首页 > 学术期刊知识库 > 物理失重论文范文参考

物理失重论文范文参考

发布时间:

物理失重论文范文参考

举一小例写大气压强的,应超出初中物理的知识范围,从人类对大气压强的认识,历史上的大型演示实验,大气压强的本质,托里拆利和大气压力的发现,如何确定标准大气压,大气压和天气的关系,大气压强的利用,可一直写到飞机的升力是利用气压差进行飞行的等等,就是一篇很好的论文。 参考资料 还有好多其他资料,可按照你的兴趣和感受写 大气压强·格里克及其对真空研究的贡献 大气压强·关于大气压的问答(上) 大气压强·关于大气压的回答(下) 大气压强·大气压强的本质 大气压强·标准大气压 大气压强·大气压和天气的关系 大气压强·高山反应 大气压强·潜水病与减压病 大气压强·托里拆利(1608~1647) 大气压强·奥托·格里克(1602—1686) 大气压强·十七世纪对真空问题的研究 大气压强·托里拆利和大气压力的发现 大气压强·历史上显示大气压力的大型演示实验 大气压强·伽利略狱中会徒弟 格里克市外演马戏 大气压强·各种提水机械 大气压强·负压的利用 大气压强·马德堡半球实验 大气压强·大气压强的利用 大气压强·流体压强和流速的关系 大气压强·飞机机翼的升力 大气压强·空吸现象

物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然科学认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。随着科学技术的发展,社会的进步,物理已渗透到人类生活的各个领域。 在汽车上驾驶室外面的观后镜是一个凸镜利用凸镜对光线的发散作用和成正立、缩小的虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 汽车头灯里的反射镜是一个凹镜。 它是利用凹透镜能把放在其焦点上的光源发出的光反射成平行光射出的性质做的。 轿车上装有太阳膜,行人很难看清车中人的面孔,太阳膜能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔放射足够的光头到玻璃外面。由于车内光线较弱,没有足够的光透出来,所以很难看清乘客的面孔。 当汽车的前窗玻璃倾斜时,反射成的像在过的前上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,及时前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度上,所以司机也不会将乘客在窗外的相遇路上的行人相混。 现在,人类所有令人惊叹的科学技术成就,如克隆羊、因特网、核电站、航天技术等,无不是建立在早期的科学家们对身边琐事进行观察并研究的基础上的,在学习中,同学们要树立科学意识,大处着眼、小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的甚或打下坚实的基础。

1,。,。,。,。 假如没有重力 重力就是地球对物体吸引而产生的力,正因为有着这个力的存在,我们以至于世界万物才能够生存于这个地球之上。 在这个有着重力的环境下,人们行走、工作在地面,植物生长在地面,并沿着向上的方向拙壮成长。在这种环境下,我们的生活宁静、安祥,但我们假想一下,如果没有重力,那么地球会怎样呢? 有人会说:“如果没有重力,人就会飘在空中。”也有人说:“打破世界跳高记录会易如反掌”。的确,如果没有了重力,世界万物都会飘在空中。假如你在炒菜,那么你那盘菜就别想熟了。因为没有重力,那菜可不会老老实实地呆在锅中呢,即使熟了,也是用极漫长的时间作代价的。 不过没有重力,也挺好的。你看,假如需要高空作业,那没有重力可就即安全又方便了。再想想看那宇宙飞船上,在失重的情况下,要想吃东西,嘴只用一吸便品尝美味佳肴了。 假如世界上真的没有了重力,那可真的是奇妙无穷了。人就像袋鼠一样蹦来蹦去或是飞于空中,畅享天空的辽阔;水一团团地飘在空中,要想吃水,凑上去嘴一张便可;但这鱼儿可就惨了,他们没准要搬家了;咦?如果没有重力,说不定牛顿就不会挨那一下了! 科学真是奇妙无穷,就连科学幻想也趣味百出。我们应热爱科学,做一个热爱学习科学的中学生。 2 ,。,。,。,,。假如失去重力 在生活中,我们每个人,每件物品,以至于一个毫不起眼的绒毛,都受一个力,这个力使一切物体最终落地,这就是地球的神奇,地球它吸引着各种物体而产生了力,这个力就是重力。 牛顿的发现证明了重力的存在,或是说重力无处不在。重力的确很好,熟透的苹果落下来,使人们不用去搬梯子,只是弯弯腰既可。 但有人抱怨从二楼掉下轻者腿摩破,重者制残,假如真失去重力,世界会怎样:汽车飞在空中,不能动;人在空中,不能;人在室内只能游动。 水,生命的象征,如果失去重力,水将停止流动,下游水由于蒸发将干涸。一个人轻而易举起了一个重的东西;如果你爱跳那可不得了,你一跳飞离了地球,那可是人类花了多少年的心血努力才能实现进入太空之梦,一下子变成了现实。 如果失去了重力,我们周围的环境只会更加糟糕,人和各种各样的物体都在空中游着,这真很可怕哟。 综上所述,我们不能失去重力,重力的存在,是我们人类在在球上能够生存的根本。

物理学是研究物质运动最一般规律和物质基本结构的学科,是当今最精密的一门自然科学学科。下文是我为大家整理的关于物理学方面的论文的 范文 ,欢迎大家阅读参考!

试谈物理学专业电动力学课程教学

动力学电磁现象的经典的动力学理论。通常也称为经典电动力学,电动力学是它的简称。它研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用。

一、课程教学根本理念

第一,在教学中要尊重先生学习的主体性、教员教学的主导性,片面发扬先生的盲目性、自动性、发明性。第二,“电动力学”课程属于专业根底课程,教学内容布置上除了让先生学习本门课程的根本知识、根本实际、根本思绪,与其他物理学分支也具有个性和特性的关系。针对这一特点,教师在教学中要留意引导先生类似性抽象思想。第三,教学应突出探求式教学办法,改动传统的教学形式,把信息技术与电动力学课程最大限制地整合,运用多种古代 教育 手腕优化教学进程,推行启示式、探求式、讨论式、小制造等授课方式,培育先生的创新思想和创新理念。

二、在本课程教学中该当做到以下几点

1.讲授内容应实际联络实践

“电动力学”作为一门专业学科课程,是师范院校物理专业的根底实际课。教学中要求先生掌握课程的根本知识、根本实际和根本原理,使先生加深对所授知识的了解,更可深入看法电动力学的实践使用价值,到达学致使用的目的,同时提升先生剖析成绩、处理成绩的才能。

2.注重先生学习的主体性和集体性培育

从课程的设计到评价各个环节,在留意发扬教员在教学中主导作用的同134教改课改2016年3月时,应特别留意表现先生的学习主体位置,以充沛发扬先生的积极性和发掘学习潜能。要求先生能初步剖析消费、生活中的电动力学成绩,以提升先生的剖析成绩和处理成绩的才能。在电动力学实际的学习中运用数学工具处置成绩,使先生看法数学和物理的亲密关系,培育先生运用数学工具处理物理成绩的才能。培育先生自学才能,重要的不是教内容,而是教给先生学习办法。要充沛留意先生的兴味、专长和根底等方面的集体差别,因材施教,依据这种差别性来确定学习目的和评价办法,并提出相应的教学建议。课程规范在课程设计、教学方案、方案制定、内容选取和教学评价等环节上,为教学、学习提供了选择余地和开展的空间。

3.运用多种古代教育手腕优化教学环节

充沛应用古代化教学手腕,发扬信息化教学的劣势,加强先生的学习兴味,进一步强化需求掌握的知识点,拓宽知识面,加强先生的理论操作技艺,培育迷信的思想方式,这样先生能更好地掌握“电动力学”课程知识所触及的相关迷信办法,无效提升其发现成绩、剖析成绩、处理成绩的才能。

