%-xx%”,用数据更能增加结论的可信度。

要自信:

这点虽然不涉及到具体的环节,但其实非常有必要,特别是博士答辩,心里一定要有一个信念,你讲的内容,你所有专家都懂。如果底气不足,专家问题自然会变多;如果底气十足,用气场镇住专家们,要把数据和结论解释得让人无法置疑。

最后,大家一定要记住,答辩要全程面带微笑,即使有质疑声,即使不想笑,装都要装出来!预祝所有童鞋都可以顺利毕业,得到老师认可!

1、首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期;2、其次,需要有一个目录页来清楚的阐述本次答辩的主要内容有哪些;3、接下来,就到了答辩的主要内容了,第一块应该介绍课题的研究背景与意义;4、之后,是对于研究内容的理论基础做一个介绍,这一部分简略清晰即可;5、重头戏自然是自己的研究内容,这一部分最好可以让不太了解相关方面的老师们也能听出个大概,知道到底都做出了哪些工作,研究成果有哪些,研究成果究竟怎么样;6、最后,是对工作的一个总结和展望。7、结束要感谢一下各位老师的指导与支持。

水果检测数学建模论文

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

关于数学论文范文2000字

现如今,大家或多或少都会接触过论文吧,论文是我们对某个问题进行深入研究的文章。如何写一篇有思想、有文采的论文呢?下面是我整理的数学论文范文2000字,供大家参考借鉴,希望可以帮助到有需要的朋友。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1.以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2. 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3.以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

4.用数学问题引导学生进行自主性的学习。问题可以调动学生的积极性,让学生在带着困惑、怀疑和探索的心理,进行数学知识的自主性学习,这也是教学引入策略之一。在问题设置的数学教学中,要注意问题提出的难易程度,要根据学生的思维层次进行问题的导入,逐渐进入数学知识的学习,而不能以深奥、难解的问题来给教学设置障碍,使学生缺乏探究的动力和兴趣。

(二)师生共学———尝试自主参与的探究学习过程

教师对学生的教育,流传着一句名言:告诉的知识,容易忘记;分析出来的知识,可以记住;自主参与的知识,就会真正理解。这意味着只有让学生自己动手、动脑自主参与,才能在动手实践、自主探索、合作交流的过程中,掌握数学知识的内化,培养自主学习能力。

1.引导学生进行自主性的探索学习。在数学“认识钟表”一课中,为了让学生对其有数学性的认知,需要引导学生进行对实物钟表的观察、触摸与参与,让小学生在观察的过程中注意到长针和短针的区别,并观察相邻两个数字之间的大小相等的格,学生在对钟表的触摸、观察和实践操作的过程中,完成了对数学知识的认知。

2.根据学生层次进行小组合作式自主式学习。小组合作必须在教师的指导和辅导之下完成,要引导学生仔细观察、对比,如在“长方形”的认知中,要各小组进行分组比赛,寻找出最多的长方形者获胜,在大家踊跃参与的过程中,教师要引导学生注意观察长方形和正方形的区别,通过对比、测量等不同手段,了解对生活中“长方形”的认知,如:课本、长方形的长桌、黑板的形状等,大家在分组合作的过程中掌握了数学知识的规律,并主动性地获取了相应的知识。

(三)数学知识的应用———巩固数学知识的自主性探索

小学生在教学的过程中掌握了基本的数学概念和规律,教师还要将数学知识进行巩固和运用,要充分利用“温故而知新”的记忆特点,对数学知识进行巩固和实际应用。例如:在数学“做一做”的课后练习中,可以组织学生进行同桌互检式的巩固,还可以进行板演练习、课堂评价的方式进行巩固,这样可以激励学生自主进行数学知识的实践性的巩固和运用,将更多的数学知识转化为内在的知识。在知识的巩固过程中要灵活加以整合和运用,如小学生学习完了图形这一课,对三角形、圆形、长方形、正方形、平行四边形等进行准确的认知后,就要进行灵活多变的图形拼板练习,让学生通过对不同图形的修剪和粘贴,进行图形自由空间的想象和布局,增强数学知识的应用能力。

四、结束语

小学数学教学的重点在于培养学生的自主学习能力,根据小学生的年龄特点和思维层次,进行动手、动脑的习惯培养,在生活引入、故事引入、游戏引入、情境引入的教学策略之下,用自主性、参与性、积极性进行数学知识的感知,并在自主探索、交流合作的过程中增加对数学知识的学习和巩固,提升小学数学的课堂教学效果。

参考文献:

[1]牟瑛.营造充满探索的数学课堂环境[J].商业文化(学术版),2010,(08).

[2]张大明.引导自主探究促进主动发展[J].成功(教育),2010,(04).

[3]周波儿.数学教学中如何捕捉和利用“动态生成”[J].山西师范大学学报(自然科学版),2010,(S1).

随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。

一、数学建模和大学生数学建模竞赛

何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。

那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。

二、大学生数学建模竞赛与课程教学培训中存在的问题

通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的'情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。

第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。

第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。

第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。

第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。

三、大学生数学建模课程教学培训策略

大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。

(一)教师层面

首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。

其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。

最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。

(二)学校层面

首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。

其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。

最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。

参考文献:

[1]刘建州.实用数学建模教程[M].武汉:武汉理工大学出版社,2004.

