数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)关键词(求解问题、使用的方法中的重要术语)内容较多时最好有个目录1。问题重述 2。问题分析3。模型假设与约定4。符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);6。进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。3。要有自己的特色,闪光点。如何撰写数学建模论文当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。下面就论文的各部分应当注意的地方具体地来做一些分析。(一) 问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。(二) 模型的建立在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。(三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。(四) 模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。参加数学建模竞赛的十大秘诀1 诚信是最重要的数学建模竞赛是考查学生研究能力和实践能力的一场综合性比赛,有很多方面的知识和能力可以考查,但其中我觉得最重要的是诚信。我感到中国在这方面的教育还远远不够,我知道有很多同学写论文并不是实事求是地去做,而是编造数据、修改结论,明明自己没法编程实现却硬说自己做出来了,还编了一些数据。这些行为也许能够过评委,也许可以因“此”而获奖,但是这对他们将来是很不利的,希望能够引起足够的注意。2 团队合作是能否获奖的关键在三天的比赛中,团队交流所占用的时间可能会超过一半。在一个小组中,出现意见不一是非常正常的,如果一个队意见完全一致,我想他们肯定不会拿奖。出现分歧的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,这似乎是个贬义词,但我的意思是说不要总认为自己的观点是正确的,多听听别人的观点,在两者之间谋求共同点。如果三个人都是自傲类型的人,也许每个人都非常强,但一旦合作,分歧就无法解决,做出来的就是一团糟,也就是说“三个诸葛亮顶不上一个臭皮匠”。我奉劝这样的话最好别组成一队了。合作在竞赛前就应当培养,比如一块儿做模拟题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法,然后几天后大家一块交流,这些都是可以磨合团队之间的关系的。通常在比赛时,三个人的分工是明确的,一个是领军人物,主要是构建整个问题的框架并提出有创意的idea,自然其他部分比如论文写比如程序设计比如计算他也能参加,应该算是一名全能型的人物;第二个是算手,顾名思义,主司计算方面的问题,比如编程计算一个微积分或者手工计算一条最优路径等。优秀的团队算手一般会精通(是精通不是入门)一个软件的应用,比如C比如MATLAB比如LINGO;最后一个是写手,主要工作在于论文的写作和润色上。好的论文要让人一眼就明了其中的意思,所以写手的工作还是需要一定的技巧的。当然,最重要的还是三个队员之间的讨论和交流,同心协力,在整个比赛过程中形成一种良好的交流氛围。3 时间和体力的问题竞赛中时间分配也很重要,分配不好可能完不成论文,所以开始时要大致做一下安排。不必分的太细,比如第一天做第一小题,第二天做第二小题,这样反而会有压力,一切顺其自然。开始阶段不忙写作,可以将一些小组讨论的要点记录下来,不要太工整,随便写一下,到第三天再开始写论文也不迟的。也不要到第三天晚上才开始。另外要说的就是体力要跟上,三天一般睡眠只有不到10 个小时,所以没有体力是不行的,建议是赛前熬夜编程几次,既训练了自己的建模能力,也达到了训练体力的目的,赛前锻炼身体我觉得没什么用处,多熬夜就行了,但比赛前一天可不许熬。4 重视摘要摘要是论文的门面,摘要写的不好评委后面就不会去看了,自然只能给个成功参赛奖。摘要首先不要写废话,也不要照抄题目的一些话,直奔主题,要写明自己怎样分析问题,用什么方法解决问题,最重要的是结论是什么要说清楚,在中国的竞赛中结论如果正确一般得奖是必然的,如果不正确的话评委可能会继续往下看,也可能会扔在一边,但不写结论的话就一定不会得奖了,这一点不比美国竞赛,所以要认真写。摘要至少需要琢磨两个小时,不要轻视了它的重要性。