4.具有良好的实验条件,充沛保证明验和理论训练质量

鼓舞先生展开科研理论训练,参与各类科技竞赛。实验课及理论训练要留意培育先生的逻辑思想、发明性思想,充沛应用好物理、电子竞赛等创新平台,促进电动力学课程的教学。

三、课程学习战略探求

第一,针对“电动力学”是实际根底课的特点,先生必需坚持 课前预习 ,预习进程中无意识地提出成绩。课堂教学次要采用探求式课堂教学法,即每节课突出一个主题,讲清论透相关原理知识,每个主题经过师生多种方式的互动,教员及时理解、处理先生的疑问成绩,以加强先生的学习兴味。第二,将传统板书、电子课件、网络和视频多种教学手腕相结合。如课内讲授与课外讨论和制造相结合、根底实际教学与学科前沿讲座结合、根本实际与科研理论训练相结合。第三,鼓舞先生参与科研理论训练和各类科技竞赛。培育多样化使用型人才,以培育使用型、复合型、技艺型人才,加强 毕业 生失业才能,完本钱课的预期目的。第四,电动力学也是一门理论性很强的课程,其研讨对象是区别于实物的物质形状,具有笼统的特征。为防止课程教学的数学化,我们将充沛使用当代信息技术的劣势,比方说以视频教学材料加强先生的理性看法和入手才能。再次,实验课及理论训练要留意培育先生的逻辑思想、发明性思想才能和素质,充沛发扬先生的物理思想和物理探求才能。

四、课程教学办法探求

本课程教学中应留意电动力学实际与理论的结合,尊重先生学习的主体性,适当布置指点性自习,培育先生的自学才能。增强对先生课前、课后的答疑辅导,注重先生才能的培育,使先生经过对电动力学中根本实际的了解,看法和掌握电动力学原理的研讨规律,开辟思绪,初步培育先生的科研思想。

1.“双边反应式”教学法

这种教学法由“自学”和“反应”两局部构成,其着眼点是先生在教员指点下的自学和教员由反应来的信息而停止的有重点的解说,使先生的才能在重复训练中失掉锤炼。“自学”和“反应”表现了先生和教员的互相联络、互相配合、互相作用的训练进程。

2.以成绩为中心,展开课堂讨论

式教学法建议课堂教学中遵照迷信性、主体性、开展性准绳,采用以先生为主体的小组讨论式的办法,从提出成绩动手,激起先生学习的兴味,让先生有针对性地去探究并运用实际知识处理实践成绩;也可以针对教研室科研任务中遇到的成绩设计讨论或考虑题,以启示先生剖析、讨论有关电动力学成绩,学习并稳固电动力学知识,开辟思绪,培育科研思想。

3.倡导学导式的教学方式

在教员指点下,先生停止自学、自练,教员把先生在教学进程中的认知活动视为教学活动的主体,让先生自动地去获取知识,开展各自才能,从而到达在充沛发扬先生自动性的根底上,渗入教员的正确引导,使教学单方各尽其能,各得其所。

4.多展开课外理论活动

课外理论训练中,要留意培育先生的逻辑思想、发明性思想才能和素质。鼓舞和指点有才能的先生进入科研理论训练,参与各类科技竞赛。将先生撰写的课程小论文融入教学全进程,从中选出有质量的项目进入科研理论训练。充沛应用好物理、电子竞赛等创新平台,促进电动力学课程的教学,培育使用型、复合型、技艺型人才,加强毕业生失业才能。“电动力学”作为一门探求性课程,在课堂教学中,要突出先生的参与性,使他们自动获取而不是主动承受迷信结论,互动思想使先生觉得电动力学发人沉思,不难入门。“电动力学”与其他物理学分支具有“个性”和“特性”的关系。为了激起先生学习兴味,可以常常采用课堂讨论方式,由先生发问,在教员引导下大家讨论, 总结 得出正确结论。由于剖析“电动力学”需求运用笼统思想,所以课堂教学应充沛运用多媒体,尽量运用图像和颜色搭配,使先生树立正确的物理图像。留意“信息技术”与“电动力学”课程的无效整合,这关于全体优化教学进程,进步先生的专业知识学习效果、进步先生的信息技术才能、培育先生的协作认识和创新肉体均具有严重的理想意义。同时,可将教学实际使用到创新理论才能训练中,使用到物理、电子等各类竞赛中。

参考文献:

[1]冯云光.物理专业电动力学教学变革的探究[J].才智,2014,(19).

[2]郑伟,吕嫣.电动力学网络教学平台建立的研讨[J].沈阳师范大学学报(自然迷信版),2013,31(4):531-534.

[3]刘佳.《电磁学》与《电动力学》课程体系创新研讨[J].科技信息,2013,(11):44.

[4]熊万杰,陆建隆.对“电动力学”课程变革的探究[J].初等文科教育,2003,(6):72-75.

[5]付长宝,徐国慧,王希英.基于电动力学教学变革的学习办法讨论[J].通化师范学院学报,2009,30

试谈电力信息物理融合系统

【摘 要】嵌入式系统、计算机技术、网络通信技术的快速发展使构建未来智能电网成为了可能,基于信息物理系统(CPS)技术构建电力信息物理融合系统(CPPS)为实现未来智能电网提供了新的思路。本文对CPPS平台进行了初步研究分析,介绍了应用于CPPS中的同步PMU技术、开放式通信网络、分布式控制。

【关键词】CPPS;同步PMU;开放式通信;分布式控制

引言

受能源危机、环保压力的推动,以及用户对电能质量(QoS)要求的不断提高,当代电力系统不再符合社会的发展需求,智能电网(Smart Grid)成为未来电力系统的发展方向。智能电网的发展原因主要有以下几个方面:

1)分布式电源(Distributed Generation,DG)大量接入电网导致的系统稳定性问题。由于DG的大量接入使电网变成一个故障电流和运行功率双向流动的有源网络,增加了系统的复杂度和脆弱度,因此亟需发展智能电网以解决DG大量接入电网导致的系统稳定性问题。

2)电力用户对电能质量(QoS)要求的不断提高。现代社会短时间的停电也会给高科技产业带来巨额的经济损失,近年来发生的大停电事故更是给社会带来了难以估量的经济损失。因此,亟需建立坚强自愈的智能电网以提供优质的电力服务。

论文主体结构如下:第1部分介绍了近年来信息物理系统(Cyber Physical System ,CPS)技术的发展以及CPS与智能电网的相互关系;第2部分介绍了电力信息物理融合系统(Cyber-Physical Power System,CPPS)的硬件平台模型;第3部分介绍了同步相量测量装置(Phasor Measurement Units,PMU)技术;第4部分对CPPS中的开放式通信网络进行了初步分析;第5部分对CPPS的分布式控制技术进行了简单介绍;最后第6部分做出全文总结。

1 CPS与智能电网的相互关系

CPS技术的发展得益于近年来嵌入式系统技术、计算机技术以及网络通信技术等的高速发展,其最终目标是实现对物理世界随时随地的控制。CPS通过嵌入数量巨大、种类繁多的无线传感器而实现对物理世界的环境感知,通过高性能、开放式的通信网络实现系统内部安全、及时、可靠地通信,通过高精度、可靠的数据处理系统实现自主协调、远程精确控制的目标[1]。

CPS技术已经在仓储物流、自主导航汽车、无人飞机、智能交通管理、智能楼宇以及智能电网等领域得以初步研究应用[2]。

将CPS技术引入到智能电网中,可以得到电力信息物理融合系统(Cyber-Physical Power System,CPPS)的概念。为了分析CPPS与智能电网的相互关系,首先简单回顾一下智能电网的概念。目前关于智能电网的概念较多,并且未达成一致结论。IBM中国公司高级电力专家Martin Hauske认为智能电网有3个层面的含义:首先利用传感器对发电、输电、配电、供电等环节的关键设备的运行状况进行实时监控;然后把获得的数据通过网络系统进行传输、收集、整合;最后通过对实时数据的分析、挖掘,达到对整个电力系统运行进行优化管理的目的[3-4]。

