首页 > 学术期刊知识库 > 稀有金属材料与工程期刊参考文献

稀有金属材料与工程期刊参考文献

发布时间:

稀有金属材料与工程期刊参考文献

[1]BAI Yun,FANG Can-feng,HAO Hai,eta.Effects of yttrium onmicrostructure and mechanical properties of Mg-Zn-Cu-Zr alloys .Nonferrous Metals Society of China,2010,(20):357—360 .[2] 齐伟光,王进华,邢志媛等.稀土钇对AZ91D镁合金微观组织和腐蚀性能影响的研究[J] ,兵器材料科学与工程,2009(32):80—83 .[3] 赵悦光 李建平 高强韧铸.造镁合金显微组织和性能的研究[D] . 西安工业大学 2009 .[4] 黎文献 余琨 张世军. 稀土对镁及Mg-Al合金晶粒细化的研究[C],第三届有色合金及特种铸造国际会议论文集 ,69—76 .[5] 赵鸿金,张迎晖,康永林. 稀土元素Ce对AZ91D镁合金燃点的影响[J] .轻合金加工技术,2008,36: 42—45 .[6] 陈芙蓉,李仕墓,弗锋,常淑琴. 铈对AZ91D镁合金组织和力学性能的影响[J] .铸造技术,2009,30:203—206 88[7] 杨洁,易丹青,邓姝皓等. 微量Ce对AZ91镁合金微观组织及耐蚀性的影响中国腐蚀与防护学报[J] .2008,28:205—209 .[8] E . Ning , H. Wang , . Liu ,et al.Effects of Ndon microstructures and properties at the elevated temperature of a Mg–– alloy[J] . Materials and Design ,2010 (31):4438–4444 .[9] Li Cong, Liu Xuguang, Xu Bingshe Li Mingzhao. Effect of Nd on Microstructure and Mechanical Properties of AZ31Magnesium Alloy[J] .Rare Meatals and Engineering ,2009,(38): 0007-0010.[10] 侯志丹. ZK60镁合金的组织与腐蚀性能研究[D], 江苏科技大学 2009[11] Yan Jingli, Sun Yangshan, XueFeng,et al . Creep behavior of Mg–2wt.%Nd binary alloy[J] .Materials Science and Engineering ,2009,A524 : 102–107 .[12] 王萍,李建平,马群.Gd对ZK60铸造镁合金组织和耐蚀性能的影响[J] .稀有金属材料与工程 ,2008,37:1056-1059 .[13] Jie Yang, Wenlong Xiao, Lidong Wang. Influencesof Gd on the microstructure and strength of Mg–[J] . Materials Characterization ,2008,59:1667–1674 .[14] 吴国华,樊昱,翟春泉,丁文江.稀土La对AZ91D镁合金在NaCl溶液中耐蚀性的影响[J] .金属学报 ,2008,(44):1147-1152.

盖国胜1杨玉芬2,1郝向阳1樊世民1蔡振芳1

(1.清华大学 材料系粉体工程研究室,北京 100084;2.清华大学河北清华发展研究院微纳米材料与资源利用研发中心,河北廊坊 065001)

摘要 采用化学方法对无机矿物填料表面进行包覆改性,制备出具有表面纳米化结构的复合矿物颗粒,有效地改善了原有颗粒的表面形貌,提高了比表面积。通过搅拌磨湿法研磨,讨论了包覆颗粒与基体的结合方式,初步证明了包覆颗粒与基体的结合方式为化学吸附,而非物理吸附,两者结合牢固,包覆层不易脱落。包覆矿物颗粒在PP中填充,其复合材料的力学性能有较大的改善[1~15]。

关键词 无机矿物;填料;包覆改性;表面纳米化颗粒。

第一作者简介:盖国胜(1958—),男,博士,副研究员。E-mail:。

一、引言

微米级超细碳酸钙、硅灰石是塑料或橡胶常用的无机矿物填料,需求量非常大。仅塑料行业每年就需要碳酸钙超细粉超过100×104t[1]。而传统加工技术生产的碳酸钙超细粉具有锐利的棱角和平整的晶体解理面,与聚合物的相容性差。采用偶联剂或表面活性剂进行改性,不能从根本上解决颗粒表面固有的形貌缺陷,而这些部位在微观上易成为复合材料内部的薄弱点,是导致复合材料失效的原因之一[2,3]。