很有必要多看看优秀论文的摘要是如何写的,并要作为赛前准备的内容之一。5 论文写作要正规论文一定要大致按照摘要、问题重述、模型假设、符号说明、问题分析、(建立、分析、求解模型)、模型检验、参考文献、附录等等的方式来写。一篇论文结构上如果失败的话,比赛也一定不会成功,一般初评会先淘汰一些结构失败的文章,如果论文没有好的结构,内容再好也没有用。论文前面的结构一般都不会变,后面可以按照实际情况来安排,省略的部分可以有结果说明、灵敏度分析、其他模型、模型扩展、优缺点分析等等,多看些优秀论文就知道还有哪些形式了。附录可以贴一些算法流程图或比较大的结果或图表等等。6 分析问题要认真一般竞赛题目自己肯定没有见过,而且我发现近些年来的赛题都不是书上哪个模型可以直接套成功的,很多根本就没有固定的模型可以参考,所以分析问题不是一个去找书本的过程,依赖书本就意味着自己的思想被束缚起来。可以完全按照自己的分析去完成,平时练习的时候学习的是一种方法,通过以前学到的方法来解决,不是套用书本来解决,没有模型套怎么办,只有靠自己去实际分析。我估计在前面说的五点也许会有三分之一的队可以做到,而且可以做的很好,但是这一点上就需要真本事了,平时多努力,比赛发挥正常,这一点做好是没有问题的。7 编程求解是重要手段美国竞赛时,美国学生中的论文很多是编程数据的说明,比如99 年A 题行星撞地球那题,他们也能够模拟出撞击后果,这对我们来说简直是不可思议的。美国学生实践能力较强,而中国学生擅长理论分析,所以我把编程放在了分析的后面是有中国特色的。数学建模竞赛特别强调计算机编程解决实际问题的能力,最近几年尤其强调,编程方面的能力不是一朝一夕可以练成的,需要长期刻苦的训练,常用的工具有MATLAB、Mathematica、C/C++ 等等,一个人只需要会一门语言就行了,但需要精通它。比如要画柱状图该怎么做,要用Floyd 算法怎么办,赛前不准备是没有办法在比赛中很好运用的,因此每个常用的算法都自己去编程实现一下。8 模型的假设与模型的建立评委看完摘要后紧接着就是看模型假设了,有一个万能的方法就是可以抄题目中可以作为假设的几句话,这样会给人留下好的印象,毕竟说明你审题了。但不能全抄,要加上自己的一些假设。一般假设用文字描述就行了,最好不要太具体了,一些重要参数不要被定死只能取某些值,否则会让人感觉论文的局限性较强。模型的建立是根据你对问题分析而来的,提出的数学符号和建立模型最好要比较接近,在同一页最好,以便评委可以对照符号来看,数学公式要严谨,推导要严密,这些都反映了参赛者的数学素质和能力,即使你推导不对,别人看到你的阵势也首先会误以为你是对的。那么多的试卷,评委不可能顺着你的公式一直推下去,但你要写得显得有数学修养才行。9 图文表并貌可以增色我听说一个不确切的信息是评委老师喜欢用MATLAB 编程的论文,不知道有没有这回事,但这说明了老师需要看一个具有图或表在其中的论文,一篇如果像政治书那样写的论文估计没有人会对它感兴趣的,尤其是科技论文。MATLAB 编程之所以受到青睐是因为MATLAB 提供的图形处理能力很强大。图表的说明性特别强,如果结论有很多数据的话,最好做成图表的形式加以说明,会令你的论文更有说服力,也更容易受到评委的好评。10 其他其他内容还是有很多的,说也说不完,挑几个重要的讲。比如不要上网讨论,网上的人水平参差不齐,你不知道谁是对的,而且很多人想得奖,不会告诉你正确的,反而你说相反的,有时真理往往掌握在少数人手里。还有就是论文写作中灵敏度分析不要写太多,大致说明一下就可以了,不要喧宾夺主。最后想到的就是要使用数学公式编辑器来写论文,不要用什么上下标来表示,论文字体用小四,分标题用四号黑体等等。
在全国考试的时候,格式是与论文一起发出来的……有可能有些时候会有变动,这个得根据全国的要求来弄,等你九月份考试的时候就会知道了
论文(答卷)用白色A4纸,上下左右各留出厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。
奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1: A2: A3: A4: A5: A6: A7: A8: A9: A10:: B2: B3: B4: B5: B6: C1: C2: C3: C4:在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1
数学建模论文格式模板以及要求
导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!