从上文关于CPS和智能电网的介绍中可以看出,CPS与智能电网在概念上有相通之处,它们均强调利用前沿通信技术和高端控制技术增强对系统的环境感知和控制能力。因此,在CPS基础上建立的CPPS为促进电力一次系统与电力信息系统的深度融合,最终实现构建完整的智能电网提供了新的思路和实现途径。

2 CPPS的硬件平台架构

基于分布式能源广泛接入电网所引起的系统稳定性问题以及建立坚强自愈智能电网的总体目标,建立安全、稳定、可靠的智能电网成为未来电力系统研究的重要方向,同时也是CPPS研究的主要内容。

传统的电力系统监测手段主要有基于电力系统稳态监测的SCADA/EMS系统和侧重于电磁暂态过程监测的各种故障录波仪,保护控制方式主要有基于SCADA主站的集中控制方式和基于保护控制装置安装处的就地控制方式[5]。就地控制方式易于实现,并且响应速度快,但是由于利用的信息有限,控制性能不够完善,不能预测和解决系统未知故障,对于电力系统多重反应故障更不能准确动作。集中控制方式利用系统全局信息,能够优化系统控制性能,但是计算数据庞大、通信环节多,系统响应速度慢,并且现有SCADA系统主要对电力系统进行稳态分析,不能对电力系统的动态运行进行有效地控制。

针对目前电力系统监测、控制手段的不足,要建立坚强自愈的未来智能电网,必须建立相应的广域保护的实时动态监控系统,CPPS的硬件平台就是在此基础上建立起来的。

CPPS的硬件平台6层体系架构如图1所示,主要包括:物理层(电力一次设备)、传感驱动层(同步PMU)、分布式控制层(智能终端单元STU、智能电子装置IED等)、过程控制层(控制子站PLC)、高级优化控制层(SCADA主站控制中心)和信息层(开放式通信网络)。

其中,底层的物理层是指电力系统的一次设备,如发电厂、输配电网等。传感驱动层主要用于对电力系统的动态运行参数进行实时监控,测量参数包括电流、电压、相角等,在CPPS中广泛使用的测量装置是同步PMU。分布式控制层主要包括各STU/IED,为广域保护的分布式就地控制提供反馈控制回路。过程控制层主要指枢纽发电厂和变电站的控制子站,是CPPS的重要组成部分,通过收集多个测量节点的数据信息,建立系统层面的控制回路,并做出相应的控制决策。高级优化控制层是指调度中心控制主站,主要为电力系统的动态运行提供人工辅助优化控制。顶层的信息层即智能电网的开放式通信网络,注意信息层并不是单独的一层,而是重叠搭接CPPS的各个分层,为CPPS内部各组件提供安全、及时、可靠的通信。

上文给出了CPPS的硬件平台模型,但要在电力系统中具体实现CPPS,涉及诸多方面的技术难题,下面对CPPS中的同步PMU、开放式通信网络以及分布式控制等分别加以简单介绍。

3 同步PMU测量技术

同步PMU是构建CPPS的基础,它为CPPS中广域保护的动态监测提供了丰富的测量数据。同步PMU装置主要对电力系统内部的同步相量进行测量和输出,装设点包括大型发电厂、联络线落点、重要负荷连接点以及HVDC、SVC等控制系统,测量数据包括线路的三相电压、三相电流、开关量以及发电机端的三相电压、三相电流、开关量、励磁电流、励磁电压、励磁信号、气门开度信号、AGC、AVC、PSS等控制信号[6]。利用测得的数据可以进行系统的稳定裕度分析,为电力系统的动态控制提供依据。

同步PMU的硬件结构框图如图2所示。

其中,GPS接收模块将精度在±1微秒之内的秒脉冲对时脉冲与标准时间信号送入A/D转换器和CPU单元,作为数据采集和向量计算的标准时间源。由电压、电流互感器测得的三相电流、电压经过滤波整形和A/D转换后,送到CPU单元进行离散傅里叶计算,求出同步相量后再进行输出。注意,发电机PMU除了测量机端电压、电流和励磁电压、电流以外,还需接入键相脉冲信号用以测量发电机功角[7]。

4 CPPS的开放式通信网络

建立CPPS的开放式通信网络,应该在保证安全、及时、可靠的通信的基础上,使系统具有高度的开放性,支持自动化设备与应用软件的即插即用,支持分布式控制与集中控制的结合。对于建立的开放式通信网络,需要进行通信实时性分析、网络安全性和可靠性分析。

IEC 61850标准的应用

IEC 61850标准作为新一代的网络通信标准而运用于智能变电站中,支持设备的即插即用和互操作,使智能变电站具有高度的开放性。IEC 61850标准是智能变电站的网络通信标准,同时正在进一步发展成为智能电网的通信标准[8],因此,使用IEC 61850作为CPPS通信网路的通信标准是最佳选择。

IEC 61850的核心技术[9]包括面向对象建模技术、XML(可扩展标记语言)技术、软件复用技术、嵌入式 操作系统 技术以及高速以太网技术等。

通信网络配置与分析

对于CPPS开放式通信网络的网络配置,可参考智能变电站的三层二网式网络结构配置,构建CPPS的3层式通信网络,如图3所示。

其中,底层为位于发电厂、变电站和重要负荷处的大量PMU、STU/IED,分别负责采集实时信息和执行保护控制功能。中间层为控制子站(过程控制单元PLC),每个控制子站与多个PMU、STU/IED相连,以完成该分区系统层面的保护控制,并根据需要将数据上传到SCADA主站控制中心。SCADA主站控制中心接收各控制子站的上传数据,处理以后将控制信息下发到各控制子站,以实现CPPS的广域保护控制功能。注意,各层设备均嵌入GPS实现精确对时,保证全系统的同步数据采样。

5 CPPS的分布式控制机理

要建立坚强自愈的智能电网,必须利用新型控制机理建立可靠的电力控制系统。根据电力故障扩大的路径和范围以及故障的时间演变过程,文献[10-11]中提出建立时空协调的大停电防御框架,建立了电力系统的3道防线,为实现智能电网的广域动态保护控制奠定了良好的基础。

电力系统的分布式控制(Distributed Control,DC)是相对于传统的SCADA主站集中控制方式而言的,指的是多机系统,即用多台计算机(指嵌入式系统,包括PLC控制子站和STU/IED等)分别控制不同的设备和对象(如发电机、负荷、保护装置等),各自构成独立的子系统,各子系统之间通过通信网络互联,通过对任务的相互协调和分配而完成系统的整体控制目标[12]。分布式控制的核心特征就是“分散控制,集中管理”。在电力系统的3道防线的基础上,结合分布式控制技术,建立CPPS的3层控制架构,如图4所示。

其中,分布式控制层主要是在故障发生的起始阶段(缓慢开断阶段)采取的控制 措施 ,其控制目标应该是保证系统在不严重故障下的稳定性,防止故障的蔓延。过程控制层是在系统已经发生严重故障时(级联崩溃开始阶段)所采取的广域紧急控制措施,需要付出较大的代价。通常针对可能会使系统失稳的特定故障,往往需要投切非故障设备以保证系统的稳定性。广域的紧急控制措施应该在故障被识别出的第一时间立即实施,控制措施实施越晚,控制效果越差。优化控制层是在前两层控制均拒动或欠控制而没有取得控制效果,同时在检测到各种不稳定现象后所采取的控制措施,通常需要进行多轮次的切负荷和振荡解列。在电力恢复阶段,要有自适应的黑启动和自痊愈的控制方案。

6 结语

将CPS 方法 引入到电力系统中,建立CPPS的模型平台,为建立坚强自愈的智能电网提供新的思路。文中对CPPS中的同步PMU测量技术、开放式通信 网络技术 、分布式控制技术分别进行了简单介绍。

失物招领论文参考文献

一起“送失物要车费”被称敲诈的事件,在网上引发了热议。当

事人之一是四川绵竹一位的哥付世贵。

8

27

日那天,他拉了一个

乘客,

对方将一个包遗落在车上。他为了还包先后出了

3

趟车,因此

要求对方按出车里程合计付费

120

元,经过争吵,最终对方付了

65

元拿回了自己的包。

该乘客把这事以《出租车司机敲诈乘客!行为太

恶劣!