[2]李尚志.数学建模竞赛教程[M].南京:江苏教育出版社,1996.

[3]赫孝良.数学建模竞赛赛题简析与论文点评[M].西安:西安交通大学出版社,2002.

摘要:随着我国基础教育的不断改革和完善,创新形势下的课程标准已经逐渐落实,相比于以往的教育机制,新课程标准更加关注学生的发展能力,鼓励教师根据学生的特点开展教育活动,进而全面提高我国的教育质量和教学效率。新课程标准要求教师在制定教学计划时要准确定位自己和学生之间的关系,以便于开展更加高效的课堂教育。

关键词:小学数学;高效课堂;教学策略

数学是一门逻辑思维较强的学科,因此数学基础教育质量极其重要。高效的小学数学课堂不仅可以让学生的成绩得到有效提高,还能让学生在生活中体会到数学的魅力,加强学生对于理性思维的拓展和延伸,同时还能将学生对数学的兴趣调动起来。

1重视学生对数学概念的理解

学生开始接受小学教育的年龄在6周岁左右,该年龄阶段的孩子对故事的兴趣比公式的兴趣大的多,因此,教师可以在数学课程开始之前让学生先了解该节课程涉及到的历史故事,让学生不要认为数学是很难理解的课程,让学生在更加放松的心态中去完成教学任务。传统教育中,数学教师都会给学生大量的题目来巩固知识点和公式,部分学生在还没有完全理解课堂内容时就开始做题,答案准确率肯定很难得到保障。因此,教师应当重视学生对数学概念的理解程度,让学生先理解数与数之间的关系再开始做习题。同时,教师应当在课堂上为学生留出提问和解疑的时间,教师在和学生的问答互动中拉近彼此之间的距离,提高学生对数学的认知度和敏感度。

2积极开展数学情境教学模式

数学课程的开展必须要有严谨的逻辑性作为支持,如果教师只用数字的形式为学生讲解无实物情境下的运算知识,很难让学生理解这个运算在生活中的价值,而且单纯的思维计算会对小学生产生很大的困扰,小学生更倾向于涉及到生活经验的数学情境模式。教师在开展运算知识点授课的过程中,可以使用不同种类的水果来创建情境教学的条件,将水果的价格和数量制定好,让学生随意取用一部分水果来计算这些水果的总价格。学生在计算水果价格的时候会减轻对数学的抵触,把思维的重点放在水果的种类和形状上,教师可以在学生分组计算的同时查看学生对于价格结果的讨论情况,发现公式以及口诀上的问题及时提出并解决,让学生在不知不觉中牢记乘法和加法的运算规律,减轻公式记忆法的枯燥和乏味,促进小学数学高效课堂教学质量的提高。

3培养学生课前预习的好习惯

数学是一门实践性质很强的学科,解题过程中需要对课题内容及运算方式进行思考,而这个过程需要学生在课前预习环节中掌握,教师应提前告诉学生即将学习的单元和知识点,让学生在有准备的情况下,更有信心的参与到数学课堂中来。教师可以鼓励学生在陪同家长购物时关注买卖运算的方式,然后在课堂上将自己的理解和发现的问题进行阐述,教师可以在与家长互动之后将学生反馈的问题一一解答,并就超市买卖中遇到的问题和课本上的知识点有效结合,让学生了解到数学在生活中的作用,学生在预习的过程中也会加深对运算公式的印象,进而提高学生对数学的兴趣和学习效率,让小学数学教学质量更加高效。

4鼓励学生从多角度解决问题

数学并非一种固定思维的学科,很多数和图形的运算都不止一种解题方式,虽然正确的答案只有一个,但是其过程有着很灵活的多变性,因此,教师应当在数学课堂上鼓励学生以不同的形式来解决问题。教师在发现学生的答案与标准答案不同时,应该首先询问学生的解题思路,而不是直接否定学生的答案,否则很容易打消学生对于数学学习的积极性。在教学条件允许的情况下,教师应当尽量使用解题方式不唯一的例题,让学生了解到集思广益的效果,在之后的课堂小组讨论中也能更加用心,有助于活跃教学气氛和教学效果,做到高效的小学数学课堂教学。综上所述,学生对于科目的兴趣和能力都不是与生俱来的,教师的引导和鼓励会使学生在课堂上的表现更加优秀。在开展小学数学课程的过程中,教师应当注重数学概念、课堂情境、课前预习以及思维扩展带来的高效影响,为学生探索欲和求知欲的提高做出贡献。

参考文献

[1]杨小生.小学数学高效课堂教学的“三三”策略[J].现代中小学教育,2011(11):21~23.

[2]潘海燕.探究小学数学数与代数的高效课堂教学策略[J].中国校外教育,2015(02):72.

[3]王粉粉.新课程背景下小学数学高效课堂教学策略探究[D].延安:延安大学,2016.

用洗完头的水洗脸

  • 索引序列
  • 论文范文人口预测数学建模论文
  • 人口预测模型研究论文
  • 人口增长数学建模优秀论文范文
  • 人口预测毕业论文答辩ppt
  • 水果检测数学建模论文
  • 返回顶部