(一)论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
(二)论文选题:新颖,有意义,力所能及。
要求:
有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
有价值
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;
结果创新,要有新的,更深层次的结果。
问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。
(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确
要求:
数据真实可靠,不是编的数学题目;
数据分析合理,采用分析方法得当。
(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。
要求:
抽象化简适中,太强,太弱都不好;
抽象出的数学问题,参数选择源于实际,变量意义明确;
数学推理严格,计算准确无误,得出结论;
将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;
问题和方法的进一步推广和展望。
(五)(数学理论问题)问题的研究现状和研究意义:了解透彻
要求:
对问题了解足够清楚,其中指导教师的作用不容忽视;
问题解答推理严禁,计算无误;
突出研究的特色和价值。
(六)论文格式:符合规范,内容齐全,排版美观
1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
2. 摘要:全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;
3)不要举例,不要讲过程,不用图表,不做自我评价。
3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
(七). 正文
1)前言:
问题的背景:问题的来源;
提出问题:需要研究的内容及其意义;
文献综述:国内外有关研究现状的回顾和存在的问题;
概括介绍论文的内容,问题的结论和所使用的方法。
2)主体:
(数学应用问题)数学模型的组建、分析、检验和应用等。
(数学理论问题)推理论证,得出结论等。
3)讨论:
解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。
要求:
1)背景介绍清楚,问题提出自然;
2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;
3)突出所研究问题的难点和意义。
5. 参考文献:
是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。
要求:
1)文献目录必须规范标注;
2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。
(七)数学建模论文模板
1. 论文标题
摘要
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
一、 问题的重述
数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
注意:在写这部分的内容时,绝对不可照抄原题!
应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。
二、 模型假设
作假设时需要注意的问题:
①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!
②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!
③与题目无关的假设,就不必在此写出了。
三、 变量说明
为了使读者能更充分的理解你所做的工作,
对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:
①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。
②要与数学中的习惯相符,不要使用程序中变量的写法
比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量
再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)
四、模型的建立与求解
这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:
①一定要有分析,而且分析应在所建立模型的前面;
②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;
③关系式一定要明确;思路要清晰,易读易懂。
④建模与求解一定要截然分开;
⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;
⑥结果必须放在这一部分的结果中,不能放在附录里。
⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!
⑧程序不能代替求解过程和结果!
⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!
⑩每个问题和问题之间以及5个小点之间都必须空一行。
问题一:
1.建模思路:
①对问题的详尽分析;
②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味
③完成内容阐述所必需的公式推导、图表等
2.模型建立:
建立模型并对模型作出必要的解释
对于你所建立的模型,最好能对其中的每个式子都给出文字解释。
3.求解方法:
给出你的求解思路,最好能想写算法一样,写出你的算法。
4.求解结果:
你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。
结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。
5.模型的分析与检验
在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:
①这个结果说明了什么问题?
②是否达到了建模目的?
③模型的适用范围怎样?
④模型的稳定性与可靠性如何?
问题二:
问题三:
问题四:
问题五:
五、模型的评价与推广
这一部分应包括:
①你的模型完成了什么工作?达到了什么目的?得出了什么规律?
②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?
③模型中有何不足之处?有何改进建议?
④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。
这一部分一定要有!