》为题发到微信上,事件很快在网络上发酵,网友人肉出“黑

心司机”的姓名住址,一时间付世贵遭到很多人的谩骂攻击。也有人

认为的哥很冤枉,

觉得他的行为算不上是敲诈。

还有人认为的哥送还

失物是做好事,但收车费就变了味。

请根据以上材料写一篇文章,立意自定,题目自拟,文体自选。

不要脱离材料内容及含意的范围作文,不要套作,不得抄袭,

800

以上。

对于以上事情

(包括网上争论)

你怎么看?请给付世贵、乘客或

持某种态度的网友写一封信,表明你的态度,阐述你的看法。要求结

合材料内容,选好角度,确定立意,完成写作任务。明确收信人,统

一以“惠民”为写信人,不得泄露个人信息

“送失物要车费”算哪门子敲诈

一起“送失物要车费”被称敲诈的事件,在网上引发热议,当事人之一是四川绵竹的哥付世贵。8月27日,他拉了一个乘客,对方将一个包遗落在车上。他为还包,先后跑了3趟车,因此收了对方65元车费。很快,该事件在网络发酵,绵竹当地一微信公众号就发了一篇以《网爆:绵竹一出租车司机涉嫌敲诈乘客!行为太恶劣!》为题的报道,让付世贵遭到很多人“黑心司机”的唾骂。

不管基于情还是法,的哥都有理由要求失主支付还包的费用,即便是道德层面的考量,也没有做好人还要倒贴的道理,何况《物权法》第112条也规定:权利人领取遗失物时,应当向拾得人或者有关部门支付保管遗失物等支出的必要费用。

的哥还包被指敲诈,并不是简单的误伤,从深层次来说是对的哥的不信任,或许与出租车行业收费信任有关,总抱有本能的成见,把还包要车费当成借机要价。这一点不管是失主,还是她的两个委托人,或多或少都存在。否则,第一次还包就不会因50元车费而不欢而散;也不至于拿回包后还在微博上发泄不满,最终被自媒体拿来迎合社会道德审判的需求,当成坏典型来消费。

“还包被指敲诈”放大“好人难做”的困境。许多人总习惯用自己的标准来评判,道德的、利益的,从而期望好人的纯粹,诸多个案,恨不得的哥不要钱来还包。且不说好人不可能完美无缺,即便是方式、方法和价值的判定,于现实中都有不少的争议,还有待达成共识,比如类似的拾物该不该有偿的命题。

毫无疑问,这就需要在争议中,予以包容,求同存异。动辄挟舆论讨伐之势不是对一个人的伤害,“好人难做”的气场只会把大家逼到不做好人的角落。

我们不时会看到这样的寻物启事:本人丢失钱包一个,钱包中有身份证、银行卡等重要证件,如有拾到归还者,必有重金酬谢。

凡是寻物启事,几乎都有“重金酬谢”这类字眼。而失物招领,在学校之外我几乎看不到。

而这一次,我和爸爸写了一份失物招领并张贴出去。事情的经过是这样的:爸爸周四下班回家,当他走到顺城宾馆车站与顺城桥车站两站之间时,不经意踢起一个东西,低头一看是一张当月的学生月票。

那时天已渐渐地黑了,周围又没有人,爸爸只好把月票拾起来。爸爸回到家,就和我说要写一份失物招领,明早贴出去。

我说:“现在都禁止张贴小广告,别找不着失主,却让城管人员罚了款。”爸爸想了想,还是坚持写份失物招领贴出去。

他让我用电脑打了以下的几行字:“失物招领:本人拾到15路学生月票一张,请失主速联系,电话:1350423****。城管大哥,请原谅我的行为,刚刚月初,失主一定心急如焚。”

然后用黑体大字打印了四张。第二天早上,我们比往常去上学的时间提前了二十分钟,我帮爸爸在路南、路北的顺城桥车站各张贴了一张《失物招领》后就去上学了。

爸爸继续向前走,到顺城宾馆车站去张贴。放学后,我见到爸爸就问道:“找到失主没有?”爸爸摇摇头说:“失主还没来电话。”

原来,爸爸白天电话联系了公汽公司售票室。希望能从月票编号上查到失主的学校,结果售票室没有登记,这个办法也行不通。

周六上午,我和爸爸去市场买菜,当走到车站时,看到《失物招领》完好无损地贴在那里。这时走过一位中年人,看了这张《失物招领》,目光里突然放出了光彩,一句话没说,静静地走开了。

但我清晰地看到,他嘴角挂着一丝微笑。当我写这篇作文时,失主还未找到。

爸爸的手机一直开着,他不停地念叨着:“失主到底在哪啊?这孩子丢了东西也不知道找,他家长也是够懒的,就不知道上车站找找!”而这时我担心的却是爸爸会被城管人员罚款,听说为了治理小广告,城管局采用了一种叫“呼死你”的新设备,会锁死小广告上的联系电话。我多么希望每个车站都能设置一个便民的告示栏,这样就可以在指定位置张贴失物招领和寻物启事了。

还有我真的希望以后能看到更多的《失物招领》,让这种公益广告和商业广告一样的便捷。让《失物招领》和《寻物启事》伴着我们的心一起飞扬,共创和谐美好的明天。

最低元开通文库会员,查看完整内容> 原发布者:芳芳 失物招领启事格式及范文 招领启事的格式: 1、标题。

标题有三种写法:一是写为“招领”二字,二是写为“失物招领”四字,三是写为“招领启事”。 2、正文:正文十分简单,无非是某人在某时某处拾到什么失物,望失主前来认领。

如果物品中内容较多,例如是一个钱包,内装多种物品,可简要列出其内容名称,如“内装证件一本,饭卡一张,人民币若干”,以便失主核对是否本人所丢失。证件和饭卡的号码、人民币的数目,均不能详写,以防冒领。

3、认领地址或联系方式,注明认领地址或联系电话等。最后标明发文日期。

(作文模板) 【范文】 招领启事 本商场收银台在今天上午拾到手提包一个,内装人民币若干元,以及手机等物,望失主前来认领。 地点:本市**商场三楼办公室 电话:******** **商场办公室 20XX年1月13日 招领启事 尊敬的业主: 您好! 我司安管人员于20XX年1月13日下午三点半左右在小区门口大门口拾到一部儿童自行车,请失主移步到天蓝居住户服务中心(即管理处)认领。

**住户服务中心 20XX年1月13日 招领启事 尊敬的客户: 您好! 昨日深夜,本娱乐城清洁服务员在一包房内拾到真皮公文包一个。包内有手机一部,老花眼镜一副,现金若干,信用卡数张及其它杂物。

请失主尽快来本娱乐城经理办公室认领。 **娱乐城 20XX年1月13日 寻物启事,是指单位或个人丢失东西后,希望他人帮助寻找而使用的应用。

但在我身边,有这样一个“活雷锋”。他无儿无女,无依无靠,但他有为人民服务这样美好的心灵。他就是为我们送奶的伯伯。

一天,我在电梯口看到这样一张通知:因为过年,牛奶停送两天,请大家自行安排。敬请原谅。这是大家最不愿看到的通知,这样会给人们带来很大的不方便。

这是一个寒冷的冬天,就在我看完通知的第二天,下了一场大雪,窗外刮着呼啸的寒风,风里夹杂着巨大的雪花飞来飞去,这样一个清早,真有些凄凉。刺骨的寒风刮得家家户户紧闭门窗。

我家也不例外,我们一家人正发愁这样的天气怎么出去买牛奶啊!