纳米碳酸钙生产成本低,技术成熟,但团聚严重,均匀分散困难,在聚合物中填充难以体现纳米颗粒特有的性能[4~6]。作者利用Ca(OH)2-H2O-CO2体系制备的复合矿物颗粒发挥了微米、纳米颗粒各自的优势,弥补了颗粒形貌的不足。

二、方法与步骤

将640 g平均粒度μm的重质碳酸钙微粉(山东宏达水泥有限责任公司),浓度8%、760 mL氢氧化钙溶液和700 mL热水置于反应釜中,调节矿浆温度25~30℃,充分搅拌,转速400 r/min。矿浆循环流量20 mL/s。30%的纯二氧化碳与70%的空气混合,通入反应釜,继续搅拌使气—固—液三相充分混合。PB-10型pH计用于矿浆酸碱度的在线监控,当pH值为7时,结束反应,反应持续约20 min。停止通气,过滤矿浆,烘干滤料,所得固体物料即为经表面纳米化修饰的复合碳酸钙填料。

研究表明,合理调节操作参数,如氢氧化钙浓度、矿物添加量、粒度、添加时间、CO2流量、搅拌强度和矿浆温度,同样能制备出表面粗糙的复合硅灰石、复合白云石和复合粉煤灰填料。

反应生成物纳米碳酸钙将依据异质形核原理在无机矿物颗粒表面沉积、形核、生长,实现表面纳米化修饰。由相变热力学可知[7,8],成核晶体和晶核的原子排列越相似,异质形核自由能与均质形核自由能相比就越小,异质形核自由能越小,越有利于异质形核。矿浆中添加重质碳酸钙、硅灰石等无机矿物微粉后,从热力学的角度可以证明纳米CaCO3生成物易于在这些颗粒表面成核、生长,达到表面纳米化修饰的目的。

使用的测试设备为:CSM-950 型和 CJSM-6301F型扫描电子显微镜,用于颗粒形貌观察;NOVA4000高速自动比表面仪,用于比表面积测定;PHI5300型XPS多功能电子能谱仪,分析固体样品表面的元素组成及化学状态;自制的湿法搅拌磨,检测包覆颗粒与基体的结合强度;φ30×45平行同向混炼型双螺杆挤出机和150 ZP型注塑机,用于制备力学性能检测样条。

三、结果与讨论

(一)表面形貌

笔者在Ca(OH)2-H2O-CO2系统中利用自制的装置已成功地制备表面被纳米碳酸钙包覆的无机矿物颗粒,其中碳酸钙颗粒的形貌特征如图1所示。

图1 重质碳酸钙颗粒表面修饰前后的SEM 形貌

(a)原料重质碳酸钙颗粒;(b)、(c)复合重质碳酸钙颗粒

由图1(b)、(c)可见,包覆颗粒大小均匀,粒径80nm左右,包覆率高。与包覆前相比,颗粒锐利的棱角被钝化,表面粗糙度提高,粉碎过程中形成的平整解理面已不复存在,取而代之的是纳米颗粒包覆层。通过BET测定,包覆后碳酸钙的比表面积由原料的 m2·g-1提高到 m2·g-1,增加了2倍以上;复合硅灰石颗粒的比表面积也由原料的 m2·g-1提高到 m2·g-1。

(二)包覆层与基体结合强度

1.子颗粒实际脱落时的表面能ΔE

为了进一步检验包覆层和基体的结合强度,将复合重钙在搅拌磨中湿法研磨,考察包覆层在球磨介质作用下的脱落情况。

试验采用自制的湿法搅拌磨,由Φ110mm静止磨筒与多层叶片的搅拌器构成,Φ1mm的氧化锆球作研磨介质,加入100 g物料和适量的水。电动机通过变速装置带动搅拌器旋转,转速355 r/min。研磨介质与物料作多维循环和自转运动,上下、左右产生剧烈置换,物料从而受到摩擦、冲击、剪切等作用[2]。复合碳酸钙粉在研磨30 min、45 min、60 min后的形貌变化如图2-(a)、(b)、(c)所示。