六、参考文献
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中
书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
七、附录
不便于编入正文的资料都收集在这里。 应包括:
①某一问题的详细证明或求解过程; ②流程图;
③计算机源程序及结果;
④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。
免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。
数学建模论文格式排版要求如下:
题名。
字体为常规,黑体,二号。题名一般不超过 20 个汉字,必要时可加副标题。摘要。
文稿必须有不超过300字的内容摘要,摘要内容字体为常规,仿宋,五号。摘要应具备独立性和自含性,应是文章主要观点的浓缩。摘要前加“[摘要]”作标识,字体为加粗,黑体,五号。正文。
用五号宋体,倍间距。 文稿以 10000 字以下为宜。文内标题。
力求简短、明确,题末不用标点符号(问号、叹号、省略号除外)。层次不宜超过5级。第1级标题字体为常规,楷体,小四;
第2级标题字体为加粗,宋体,五号;次级递减。层次序号可采用一。(一)。1.(1)。1),不宜用①,以与注释号区别。文内内容字体为常规,宋体,五号。数字使用。
数字用法及计量单位按 GB T15835-1995《出版物上数字用法的规定》和1984年12月27日国务院发布的《中华人民共和国法定计量单位》执行。
4位以上数字采用3位分节法。5位以上数字尾数零多的,可以“万”、“亿”作单位。标点符号按GB T15835-1995《标点符号用法》执行。附表与插图。
附表应有表序、表题、一般采用三线表;插图应有图序和图题。序号用阿拉伯数字标注。常规,楷体,五号。图序和图题的字体为加粗,宋体,五号。
引用。
引用原文必须核对准确,注明准确出处;凡涉及数字模型和公式的,务请认真核算。参考文献。
论文应附有参考文献并遵循相应的格式。参考文献放在文末。 “[参考文献]”字体为加粗,黑体,五号;其内容的汉字字体为常规,仿宋,小五。
二、论文格式规范
(一) “论文首页”编写
竞赛论文首页为“编号页”,只包含队号、队员姓名、学校名信息,第二页起为摘要页和正文页。参赛队有关信息不得出现于首页以外的任何一页,包括摘要页,否则视为违规。
(二) “论文摘要页”编写
竞赛使用“统一摘要面”。为了保证评审质量,提请参赛研究生注意摘要一定要将论文创新点、主要想法、做法、结果、分析结论表达清楚,如果一页纸不够,摘要可以写成两页。
(三) “论文文本”要求————“全国研究生数学建模竞赛论文格式规范”
l 每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(赛题类型以比赛下载为准)
l 论文用白色A4版面;上下左右各留出至少厘米的页边距;从左侧装订。
l 论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。
l 论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。
l 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
l 论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。程序执行文件,和源程序一起附在电子版论文中以备检查。
l 请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。
l 引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
全国研究生数学建模竞赛评审委员会
奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1: A2: A3: A4: A5: A6: A7: A8: A9: A10:: B2: B3: B4: B5: B6: C1: C2: C3: C4:在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1
数学建模论文格式严重违规意思是数学建模论文格式涉嫌抄袭。数学建模论文格式严重违规只会有两种可能:1、整篇论文有50%与他人的论文内容相同,属于是抄袭。2、直接使用他人的论文。所以数学建模论文格式严重违规意思是论文涉嫌抄袭。
我想知道楼主,最后的评阅结果怎么样,有成绩么
好像要求页码在页面中部的
奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1: A2: A3: A4: A5: A6: A7: A8: A9: A10:: B2: B3: B4: B5: B6: C1: C2: C3: C4:在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1
1. 标题、摘要部分题目——写出较确切的题目(不能只写A题、B题)。摘要——200-300字,包括模型的主要特点、建模方法和主要结果。内容较多时最好有个目录。2. 中心部分1)问题提出,问题分析。2)模型建立:① 补充假设条件,明确概念,引进参数;② 模型形式(可有多个形式的模型);③ 模型求解;④ 模型性质;3)计算方法设计和计算机实现。4)结果分析与检验。5)讨论——模型的优缺点,改进方向,推广新思想。6)参考文献——也有特定格式。3. 附录部分计算程序,框图。各种求解演算过程,计算中间结果。各种图形、表格。(论文有其严格的格式,这里只是一点挂一漏万的表述,详细的内容留有下期,敬请观看)
在全国考试的时候,格式是与论文一起发出来的……有可能有些时候会有变动,这个得根据全国的要求来弄,等你九月份考试的时候就会知道了
数学建模论文格式模板以及要求
导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!