就在这时,窗外远远处有一位老伯伯推着一辆小车缓慢地前进着。噢!原来是送奶的伯伯,不是说停送两天,过年吗?他怎么还来送呀?老伯伯尽力地大嚷:“领奶了,取奶了。”只见人们稀稀疏疏地往外走,我也出来加入到排队的行列。

正在排队的人问送奶的伯伯:“不是停送几天吗?怎么还来呀?”伯伯笑了笑,说:“嗨!反正也没什么事,就送呗,这样大家多方便呀!”还有人说:“这大过年的,放了您的假,您不好好休息,来这送奶干嘛?”伯伯摇了摇手,说:“我应该时时刻刻为大家服务,不管过不过年!”这时,排队的人不禁你看看我,我看看你。我心头也突然涌起了一丝丝敬意。有的人说:“您可真是个活雷锋啊!”伯伯说:“我要向雷 *** 学习,把自己有限的生命投入到无限的为人民服务之中去!”听了他这番话语,我对他的敬意更浓了!

风更大了,这风中仿佛夹杂着伯伯的汗水与心意。他的背影也渐渐消失在雪的世界里。

望着那行清晰的脚印,我想起了雷锋,是的,他就是我们生活中的“活雷锋”!

昨天接小孩的路上把带了十一年的手链给掉怪难受,能有办法找回来吗,哪怕从新买回来

寻物通告本人于何时何地遗失某物(具体特征)。若有好心人捡到,请联系电话……

物理学论文范文参考

物理学是研究物质运动最一般规律和物质基本结构的学科,下面就是高中物理论文范文,欢迎大家阅读!

摘要 :物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学的核心之一。

本文结合笔者自身多年的物理教学经验,浅谈在物理教学中,如何搞好中学物理规律的教学。

关键词: 物理规律教学

物理规律反映了各物理概念之间的相互制约关系,反映在一定条件下一定物理过程的必然性。

它是中学物理基础知识最重要的内容,是物理知识结构体系的枢纽.所以,物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学的核心之一。

怎样才能搞好规律教学呢?现结合本人多年的物理教学经历,浅谈以下几点看法:

一、创设发现问题、探索规律的物理环境

教师带领学生学习物理规律,首先需要引导学生在物理世界中发现问题。

因此,在教学的开始阶段,要应给学生创设一个便于发现问题的物理环境。

在中学阶段,主要是通过观察、实验发现问题,也可以从分析学生生活中熟知的典型事例中发现问题,有时也可以从对学生已有知识的分析展开中发现问题。

另一方面,创设的物理环境要有利于引导学生探索规律。

例如使学生获得探索物理规律必要的感性知识和数据;提供进一步思考问题的线索和依据;为研究问题提供必要的知识准备等等。

创设的物理环境还应有助于激发学生的学习兴趣和求知欲望.

二、带领学生探索物理规律

在学生有一定的需要和积极的准备状态下,教师要利用各种适宜的方法,如实验探索、理论推导等,向学生阐明概念和规律的形成过程,建立新旧知识的链接。

如在牛顿第二定律的教学中,让学生通过实验探索加速度与力的关系以及加速度与质量的关系,得出在质量一定的条件下加速度与外力成正比、在外力一定的条件下加速度与质量成反比的结论。

在此基础上,教师指导学生总结加速度、外力和质量的关系,归纳出牛顿第二定律。

这样学生对该规律的建立就有了一个清晰的过程,才能较深刻地理解物理规律、领悟其物理含义。

另一方面,向学生呈现物理规律内容时不但要准确,而且对一些关键字词应加以突出,给予适当的说明,以引导学生足够的注意和正确理解,并与其他类似的或易混淆的概念和规律进行比较,建立类比联系,加深对物理规律的理解。

三、要使学生深刻理解规律的物理意义

在规律的教学中,要引导学生深刻理解其物理意义,防止死记硬背。

物理规律的表达形式主要有两种:一种是文字语言,另一种是数学语言,即公式。

对物理规律的文字表述,必须在学生对有关问题进行分析、研究、并对它的本质有相当认识的基础上进行,切不可在学生毫无认识或认识不足的情况下“搬出来”,“灌”给学生,然后再逐字逐句解释和说明。

只有这样,学生才能真正理解它的含义。

例如,牛顿第一定律“一切物体在没有受到外力作用的时候,总保持匀速直线运动状态或静止状态。”在理解时,要注意弄清定律的条件是“物体没有受到外力作用”,还要理解“或”这个字的含义。

“或”不是指物体有时保持匀速直线运动状态,有时保持静止状态,而是指如果物体原来是运动的,它就保持匀速直线运动状态;如果原来是静止的,它就保持静止状态。

对于用数学语言即公式表达的物理规律,应使学生从物理意义上去理解公式中所表示的物理量之间的数量关系,而不能从纯数学的角度加以理解。

如,对电场中同一点而言,不能说场强E与电场力F成正比,与电量q成反比,因为场强E由电场和电场中该点的位置决定。

四、要使学生明确物理规律的适用条件和范围

物理规律往往都是在一定的条件下建立或推导出来的,只能在一定的范围内使用.超越这个范围,物理规律则不成立,有时甚至会得出错误结论.这一点往往易被学生忽视,他们一遇到具体问题,就乱套乱用物理规律,得出错误结论.因此,在物理规律教学中,要使学生明确物理规律的适用条件和范围,正确地运用规律来研究和解决问题。

例如动量守恒定律,它的成立条件是,所研究的系统不受外力或者所受外力的合力为零,这属基准条件。

如果系统受到外力F外或合力F合不为零,其动量是不守恒的,但可能有两种情形:其一,系统中物体相互作用的内力F内远大于F外(或F合),该系统的动量可看作是守恒的,其条件属近似条件;其二,选定直角坐标系后,将不在坐标轴上的外力各自沿x轴和y轴进行正交分解,若沿某一坐标轴(如x轴)的各个外力(含分力)的合力为零,则系统在该轴方向上的动量守恒,其条件属分动量守恒条件。

动量守恒定律是自然界普遍适用的基本定律之一,它适用于两个物体或多个物体组成的系统;它不但能解决低速运动问题,而且能解决高速运动问题;不但适用于宏观物体,而且适用于电子、质子、中子等微观粒子。

此外,无论是什么性质的相互作用,动量守恒定律都是适用的。

五、加强应用物理规律解决实际问题的训练和指导

物理规律来源于物理现象,反过来应用于实际问题,学习物理规律的目的就在于能够运用物理规律解决实际问题,同时,通过运用,还能检验学生对物理规律的掌握情况,加深对物理规律的理解。

在规律教学中,一方面要选择恰当的物理问题,有计划、有目标、由简到繁、循序渐进、反复多次地进行训练,使学生结合对实际问题的讨论,深化、活化对物理规律的理解,逐渐领会分析、处理和解决问题的思路和方法;另一方面,要引导和训练学生善于联系日常生活中的实际问题学习物理规律,经常用学过的规律科学地说明和解释有关的现象,通过训练,使学生逐步学会逻辑地说理和表达.对于运用物理规律分析和解决实际问题,要逐步训练学生运用分析、解决问题的思路和方法,使学生学会正确地运用数学解决物理问题。最后指出,由于物理规律的复杂性,必须注意规律教学的阶段性,使学生对规律的认识要有一个由浅入深,逐步深化、提高的过程。

只有这样,才能有效地指导学生掌握物理规律,培养学生的思维能力。

参考文献

1.人民教育出版社物理室。

全日制普通高级中学《物理教学大纲》2003

2.田世昆,胡卫平.物理思维论[M].南宁:广西教育出版社,.