图2 复合碳酸钙粉研磨后的SEM 形貌

(a) 30 min;(b) 45 min;(c) 60 min

从图2可以看出:研磨30 min,表面仍被纳米颗粒所包覆,几乎没有发生变化;45 min时包覆颗粒有少量脱落;研磨到60 min时,包覆层全部脱落,并见明显的凹痕。搅拌磨中,单位体积磨球的动能EiB可用下式表示[9]:

中国非金属矿业

式(1)中:D为搅拌磨直径, m;DR为搅拌器直径, m;ζ为常数,;u为周向速度, m/s;ρB为磨球的密度,6310 kg/m3。从单位体积磨球动能EVB可导出有效区颗粒吸收能 :

中国非金属矿业

式(2)中:VB为磨球体积,×10-5m3;VB为有效区体积,×10-4m3;ρM为颗粒相对密度,2710 kg/m3;εM为被研磨颗粒自然堆积状态时的孔隙率,可忽略不计。假设颗粒在有效区内均匀分布且颗粒粒径大小均一,可由EM求出单个颗粒平均吸收能Em:

中国非金属矿业

式(3)中:M为有效区内颗粒的质量, kg;Da为被处理物料的平均粒径,×10-6m;N1为有效区内的颗粒数量,×1010;则Em=×10-13J。

由图2可知,研磨45 min时,包覆颗粒开始脱落,此时单个颗粒的吸收能E为

中国非金属矿业

式(4)中:t为球磨时间,2700s。

根据颗粒的粉碎研磨理论,颗粒破碎过程中所吸收能量的5%~25%被转化为颗粒新增的表面能ΔE[10~14]。若以5%计算,则复合颗粒开始脱落时新增的表面能ΔE=×10-10J。也就是说,只有表面能达到ΔE时,表面包覆的颗粒才开始脱落。

2.预测包覆颗粒脱落时的表面能ΔE′

假设重质碳酸钙母颗粒为立方体,表面包覆层为单层包覆,包覆层内所有子颗粒均是相同直径的球形颗粒,脱落前后颗粒表面积的变化值可表示为ΔS(m2):

中国非金属矿业

式(5)、(6)、(7)中:S1为包覆层脱落前颗粒的表面积,m2;S2为包覆层脱落后子颗粒与母颗粒的总表面积,m2;Dc为母颗粒的粒径,×10-6m;d为子颗粒直径,8×10-8m;N2为子颗粒个数。

子颗粒完全从母颗粒表面脱落时,表面能的增加值ΔE′应为

中国非金属矿业

式(8)中:γc为碳酸钙表面能,[11],可得ΔE′=×10-11J。也就是说,当颗粒表面能增加到ΔE′时,子颗粒就可以从母颗粒表面脱落。

由计算可知,子颗粒实际脱落时的ΔE大于ΔE′,因此推断:子颗粒与母颗粒的结合方式应为化学吸附而非物理吸附,即子颗粒和母颗粒共生为一体。对复合硅灰石粉体做同样的试验,结果也是一致的。

(三) XPS分析

为了进一步分析包覆颗粒的表面特征,采用X射线光电子能谱(XPS)对硅灰石原料与复合硅灰石进行了分析。试验条件:硅灰石粉体600 g,平均粒度μm,由北京国利超细粉公司提供,氢氧化钙溶液浓度6%,850 mL,矿浆温度30℃,转速400 r/min,矿浆循环流量20 mL/s。包覆前后硅灰石颗粒表面含有Ca、Si、C、O四种元素,其元素含量的变化和结合能的变化分别列于表1、表2。

分析表1,可发现硅灰石颗粒表面经纳米化修饰后,Ca元素的含量明显增多。Ca元素相对Si元素其比例也明显增大,Ca/Si之比由原料的约1∶1增加到包覆后的2∶1。

表1 硅灰石颗粒表面元素含量(wB/%)

注:反应10 min后所取样品为1#,反应结束时样品为2#。

表2 硅灰石颗粒表面各元素的结合能(eV)