(一)论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
(二)论文选题:新颖,有意义,力所能及。
要求:
有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
有价值
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;
结果创新,要有新的,更深层次的结果。
问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。
(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确
要求:
数据真实可靠,不是编的数学题目;
数据分析合理,采用分析方法得当。
(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。
要求:
抽象化简适中,太强,太弱都不好;
抽象出的数学问题,参数选择源于实际,变量意义明确;
数学推理严格,计算准确无误,得出结论;
将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;
问题和方法的进一步推广和展望。
(五)(数学理论问题)问题的研究现状和研究意义:了解透彻
要求:
对问题了解足够清楚,其中指导教师的作用不容忽视;
问题解答推理严禁,计算无误;
突出研究的特色和价值。
(六)论文格式:符合规范,内容齐全,排版美观
1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
2. 摘要:全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;
3)不要举例,不要讲过程,不用图表,不做自我评价。
3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
(七). 正文
1)前言:
问题的背景:问题的来源;
提出问题:需要研究的内容及其意义;
文献综述:国内外有关研究现状的回顾和存在的问题;
概括介绍论文的内容,问题的结论和所使用的方法。
2)主体:
(数学应用问题)数学模型的组建、分析、检验和应用等。
(数学理论问题)推理论证,得出结论等。
3)讨论:
解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。
要求:
1)背景介绍清楚,问题提出自然;
2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;
3)突出所研究问题的难点和意义。
5. 参考文献:
是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。
要求:
1)文献目录必须规范标注;
2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。
(七)数学建模论文模板
1. 论文标题
摘要
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
一、 问题的重述
数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
注意:在写这部分的内容时,绝对不可照抄原题!
应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。
二、 模型假设
作假设时需要注意的问题:
①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!
②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!
③与题目无关的假设,就不必在此写出了。
三、 变量说明
为了使读者能更充分的理解你所做的工作,
对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:
①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。
②要与数学中的习惯相符,不要使用程序中变量的写法
比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量
再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)
四、模型的建立与求解
这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:
①一定要有分析,而且分析应在所建立模型的前面;
②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;
③关系式一定要明确;思路要清晰,易读易懂。
④建模与求解一定要截然分开;
⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;
⑥结果必须放在这一部分的结果中,不能放在附录里。
⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!
⑧程序不能代替求解过程和结果!
⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!
⑩每个问题和问题之间以及5个小点之间都必须空一行。
问题一:
1.建模思路:
①对问题的详尽分析;
②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味
③完成内容阐述所必需的公式推导、图表等
2.模型建立:
建立模型并对模型作出必要的解释
对于你所建立的模型,最好能对其中的每个式子都给出文字解释。
3.求解方法:
给出你的求解思路,最好能想写算法一样,写出你的算法。
4.求解结果:
你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。
结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。
5.模型的分析与检验
在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:
①这个结果说明了什么问题?
②是否达到了建模目的?
③模型的适用范围怎样?
④模型的稳定性与可靠性如何?
问题二:
问题三:
问题四:
问题五:
五、模型的评价与推广
这一部分应包括:
①你的模型完成了什么工作?达到了什么目的?得出了什么规律?
②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?
③模型中有何不足之处?有何改进建议?
④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。
这一部分一定要有!