3.南冲.中学物理教学研究[M].北京:海潮出版社,.

【摘要】 高考是关系到千家万户的大事,也是国家目前选拔人才的途径。认真学习和研究《教学大纲》和《考试说明》,按照教学规律科学的进行复习,及时的收集和处理信息,充分的调动学生的学习积极性,一定会取得好的成绩。

【关键词】 高考组织复习能力

为使高考复习能落到实处,使复习的过程更科学、复习的效率更高、有利于最大限度的提高学生的成绩,特提出以下几点建议:

1.强化基础知识的复习,加强学生对概念和规律的深入理解

在高中,对基本概念、基本规律的要求一贯是高考物理考查的主要内容和重点内容,主要考查考生在理解的基础上掌握基本概念、基本规律和基本方法,并要求深入理解概念和规律之间的内在联系。不少学生存在着这样的表现:概念,定义都知道,但一用就错,试卷上表现主要是选择题得分率低。这些都是基础较差,对物理概念和规律的理解不够有密切的关系。而近几年的各地高考试卷中的物理试题也都明确反映出重视基本概念、规律考查的特点。

对此,在复习中应该按照物理《教学大纲》和《考试说明》对学生五个方面的能力的加以严格要求,同时要让学生明白:理解能力是基础。只有理解能力提高了,其他能力才能较好的发展,而理解能力的前提是牢固的基础知识、扎实的基本技能和规范的基本方法,只有抓好基本知识、基本技能和基本方法的复习,对概念和规律的理解才能正确、深入、透彻。

2.加强学生的计算推理能力、论证表述能力、分析综合能力

高考物理试题度于推理能力的考查贯穿于各种题型中,从不同的角度、不同的层次,通过不同的题型、不同的情景设置来考查考生推理的逻辑性、严密性;对论证表述则重在考查能否准确地、简明地把推理过程表达出来,以此鉴别考生表述能力的高低。要克服学生思维推理过程不能严格合乎逻辑,对受力分析、运动过程分析不予重视,给解题带来盲目性;不会用物理语言表述物理过程或物理规律,使解题过程残缺不全;牛顿运动定律、动量、功能关系三条常用解题线索相互脱节,不能有机整合,使解题思路僵化、方法呆板、正确率低。

3.提高学生应用数学知识解决物理问题的能力

物理和数学是紧密联系的,数学为物理学的发展提供了强有力的工具,几乎所有的物理概念和物理规律,都是通过量化的方法用数学公式进行描述,应用数学处理物理问题的能力也是进入高校深造的考生应具有的能力,因此高考物理试题一直注重考查考生的应用数学处理物理问题的能力。

近年来,高考物理中的数学能力要求有明显的调整,主要表现在尽量回避繁杂的机械运算,而在考察方面,为此,我们一方面要求学生在平时学习中,能过一定数目的练习,掌握解决物理问题常用的数学规律及方法,在此基础上,引导学生逐步形成运用数学工具处理物理问题的基本思路,重点在于通过精讲精练使学生能熟练地将物理问题转化为数学问题。另外,要重视估算题的训练,复习时应注意引导学生逐渐掌握近似估算法,快速求出物理量的数量级。同时,提倡学生平时不用或少用计算器进行计算,因为在平时练习中,很多同学习惯于使用计算器,连非常简单的加减法都非用计算器不可,这样使得他们数学运算能力很差。

4.加强实验复习

实验是物理学的基础,实验能力在物理高考中一直占有相当重要的地位。物理高考力图通过在笔试的形式下考查学生的实验能力。

在教学中,一是要正确对待实验教材,实验复习时不应该机械地记忆教材中各个实验的目的、原理、器材、步骤、记录、结果等等,而应引导学生领悟教材中物理实验的设计思想、所运用的科学方法、规范的操作程序和合理的实验步骤。二是要引起学生对实验的有意注意,提供更多的动手动脑的机会,让他们主动地发现问题,解决问题。老师有意地改变实验条件、设置问题,激励学生努力寻找方法,解决问题。三是从培养学生的实验能力出发,让他们学会通过实验测量和有计划的实践活动去认识自然、发现自然规律、验证假想和猜测的方法,培养他们科学的思维方式、科学方法、实际操作技能和解决实际问题的能力。四是鼓励学生大胆创新,认识到实验教材提供的做法并不是一成不变,拘泥成规的,可以对课本中的实验做一些合理的变通,或补充一些模仿性实验,增加一些设计性实验,培养学生运用所学的知识、方法解决新问题的能力。

为使复习备考工作顺利进行,努力完成学校的工作任务,特提出以下几点措施:

1.认真钻研《高考大纲》、《教学大纲》及《课本》,充分提高“二纲一本”在高考中的作用,研究“二纲”,特别是去分析每年高考大纲之间的.细微的不同的地方,显得更加的重要,同时,也要建议学生常去翻物理课本,不可只顾按资料进行复习,却脱离了高考大纲的现象的发生。

2.高三教学应以人为本因为我们的授课对象是学生,是活生生的人,不是听课的机器,这就要求我们在教学中多点人性化,与学生之间多点交流,加强与学生的沟通,树立服务意识,不可高高之上,使教与学发生脱节。

3.要让学生明明白白的学习,让学生明白:“糊里糊涂作10道题,不如清清楚楚作1道题”。也就是说,在上课时要让学生明白,为什么要这么去作而不那样去作,为什么这样作是对的而那样作是错的,也就是时时要让学生明白一个“理”字,处处要讲“理”,在这一方面我的体会是我自己讲“理”的时候多,而让学生去讲“理”的时候少,以后在可能的情况下要让学生来讲讲“理”。

4.要让学生不可走入题海中,必要的题目是要做的,但一定要精选题目,讲前一定要求学生先做,作后再讲,讲后再留时间让学生消化吸收。

5.克服以教代学的现象,教得再好,没有学生的学(理解、消化、吸收),也是徒劳的,我们在高三复习中应该定位为一是指导学生进行知识的归纳和总结,补漏,建立知识网络,二是应有服务意识――帮助学生克服学习中遇到的困难和障碍。

6.要努力提高教学效率,效率的高低不是以你今天讲了多少个知识点,讲了多少道题为标准的,面是以你上课前定下的教学目标是不是在计划的时间内完成为标准的,说通俗一点,就是以这节课学生能过教师指导,真正学到的知识是多少为标准的。

7.狠抓基础内容及重点内容,高考的追求就是区分度,一套成功的试题是通过区分度来实现的,并不是由难度来实现的,而中等题目才是真正实现区分度的手段,因为易题都会,分不出好差,过难的题几乎没有几个人会,基本上也不会区分出好差,这一点一定要让学生知道,只有重视了基础,才能有效地完成中档难度的题,要防止学生钻牛角,老师要及时加以引导。

8.抓中等生要想在明年的高考中有突破,眼睛不能只盯着为数不多的几个好学生身上,要在尖子生吃饱吃好的情况下,重点兼顾中等生或有弱门课的学生,要想法提高他们的物理成绩,而提高他们成绩的方法中最好的方法就是要设法提高他们的学习物理的兴趣,让他们动起来,这样才是最为有效的,另外要多关心他们,多提问他们,在教学中采用灵活的方法,如分层布置作业,根据各班的实际灵活的采用不同的教学方法等,以提高他们的学习的积极性。

我们坚信,只要我们努力,按照教学规律科学的进行复习,及时的收集和处理信息,充分的调动学生的学习积极性,一定会取得好的成绩。

物理学是研究物质运动最一般规律和物质基本结构的学科,是当今最精密的一门自然科学学科。下文是我为大家整理的关于物理学方面的论文的 范文 ,欢迎大家阅读参考!