分析表2,发现C、Ca、Si、O元素的峰位均发生了一定的化学位移。原料硅灰石表面C元素峰位为,应为污染碳,其表面本身没有碳键。Ca元素的结合能在硅灰石颗粒表面纳米化修饰过程中呈降低趋势。初始阶段,Ca元素主要处于>SiO3的化学环境中,由于Si元素的电负性较大,Ca原子周围电子浓度较低,对其内层电子的屏蔽作用减弱,Ca原子的内层电子结合能较大。随着反应的进行,纳米碳酸钙不断在硅灰石颗粒表面沉积,即表面Ca原子周围逐渐由>SiO3的化学环境转变为>CO3的化学环境。而C元素的电负性要比Si元素小,因此Ca原子周围的电子密度将有所增加,对其内层电子的屏蔽作用增强,从而Ca原子的内层电子结合能变小,表现为其XPS峰位值减小。反应结束后,硅灰石表面逐渐被纳米碳酸钙覆盖,Ca元素的结合能与纯碳酸钙样品中Ca元素的结合能是一致的。结合XRD物相分析[15],可推断:硅灰石颗粒表面包覆颗粒应为纳米碳酸钙。

(四)填充

对聚丙烯(PP),分别以未包覆和包覆后的重质碳酸钙作填料进行填充性能试验,填充前使用硬脂酸进行改性。经双螺杆挤出机和注塑机按GB1040-92注射成型,在液氮气氛下冷冻,快速冲击,断口表面喷金,SEM观察断口形貌,如图3所示。

图3表明:未经包覆的碳酸钙直接在PP中填充,其颗粒和PP基体的界面结合松散,可见明显的沟壑和裂缝,见图3-(a)。而包覆碳酸钙颗粒与PP 基体的界面结合紧密,相容性较好,见图3-(b)。这是因为复合颗粒粗糙的表面及钝化的棱角增加了与 PP 基体接触的机会,改善了界面结合性能。

图3 PP基复合材料断口的SEM形貌

(a)填充未包覆重质碳酸钙颗粒;(b)填充包覆重质碳酸钙颗粒

四、结论

1)在Ca(OH)2-H2O-CO2系统中,借助异质形核原理能有效地改善无机矿物颗粒的表面形貌,表面粗糙,比表面积提高2倍以上。

2)包覆颗粒通过化学吸附牢固地与被包覆颗粒结合,不易脱落。

3)包覆后的粉体作填料,改善了PP复合材料的界面结合性能。

参考文献

[1]刘英俊.非金属矿物在塑料工业中应用现状及发展趋势.中国非金属矿工业导刊,2003,增刊:6-12

[2]盖国胜.超细雨粉碎分级技术,(第一版) .北京:中国轻工业出版社,2000,261-272

[3]Sutherland I,Maton D,Harrison D surfaces and composite Interfaces,1998,5(6):498-502

[4]吴春蕾,章明秋,容敏智.纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能.复合材料学报,2002,19(6):61-67

[5]刘阳桥.高濂(Liu YanQiao,et al.)纳米Y-TZP悬浮液的团聚抑制研究.无机材料学报(Journal of Inorganic Materials),2002,17(6):1292-1296

[6]许育东,刘宁,曾庆梅等.纳米改性金属陶瓷的组织和力学性能.复合材料学报,2003,1:33-37

[7]吴德海,任家烈,陈森灿.近代材料加工原理,北京:清华大学出版社,1997,115-117

[8]崔爱莉,王亭杰,金涌等.二氧化钛表面包覆化硅纳米膜的热力学研究.高等学校化学学报,2001,22(9):1543-1545

[9]张平亮.湿式搅拌磨微粉碎技术的研究.化工装备技术,1995,16(6):26-31

[10]Fuerstenau D W,Abouzeid A Z energy efficiency of ball milling in .,2002,(67):161-185

[11]郑水林.超细粉碎.北京:中国建材工业出版社,1999,36-42

[12]Zemskov E particle-size distributions in Technology,1999,102:71-74

[13]Gutsche 0,Fuerstenau D kinetics of particle bed comminution—ramifications for fines production and mill Technology,1999,105:113-118

[14]Alberto Carpinteri,Nicola fractal comminution approach to evaluate the drilling energy .,2002,26:499-513

