标题:图书资料管理系统目的:建立一个基于网络的图书资料管理系统,将图书资料放到网络上供人借阅,还可以在系统中按照多种字段对图书资料进行查找等功能。内容:1、用户模块:查询书籍功能、查看所借书详细清单;2、管理模块:管理员身份的管理、数据库的管理、用户模块功能的管理。参考资料:ASP相关资料、SQL Server 相关资料等。标题:企业信息管理系统目的:随着计算机技术的飞速发展,计算机在企业单位管理中应用的普及,管理信息系统的开发在强调管理、强调信息的现代社会中也显得越来越重要。因此,利用计算机支持单位高效率地完成人事管理的日常事务,是适应现代企业单位制度要求、推动企业单位人事管理走向科学化、规范化的必要条件。内容:本系统具有数据管理和企业事务管理功能。使用该系统,可以方便地进行新进企业员工的编制,考勤的自动化以及对员工培训的管理。快捷地查询公司员工的情况,方便企业高层领导对本企业人力资源的现状有个比较全面的认识,也方便他们的管理和人员调动,可辅助企业领导决策科学化,从而大大减少了工作量,提高了工作效率。本课题是辅助企业管理的系统,主要内容包括人事管理、考勤管理和员工培训管理三个模块。拟采用的开发平台为Windows,开发工具为Delphi。参考资料:《Delphi5企业级解决方案及应用剖析》,刘艺,机械工艺出版社,2000;《实例解析应用编程》,李林,张亮,北京希望电子出版社,2002;3、《数据库系统概论》,萨师煊、王珊,高等教育出版社,1997。
智能连接器远程监控服务平台设计与实现 智能连接器远程监控手机客户端设计与实现 景区共享电单车运营服务平台设计与实现 景区共享电单车车载系统设计与实现 校园电子留言板系统 校园二手物品拍卖网络平台开发 基于脑电信号的关注度评估系统 基于无人机监控平台的多目标检测系统 基于二维码签到的线上讲座管理系统 基于深度学习的公共场所客流运动模式分割算法研究 基于数据挖掘的单车用户特征识别 基于视频的人流量监测系统设计与实现 图像水印识别微信小程序设计与实现
学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
算法很多,自己先找一种研究就行了....
寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
浅谈数据挖掘技术在企业客户关系管理的应用论文
摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技
关键词:客户关系管理毕业论文
高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。
关键词:客户关系管理毕业论文
一、数据挖掘技术与客户关系管理两者的联系
随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的.结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。
二、数据挖掘技术在企业客户关系管理实行中存在的问题
现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。
1.客户信息不健全
在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。
2.数据集中带来的差异化的忧虑
以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。
3.经营管理存在弊端
从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。
三、数据挖掘技术在企业的应用和实施
如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。
1.优化客户服务
以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。
2.利用数据挖掘技术建立多渠道客户服务系统
利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。
四、数据挖掘技术是银行企业客户关系管理体系构建的基础
随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。
不算抄袭了,抄袭是内容、图片、数据的重复吧。
有本《数据挖掘》期刊你可以参考下
数据挖掘方面我帮你。
同一个观点每个人表述方法不一样, 一般来说不算抄袭,但是已经发表,也看到你说有一个点的思路雷同, 这就不能确定了,若果是已经既定、公示的理论,就没事比如1+1=2,大家都知道,就没必要明示。
寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
数据挖掘得概念,关键技术及应用 数据挖掘的分类方法、概念、关键技术、图形图像得应用数据挖掘的关联规则、概念、算法(以两种算法规则为例)归纳算法过程
内容如下:
1、大数据对商业模式影响
2、大数据下地质项目资金内部控制风险
3、医院统计工作模式在大数据时代背景下改进
4、大数据时代下线上餐饮变革
5、基于大数据小微金融
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
本科学位论文是侧重于动手能力的,所以称为毕业设计,大数据处理类的,如果真的去搭建云平台是稍微有些不太好做,毕竟咱们个人的计算机终端是不够的,所以我觉得侧重于大数据安全,有一些算法,简单仿真,或者基于hadoop对某个行业的数据进行下分析计算也是没问题,到实例部分其实你用数据挖掘的方法去做,结果差不多
学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融