六、参考文献
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中
书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
七、附录
不便于编入正文的资料都收集在这里。 应包括:
①某一问题的详细证明或求解过程; ②流程图;
③计算机源程序及结果;
④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。
免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。
附件一:平顶山学院第三届大学生数学建模竞赛报名表组 别 □甲组 □乙组 队长 队员 队员姓 名 专 业 学 号 手机号码 QQ 电子邮箱 备 注 附件二:平顶山学院第三届大学生数学建模竞赛论文格式规范 1.论文(答卷)用白色A4纸,上下左右各留出厘米的页边距。 2. 论文第1页为编号专用页,用于评委团评阅前后对论文进行编号,具体内容和格式见本规范第2页。3.论文第2页为承诺书,具体内容和格式见本规范第3页,(一定要注明是甲组还是乙组,数学建模组委会将分组评阅)。 4.论文题目和摘要写在论文第3页上,从第4页开始是论文正文。 5.论文第一页为承诺书,论文第二页为编号专用页,用于评委团评阅前后对论文进行编号。论文题目和摘要写在论文第三页上,论文1-3页按组委会统一要求编排,具体内容见下文,从第四页开始是论文正文。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号,注意,论文一律要求从上面装订。 6.论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 7.论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号黑色宋体字。 8.提请大家注意:摘要在整篇论文评阅中占有重要权重,请认真书写摘要(以200-400字为宜,篇幅不超过一页)。评委团评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。9.引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍必须指出页码。参考文献按正文中的引用次序列出:书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年份。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年份。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 10.本规范的解释权属于平顶山学院教务处。装 订 线第三届平顶山学院数学建模竞赛暨全国大学生数学建模竞赛选拔赛题目X 组 X 题密封号 2010年5月21日剪 切 线密封号 2010年5月21日 XXX 院 (系) 队员1 队员2 队员3姓名 XXX XXX XXX年级专业 XXX XXX XXX所选组别 X 组论文题目 XXXXXXXXX小 组 承 诺 我们仔细阅读了平顶山学院数学建模大赛规则.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。年 月 日论 文 承 诺 书
数学建模论文具体的格式要求如下:
1、论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。
2、论文第一页为承诺书,具体内容和格式见本规范第二页。
3、论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
4、论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
5、论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
6、论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
7、论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
8、摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
9、引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
10、参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
11、参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
12、参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
扩展资料:
电子版论文格式规范
1、参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。
2、参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。
3、支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。
所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);
如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。
参考资料:惠州学院-全国大学生数学建模竞赛论文格式规范
参考资料:湖南人文科技学院-全国大学生数学建模竞赛论文格式规范
楼主你好,数学建模论文一般分为以下几个部分:首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体:1. 问题重述主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。2. 模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。3. 符号说明将你要建立的模型中的一些参量用符号代替表示。4. 模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法5. 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。6. 模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。7. 参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。如果楼主需要看论文样式的话,推荐一个网站:这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。最后祝楼主好运。
奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1: A2: A3: A4: A5: A6: A7: A8: A9: A10:: B2: B3: B4: B5: B6: C1: C2: C3: C4:在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1
数学是各门科学在高度发展中所达到的最高形式的一门科学,各门自然学科都频繁的求助于它。下文是我为大家搜集整理的关于2017年研究生数学建模优秀论文的内容,欢迎大家阅读参考!