[15]樊世民,杨玉芬,盖国胜等.表面纳米化硅灰石复合颗粒的制备研究.稀有金属材料与工程,2003,32(增刊1):702-705

Nanosized Particles Coating of Inorganic Mineral Filler Surface & Characterization

Gai Guosheng1,Yang Yufen2,1,Hao Xiangyang1,Fan Shimin1,Cai Zhenfang1

( Technology R & D Group,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China; Materials & Resource Utilization R &D Center,Institute of Tsinghua University,Hebei Tsinghua Science Park,Langfang Economic Development Zone,Jinyuan Road,Langfang,065001,Hebei,China)

Abstract:Composite mineral particles with nano-structured surface,which effectively improve surface morphology of the originals and increase specific surface area,had been successfully prepared by using chemical wet grinding in stirring mill,coalescence between coating particles and the base was preliminary conclusion gained showed that coating particles are not easy to be peeled off from the base because of chemical mechanical properties of the composite were greatly improved,when the coated mineral particles were filled in polypropylene.

Key words:inorganic mineral,filler,coating,surface nano-structured particle.

稀有金属材料科学与工程期刊

稀有金属与材料工程是4区。根据查询相关资料信息,花了鲁一荻近5个月的时间,最终发表在SCI4区的《稀有金属材料与工程》期刊上。

是的,该刊确实是SCI期刊

属于SCI期刊!!!

《稀有金属材料与工程》被以下数据库收录:

CA 化学文摘(美)(2014)

SA 科学文摘(英)(2011)

SCI 科学引文索引(美)(2016)

JST 日本科学技术振兴机构数据库(日)(2013)

Pж(AJ) 文摘杂志(俄)(2014)

EI 工程索引(美)(2016)

CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)

北京大学《中文核心期刊要目总览》来源期刊:

1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;

期刊荣誉:

中科双奖期刊;第二届全国优秀科技期刊;

稀有金属材料与工程怎么投稿

修改的不好应该会再次让你修改的……

推荐《稀有金属材料与工程》,SCI期刊,详情如下:

《稀有金属材料与工程》被以下数据库收录:

CA 化学文摘(美)(2014)

SA 科学文摘(英)(2011)

SCI 科学引文索引(美)(2016)

JST 日本科学技术振兴机构数据库(日)(2013)

Pж(AJ) 文摘杂志(俄)(2014)

EI 工程索引(美)(2016)

CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)

北京大学《中文核心期刊要目总览》来源期刊:

1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;

期刊荣誉:

中科双奖期刊;第二届全国优秀科技期刊;

朋友你好,根据我多年从事文字工作的经验,你真接向所要投稿的报刊、网站邮箱投稿就好,如果稿件合适、质量达到了该媒体的发表要求,一定会被发表的。我认为:如果投稿更有针对性,命中率会更高一些。这就关系到,你是哪里的?干什么的?写的稿件是什么体裁?什么内容?如果说投稿的话,最好投当地的报刊、网络或者是你从事的职业报刊发表,要投哪个媒体首先要研究哪个媒体,看它需要什么内容、什么体裁、什么格式的稿件,“对症下药”,这样会更轻松一些、方便一些,命中率会更高一些。如果你能够告诉我你的具体情况(干什么工作,哪里的,写的小说的大致内容等),我可以给你一些建议。我1993年开始在部队时开始发表各类文章,包括:报告文学、新闻、诗歌、散文、小说、评论等体裁的,到目前,先后在《人民日报》《法制日报》《农民日报》《中国文化报》《法制文萃》《半月谈》《解放军报》《中国国防报》《中国绿色时报》《中国日报》《中国教育报》《人民公安报》《中国交通报》《中国安全生产报》《中国转业军官》《中国人事》《道路交通管理》等报刊发表的大约5000篇左右吧,有40多篇获奖。另外:投稿时,第一要有信心,第二要投对报刊媒体,这两点非常重要。祝你成功!