试谈物理学专业电动力学课程教学

动力学电磁现象的经典的动力学理论。通常也称为经典电动力学,电动力学是它的简称。它研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用。

一、课程教学根本理念

第一,在教学中要尊重先生学习的主体性、教员教学的主导性,片面发扬先生的盲目性、自动性、发明性。第二,“电动力学”课程属于专业根底课程,教学内容布置上除了让先生学习本门课程的根本知识、根本实际、根本思绪,与其他物理学分支也具有个性和特性的关系。针对这一特点,教师在教学中要留意引导先生类似性抽象思想。第三,教学应突出探求式教学办法,改动传统的教学形式,把信息技术与电动力学课程最大限制地整合,运用多种古代 教育 手腕优化教学进程,推行启示式、探求式、讨论式、小制造等授课方式,培育先生的创新思想和创新理念。

二、在本课程教学中该当做到以下几点

1.讲授内容应实际联络实践

“电动力学”作为一门专业学科课程,是师范院校物理专业的根底实际课。教学中要求先生掌握课程的根本知识、根本实际和根本原理,使先生加深对所授知识的了解,更可深入看法电动力学的实践使用价值,到达学致使用的目的,同时提升先生剖析成绩、处理成绩的才能。

2.注重先生学习的主体性和集体性培育

从课程的设计到评价各个环节,在留意发扬教员在教学中主导作用的同134教改课改2016年3月时,应特别留意表现先生的学习主体位置,以充沛发扬先生的积极性和发掘学习潜能。要求先生能初步剖析消费、生活中的电动力学成绩,以提升先生的剖析成绩和处理成绩的才能。在电动力学实际的学习中运用数学工具处置成绩,使先生看法数学和物理的亲密关系,培育先生运用数学工具处理物理成绩的才能。培育先生自学才能,重要的不是教内容,而是教给先生学习办法。要充沛留意先生的兴味、专长和根底等方面的集体差别,因材施教,依据这种差别性来确定学习目的和评价办法,并提出相应的教学建议。课程规范在课程设计、教学方案、方案制定、内容选取和教学评价等环节上,为教学、学习提供了选择余地和开展的空间。

3.运用多种古代教育手腕优化教学环节

充沛应用古代化教学手腕,发扬信息化教学的劣势,加强先生的学习兴味,进一步强化需求掌握的知识点,拓宽知识面,加强先生的理论操作技艺,培育迷信的思想方式,这样先生能更好地掌握“电动力学”课程知识所触及的相关迷信办法,无效提升其发现成绩、剖析成绩、处理成绩的才能。

4.具有良好的实验条件,充沛保证明验和理论训练质量

鼓舞先生展开科研理论训练,参与各类科技竞赛。实验课及理论训练要留意培育先生的逻辑思想、发明性思想,充沛应用好物理、电子竞赛等创新平台,促进电动力学课程的教学。

三、课程学习战略探求

第一,针对“电动力学”是实际根底课的特点,先生必需坚持 课前预习 ,预习进程中无意识地提出成绩。课堂教学次要采用探求式课堂教学法,即每节课突出一个主题,讲清论透相关原理知识,每个主题经过师生多种方式的互动,教员及时理解、处理先生的疑问成绩,以加强先生的学习兴味。第二,将传统板书、电子课件、网络和视频多种教学手腕相结合。如课内讲授与课外讨论和制造相结合、根底实际教学与学科前沿讲座结合、根本实际与科研理论训练相结合。第三,鼓舞先生参与科研理论训练和各类科技竞赛。培育多样化使用型人才,以培育使用型、复合型、技艺型人才,加强 毕业 生失业才能,完本钱课的预期目的。第四,电动力学也是一门理论性很强的课程,其研讨对象是区别于实物的物质形状,具有笼统的特征。为防止课程教学的数学化,我们将充沛使用当代信息技术的劣势,比方说以视频教学材料加强先生的理性看法和入手才能。再次,实验课及理论训练要留意培育先生的逻辑思想、发明性思想才能和素质,充沛发扬先生的物理思想和物理探求才能。

四、课程教学办法探求

本课程教学中应留意电动力学实际与理论的结合,尊重先生学习的主体性,适当布置指点性自习,培育先生的自学才能。增强对先生课前、课后的答疑辅导,注重先生才能的培育,使先生经过对电动力学中根本实际的了解,看法和掌握电动力学原理的研讨规律,开辟思绪,初步培育先生的科研思想。

1.“双边反应式”教学法

这种教学法由“自学”和“反应”两局部构成,其着眼点是先生在教员指点下的自学和教员由反应来的信息而停止的有重点的解说,使先生的才能在重复训练中失掉锤炼。“自学”和“反应”表现了先生和教员的互相联络、互相配合、互相作用的训练进程。

2.以成绩为中心,展开课堂讨论

式教学法建议课堂教学中遵照迷信性、主体性、开展性准绳,采用以先生为主体的小组讨论式的办法,从提出成绩动手,激起先生学习的兴味,让先生有针对性地去探究并运用实际知识处理实践成绩;也可以针对教研室科研任务中遇到的成绩设计讨论或考虑题,以启示先生剖析、讨论有关电动力学成绩,学习并稳固电动力学知识,开辟思绪,培育科研思想。

3.倡导学导式的教学方式

在教员指点下,先生停止自学、自练,教员把先生在教学进程中的认知活动视为教学活动的主体,让先生自动地去获取知识,开展各自才能,从而到达在充沛发扬先生自动性的根底上,渗入教员的正确引导,使教学单方各尽其能,各得其所。

4.多展开课外理论活动

课外理论训练中,要留意培育先生的逻辑思想、发明性思想才能和素质。鼓舞和指点有才能的先生进入科研理论训练,参与各类科技竞赛。将先生撰写的课程小论文融入教学全进程,从中选出有质量的项目进入科研理论训练。充沛应用好物理、电子竞赛等创新平台,促进电动力学课程的教学,培育使用型、复合型、技艺型人才,加强毕业生失业才能。“电动力学”作为一门探求性课程,在课堂教学中,要突出先生的参与性,使他们自动获取而不是主动承受迷信结论,互动思想使先生觉得电动力学发人沉思,不难入门。“电动力学”与其他物理学分支具有“个性”和“特性”的关系。为了激起先生学习兴味,可以常常采用课堂讨论方式,由先生发问,在教员引导下大家讨论, 总结 得出正确结论。由于剖析“电动力学”需求运用笼统思想,所以课堂教学应充沛运用多媒体,尽量运用图像和颜色搭配,使先生树立正确的物理图像。留意“信息技术”与“电动力学”课程的无效整合,这关于全体优化教学进程,进步先生的专业知识学习效果、进步先生的信息技术才能、培育先生的协作认识和创新肉体均具有严重的理想意义。同时,可将教学实际使用到创新理论才能训练中,使用到物理、电子等各类竞赛中。

参考文献:

[1]冯云光.物理专业电动力学教学变革的探究[J].才智,2014,(19).

[2]郑伟,吕嫣.电动力学网络教学平台建立的研讨[J].沈阳师范大学学报(自然迷信版),2013,31(4):531-534.

[3]刘佳.《电磁学》与《电动力学》课程体系创新研讨[J].科技信息,2013,(11):44.