谈谈优化高中数学课堂教学
学生在课堂上获取知识,优质课堂是三维目标的落实。当前,在高中数学课堂教学过程中,改变了照本宣科的教学模式,但是,由于抽象的数学知识给学生学习带来了诸多困难,并且相对文科科目来说比较枯燥,使得学生产出畏难心理。因此,数学教师一定要优化课堂教学,通过多种手段激发学生的学习兴趣,科学正确地传授给学生以知识和能力,让学生建立起学习数学的信心,提高数学课堂教学的有效性。
一、优化高中数学课堂教学的重要性
1、提升高中数学课堂教学效率
在应试教育的影响下,高中数学课堂上教师是主角,一般都是由老师先讲解例题,然后留出时间让学生做练习,教师对学生的评价的主要依据就是学生的考试成绩。其实,教师和学生都有这样的感觉:在高中数学课堂上,不管是教师的教还是学生的学都比较辛苦,感觉自己的付出和收获相差甚远。在实际教学中,还有不少老师依然采用时间战术和题海战术,课堂教学摆脱不了知识的灌输,造成很多学生依赖于教师的指导。有些学生在高考时成绩突出,但是他们步入大学后,当数学教师不再直接告诉他们结论时,就会无所适从、不知所措。
即使课堂上有师生互动,由于教师的启发性不够,或者自身知识水平有限等导致学生合作学习形式化。另外,有的教师不能与时俱进,不去汲取先进的教学理念,在教学中缺少行之有效的教学方法,导致课堂气氛沉闷,学生缺乏内在的数学学习兴趣。还有的教师缺乏课堂调控能力和管理能力,把课堂上宝贵的时间用在维持课堂秩序上,直接影响课堂教学效率的提高。而优化高中数学课堂教学,有效填补了传统教学模式的缺陷,提高学生学习的积极性,更符合新课改对高中数学教学的要求。
2、优化高中数学课堂教学是新课改发展的必然趋势
优化高中数学课堂教学是新课改的要求,也是构建高效课堂的保障。高中数学课堂教学并不是一个独立的个体,有着丰富的内涵。在新课改背景下,需要改革的内容多种多样,除了创新教学内容和教学目标以外,最主要是就是改革课堂教学模式。只有优化改革高中数学课堂教学,才能真正实现教学效率的提升。
二、优化高中数学课堂教学的有效途径
1、创设生活化情境,提高学生的学习兴趣
新课改下的高中数学课堂,要求学生能从数学的角度去发现生活中的数学问题,并能用数学知识去分析和解决实际问题。在高中数学教学中,教师要引导学生从生活中捕捉数学问题,立足于学生实际,贴近学生的生活实际,设计学生感兴趣的生活素材,使抽象的数学问题变得生动、活泼,让学生感受到数学和生活的息息相关,生活中处处有数学。所以,教师要充分了解学生实际,联系学生所熟悉或者感兴趣的社会实际问题,创设多种教学情境,从而激发学生的学习热情。兴趣是最好的老师,兴趣能促进学生主动进行活动。兴趣是构成学习动机的主要成分。因此,教师应激发学生对学习的探究欲望。高中数学知识比较抽象、深奥,教师必须用多种教学手段让学生具有新鲜感,比如设计巧妙的导入,以激发学生的学习兴趣。
2、实施情感教育。在课堂教学中,通过情感教育能起到事半功倍的教学效果。教学是教和学的统一,因此,高效课堂不但体现了教师教的有效性,更体现了学生学的有效性。在教学过程中,构建民主、愉快的师生关系非常重要。教师应加强和学生的互动,通过观察、沟通、课堂反馈及时了解学生对知识的掌握情况,及时和学生沟通,对学生的表现作出具体的评价,使学生体验到尊重和友爱的教育情感,对待后进生更要给予关心和帮助,为他们提供锻炼的机会,让他们体验到成功的喜悦,使他们意识到只要努力,就有希望,同时培养他们的自信心,消除他们的畏难情绪,让他们逐步喜欢上数学学习。只有这样,才能实现教和学的完美结合,才能确保教学效率的提高。
3.合作探究,培养学生自主学习能力