我知道有本材料科学,但是不是sci

稀有金属与硬质合金期刊

1、3698,暴雨灾害。

2、3699,科教导刊。

3、3700,湖南中学物理。

4、3701,稀有金属与硬质合金。

5、3702,模糊系统与数学。

6、3703,建设机械技术与管理。

7、3704,广东造船。

8、3705,广东土木与建筑。

9、3706,现代计算机。

10、3707,西部交通科技。

什么是省级期刊,省级单位主管主办的期刊就是期刊省级,比如天津市教育委员会主管主办,虽然天津是直辖市,但是也是省级单位,他主管的期刊也是省级期刊。

反过来,国家级单位主办主办的期刊就是国家级期刊,比如中国科学技术协会主办,国家工业和信息化部,主管,这是国家级期刊。

还可以 帮你 推荐一些、;、、

中文核心,无版面费,投稿,返回意见(查重结果)返回,修改提交后很快录用——安排在12月第六期发表,发表前三个月给意见,实际上有两次(编辑老师很仔细;认真,而且耐心),均在九月份。。总体感觉很好。只是发文少,周期稍长,但不收版面费弥补了一些缺陷。---------90分。。

稀有金属期刊影响因子

您好,根据中国影响因子查询网()统计和整理的数据,可以分析得出,影响因子为3-4已经是非常非常高了,中文期刊被SCI收录的还没有超过4的,2005年SCI收录中国期刊影响因子最高的是《岩石学报》它是中国矿物岩石地球化学学会;中国科学院地质研究所主管主办的,影响因子为: 。 一、2005年SCI收录中国期刊 序号 期刊名称 主办单位 影响因子 被引次数 1 物理学报 中国物理学会 2 中国物理C 中国科学院高能物理研究所 3 光谱学与光谱分析 中国光学学会 4 红外与毫米波学报 中国科学院上海技术物理所;中国光学学会 5 金属学报 中国金属学会 6 无机材料学报 中国科学院上海硅酸盐研究所 7 Chinese Journal of Chemical Physics 中国物理学会 8 高等学校化学学报 吉林大学 9 分析化学 中国化学会;中国科学院长春应用化学研究所 10 化学学报 中国化学会;中国科学院上海有机化学研究所 11 物理化学学报 中国化学会 12 催化学报 中国化学会;中国科学院大连化学物理研究所 13 高分子学报 中国化学会;中国科学院化学研究所 14 有机化学 中国化学会 15 无机化学学报 中国化学会 16 结构化学 中国科学院福建物质结构研究所 17 化学进展 中国科学院;国家自然科学基金委 18 地球物理学报 中国地球物理学会;中国科学院地质与地球物理研究所 19 岩石学报 中国矿物岩石地球化学学会;中国科学院地质研究所 20 Acta Biochimica et Biophysica Sinica 中国科学院上海生物化学研究所 21 生物化学与生物物理进展 中国科学院生物物理研究所;中国生物物理学会 22 植物分类学报 中国植物学会.中国科学院植物所 23 稀有金属材料与工程 中国有色金属学会;中国材料研究学会;西北有色金属研究院 24 新型炭材料 中国科学院山西煤炭化学研究所 25 Chinese Medical Journal 中华医学会 26 Science in China Series G:Physics,Mechanics & Astonomy 中国科学院 27 Science in China Series D:Earth Sciences 中国科学院 28 Science in China Series C:Life Sciences 中国科学院 29 Science in China Series A:Mathematics 中国科学院 30 Plasma Science & Technology 中国科学院等离子体物理研究所 31 Journal of Integrative Plant Biology 中国植物学会;中国科学院植物研究所 32 Chinese Science Bulletin 中国科学院 33 Chinese Journal of Astronomy and Astrophysics 中国科学院;北京天文台 34 Chinese Annals of Mathematics 复旦大学 35 China Ocean Engineering 中国海洋学会;中国海洋工程学会 36 Cell Research 中国科学院上海细胞生物学研究所 37 Applied Mathematics and Mechanics(English Edition) 上海大学 38 Advances in Atmospheric Sciences 中国科学院大气物理研究所 39 Acta Oceanologica Sinica 中国海洋学会 40 Acta Mechanica Solida Sinica 中国力学学会 41 Acta Geologica Sinica-English Edition 中国地质学会 42 Science in China Series B:Chemistry 中国科学院 43 Rare Metals 中国有色金属学会 44 Journal of Wuhan University of Technology-Materials Science Edition 武汉理工大学 45 Journal of Rare Earths 中国稀土学会 46 Journal of Materials Science & Technology 中国金属学会;中国材料研究学会;中国科学院金属所 47 Journal of Iron and Steel Research(International) 冶金部钢铁研究总院 48 Journal of Environmental Sciences 中国科学院生态环境研究中心 49 Chinese Journal of Polymer Science 中国化学会;中国科学院化学研究所 50 Chinese Journal of Chemistry 中国化学会;中国科学院上海有机化学研究所 51 Chinese Journal of Chemical Engineering 中国化工学会 52 Chinese Chemical Letters 中国化学会 53 Chemical Research in Chinese Universities 吉林大学 54 Science in China Series E:Technological Sciences 中国科学院 55 Journal of University of Science and Technology Beijing 北京科技大学 56 Journal of Central South University of Technology 中南大学 57 Pedosphere 中国科学院南京土壤研究所 58 Asian Journal of Andrology 中科院上海药物研究所 59 Acta Pharmacologica Sinica 中国药理学会;中科院上海药物研究所 60 Science in China Series F:Information Sciences 中国科学院 61 Journal of Computer Science and Technology 中国计算机学会;中国科学院计算技术研究所 二、全球2007年影响因子排行榜(来源:) J CLIN ENGL J MED REV IMMUNOL MOD PHYS REV BIOCHEM REV REV CANCER REV IMMUNOL MED IMMUNOL REV NEUROSCI GENET AM MED ASSOC REV NEUROSCI CELL REV CELL DEV BI REV DRUG DISCOV REV REV GENET REV PHARMACOL MATER SCI REV ASTRON ASTR REP MATER REV PHYSIOL 顺便我补充提供一下CJCR中国科技统计源期刊的中国科技期刊的影响因子排行榜1.中国电机工程学报 2.物理学报 3.应用生态学报 4.科学通报 5.生态学报 6.电网技术 7.高等学校化学学报 8.电力系统自动化 Physics Letters 10.地理学报 11.中国科学.D辑,地球科学 12.中国沙漠 13.中国农业科学 14.分析化学 15.地球物理学报 16.土壤学报 Physics 18.中草药 19.岩石学报 20.作物学报 21.植物生态学报 22.光谱学与光谱分析 23.化学学报 24.中华医学杂志 25.光学学报 26.植物学报 27.光子学报 28.岩石力学与工程学报 29.计算机工程与应用 30.软件学报

稀有金属期刊属于SCI一区。

《科学引文索引》(Science Citation Index, 简称 SCI )美国科学信息研究所的尤金·加菲尔德(Eugene Garfield)于1957 年在美国费城创办的引文数据库。SCI、EI、ISTP是世界著名的三大科技文献检索系统,是国际公认的进行科学统计与科学评价的主要检索工具。

相关信息介绍:

科学引文索引以布拉德福文献离散律理论、以加菲尔德引文分析理论为主要基础,通过论文的被引用频次等的统计,对学术期刊和科研成果进行多方位的评价研究,从而评判一个国家或地区、科研单位、个人的科研产出绩效,来反映其在国际上的学术水平。

科学引文索引以其独特的引证途径和综合全面的科学数据,通过统计大量的引文,然后得出某期刊某论文在某学科内的影响因子、被引频次、即时指数等量化指标来对期刊、论文等进行排行。

以上内容参考:百度百科-科学引文索引

不同领域差别比较大,不能一概而论。3-4比较好了,至少是主流期刊吧。生物方向不太了解。

(1)自1997年至今,也就是该刊被SCI检索以来的14年,所有的正刊都是SCI检索的;(2)该刊每年几乎都会出2-3期的增刊,增刊中有会议的,也有投正刊被认为是不合适发表的正刊上的,所有就有增刊了。据不完全的统计,该刊的增刊SCI收录率也在80%上。SCI数据库上的显示是:该刊除了2008年的两期增刊未被SCI检索外。其余的貌似都被SCI检索了的,这也是该刊的SCI影响因子一直持续走低的原因。

  • 索引序列
  • 稀有金属材料与工程期刊参考文献
  • 稀有金属材料科学与工程期刊
  • 稀有金属材料与工程怎么投稿
  • 稀有金属与硬质合金期刊
  • 稀有金属期刊影响因子
  • 返回顶部