随着素质教育的深入发展,高中数学教学注重学生自主学习能力的培养,以提高学生的学习能力。数学课堂教学不能只局限于课堂,要对课堂教学进行延伸和拓展,核心是坚持学生的主体地位,这也是优化课堂教学的重要方式。因此,数学教学要运用灵活多变的教学措施,不断研究和创新教学方式,增长学生的见识。比如采用合作探究的学习方法,让学生小组合作、课外调查、课前搜集等,转变学生学习数学的观念,给学生自由、广阔的学习空间,让学生以课堂主人的身份参与学习,改变学生被动接受知识模式,提高学生数学学习的兴趣,使数学课堂富有生机和活力。通过合作探究,促进生生、师生之间的交流,培养学生合作精神,提高学生自主学习数学的主动性,学生在探究的过程中,加深对所学生知识的理解,让他们学会了怎样学习,锻炼了实践能力和探究能力,培养了自觉应用的意识。有效提高课堂教学效果。
4.充分发挥多媒体教学手段,提高教学效率
课堂教学是一门学问,也是一门艺术,学问的大小与艺术的高低和教学效果有直接的关系。因此在课堂教学中,一方面要汲取传统教学模式的精华,一方面我们要探索各具特色的教学方式。在以往的数学教学中,不管是数学概念、数学公式、数学定理等主要靠教师的讲解,因此,数学课堂给学生的感觉就是枯燥乏味,没有一点新意,很难激发学生的学习兴趣。而随着科技的发展,现代教学手段进入我们的课堂,实现教学过程的图文并茂、生动形象,使枯燥而抽象的数学知识变得直观而活泼,学生理解起来更加容易。同时,多媒体的运用刺激学生多种感官,获得的知识灵活、扎实,真正促进学生知识与能力的发展。
5.不断反思,优化课堂教学过程
课堂教学的过程是不断探索和完善的过程,因此,教师要注重课堂反思,运用多种教学手段,及时发现课堂教学中的不足之处,并根据实际情况制定相应的措施。教师和学生都要不断反思和创新,进一步完善教和学的过程,使其更具理想,从而提高课堂教学的有效性。同时,课后反思能提高教师的专业素养,形成自己的教学风格,更好地和学生相配合,灵活调整教学方法,推陈出新,探寻更多的有效教学手段。 例如,教师在指导学生学习集合的时候,有的教师就按照传统教学模式开门见山地讲解定义,导致学生无所适从,学习效果很不理想。此时,教师应对课堂教学进行反思,找出问题所在。教师应从学生的学情入手,抓着问题关键所在。学生难于理解集合概念,主要是因为教师不能从学生实际出发。因此,教师要引导学生充分预习,并标出不懂的地方,在课堂教学中,有目的地接受教师的讲解,形成知识结构体系,有效提高课堂教学效率。
6.设置具有创新思维的题型
新课改下的数学课堂应注重学生创新能力的培养,因此教师要鼓励学生大胆质疑,勇于向教师和教材挑战。他们往往对教材和教师讲述的一切不去怀疑和思考,因此,思维能力得不到锻炼。另外,教师提出的问题多数都是陈述性问题,针对知识点进行题海战术,不注重问题和练习的开放性。数学学习对学生创新能力的培养有着得天独厚的作用,因此,题型的设置能启发学生的创新思维,通过学生自主思考,积极探索,寻求新的处理方法,从而优化数学思维品质。
在数学教学过程中,除了讲解和演示例题,应引导学生探究 “变异”的结果,拓宽学生的思路,培养学生的发散性思维。在课本习题的基础上,要不断创新题型,使学生找到新题型和原题之间的联系,达到一把钥匙开多把锁的效果。通过加强训练,开发学生的创造力,培养学生解决问题能力,促进学生思维的发展。学生在回答问题以后,教师可以延迟对学生评价,创设一种畅所欲言的氛围,为学生提供广阔的发展空间,提出更多的创造性设想,提高学生的创造性思维能力。
总之,随着高中数学新课程改革的不断深入,数学教师要讲究教学策略,强化课堂教学管理,在实践中不但探索和创新,发挥数学课堂教学的智慧性,处理好教和学的关系,注重学习方法的指导,运用多样化的教学方法,精选范例,突出重点,巩固知识,拓宽思路,促使学生全面发展,达到课堂教学的最优化,进而推动高中数学教育事业的可持续发展。
<<<下页带来更多的2017年研究生数学建模优秀论文