[4]熊万杰,陆建隆.对“电动力学”课程变革的探究[J].初等文科教育,2003,(6):72-75.

[5]付长宝,徐国慧,王希英.基于电动力学教学变革的学习办法讨论[J].通化师范学院学报,2009,30

试谈电力信息物理融合系统

【摘 要】嵌入式系统、计算机技术、网络通信技术的快速发展使构建未来智能电网成为了可能,基于信息物理系统(CPS)技术构建电力信息物理融合系统(CPPS)为实现未来智能电网提供了新的思路。本文对CPPS平台进行了初步研究分析,介绍了应用于CPPS中的同步PMU技术、开放式通信网络、分布式控制。

【关键词】CPPS;同步PMU;开放式通信;分布式控制

引言

受能源危机、环保压力的推动,以及用户对电能质量(QoS)要求的不断提高,当代电力系统不再符合社会的发展需求,智能电网(Smart Grid)成为未来电力系统的发展方向。智能电网的发展原因主要有以下几个方面:

1)分布式电源(Distributed Generation,DG)大量接入电网导致的系统稳定性问题。由于DG的大量接入使电网变成一个故障电流和运行功率双向流动的有源网络,增加了系统的复杂度和脆弱度,因此亟需发展智能电网以解决DG大量接入电网导致的系统稳定性问题。

2)电力用户对电能质量(QoS)要求的不断提高。现代社会短时间的停电也会给高科技产业带来巨额的经济损失,近年来发生的大停电事故更是给社会带来了难以估量的经济损失。因此,亟需建立坚强自愈的智能电网以提供优质的电力服务。

论文主体结构如下:第1部分介绍了近年来信息物理系统(Cyber Physical System ,CPS)技术的发展以及CPS与智能电网的相互关系;第2部分介绍了电力信息物理融合系统(Cyber-Physical Power System,CPPS)的硬件平台模型;第3部分介绍了同步相量测量装置(Phasor Measurement Units,PMU)技术;第4部分对CPPS中的开放式通信网络进行了初步分析;第5部分对CPPS的分布式控制技术进行了简单介绍;最后第6部分做出全文总结。

1 CPS与智能电网的相互关系

CPS技术的发展得益于近年来嵌入式系统技术、计算机技术以及网络通信技术等的高速发展,其最终目标是实现对物理世界随时随地的控制。CPS通过嵌入数量巨大、种类繁多的无线传感器而实现对物理世界的环境感知,通过高性能、开放式的通信网络实现系统内部安全、及时、可靠地通信,通过高精度、可靠的数据处理系统实现自主协调、远程精确控制的目标[1]。

CPS技术已经在仓储物流、自主导航汽车、无人飞机、智能交通管理、智能楼宇以及智能电网等领域得以初步研究应用[2]。

将CPS技术引入到智能电网中,可以得到电力信息物理融合系统(Cyber-Physical Power System,CPPS)的概念。为了分析CPPS与智能电网的相互关系,首先简单回顾一下智能电网的概念。目前关于智能电网的概念较多,并且未达成一致结论。IBM中国公司高级电力专家Martin Hauske认为智能电网有3个层面的含义:首先利用传感器对发电、输电、配电、供电等环节的关键设备的运行状况进行实时监控;然后把获得的数据通过网络系统进行传输、收集、整合;最后通过对实时数据的分析、挖掘,达到对整个电力系统运行进行优化管理的目的[3-4]。

从上文关于CPS和智能电网的介绍中可以看出,CPS与智能电网在概念上有相通之处,它们均强调利用前沿通信技术和高端控制技术增强对系统的环境感知和控制能力。因此,在CPS基础上建立的CPPS为促进电力一次系统与电力信息系统的深度融合,最终实现构建完整的智能电网提供了新的思路和实现途径。

2 CPPS的硬件平台架构

基于分布式能源广泛接入电网所引起的系统稳定性问题以及建立坚强自愈智能电网的总体目标,建立安全、稳定、可靠的智能电网成为未来电力系统研究的重要方向,同时也是CPPS研究的主要内容。

传统的电力系统监测手段主要有基于电力系统稳态监测的SCADA/EMS系统和侧重于电磁暂态过程监测的各种故障录波仪,保护控制方式主要有基于SCADA主站的集中控制方式和基于保护控制装置安装处的就地控制方式[5]。就地控制方式易于实现,并且响应速度快,但是由于利用的信息有限,控制性能不够完善,不能预测和解决系统未知故障,对于电力系统多重反应故障更不能准确动作。集中控制方式利用系统全局信息,能够优化系统控制性能,但是计算数据庞大、通信环节多,系统响应速度慢,并且现有SCADA系统主要对电力系统进行稳态分析,不能对电力系统的动态运行进行有效地控制。

针对目前电力系统监测、控制手段的不足,要建立坚强自愈的未来智能电网,必须建立相应的广域保护的实时动态监控系统,CPPS的硬件平台就是在此基础上建立起来的。

CPPS的硬件平台6层体系架构如图1所示,主要包括:物理层(电力一次设备)、传感驱动层(同步PMU)、分布式控制层(智能终端单元STU、智能电子装置IED等)、过程控制层(控制子站PLC)、高级优化控制层(SCADA主站控制中心)和信息层(开放式通信网络)。

其中,底层的物理层是指电力系统的一次设备,如发电厂、输配电网等。传感驱动层主要用于对电力系统的动态运行参数进行实时监控,测量参数包括电流、电压、相角等,在CPPS中广泛使用的测量装置是同步PMU。分布式控制层主要包括各STU/IED,为广域保护的分布式就地控制提供反馈控制回路。过程控制层主要指枢纽发电厂和变电站的控制子站,是CPPS的重要组成部分,通过收集多个测量节点的数据信息,建立系统层面的控制回路,并做出相应的控制决策。高级优化控制层是指调度中心控制主站,主要为电力系统的动态运行提供人工辅助优化控制。顶层的信息层即智能电网的开放式通信网络,注意信息层并不是单独的一层,而是重叠搭接CPPS的各个分层,为CPPS内部各组件提供安全、及时、可靠的通信。

上文给出了CPPS的硬件平台模型,但要在电力系统中具体实现CPPS,涉及诸多方面的技术难题,下面对CPPS中的同步PMU、开放式通信网络以及分布式控制等分别加以简单介绍。

3 同步PMU测量技术

同步PMU是构建CPPS的基础,它为CPPS中广域保护的动态监测提供了丰富的测量数据。同步PMU装置主要对电力系统内部的同步相量进行测量和输出,装设点包括大型发电厂、联络线落点、重要负荷连接点以及HVDC、SVC等控制系统,测量数据包括线路的三相电压、三相电流、开关量以及发电机端的三相电压、三相电流、开关量、励磁电流、励磁电压、励磁信号、气门开度信号、AGC、AVC、PSS等控制信号[6]。利用测得的数据可以进行系统的稳定裕度分析,为电力系统的动态控制提供依据。

同步PMU的硬件结构框图如图2所示。

其中,GPS接收模块将精度在±1微秒之内的秒脉冲对时脉冲与标准时间信号送入A/D转换器和CPU单元,作为数据采集和向量计算的标准时间源。由电压、电流互感器测得的三相电流、电压经过滤波整形和A/D转换后,送到CPU单元进行离散傅里叶计算,求出同步相量后再进行输出。注意,发电机PMU除了测量机端电压、电流和励磁电压、电流以外,还需接入键相脉冲信号用以测量发电机功角[7]。

4 CPPS的开放式通信网络

建立CPPS的开放式通信网络,应该在保证安全、及时、可靠的通信的基础上,使系统具有高度的开放性,支持自动化设备与应用软件的即插即用,支持分布式控制与集中控制的结合。对于建立的开放式通信网络,需要进行通信实时性分析、网络安全性和可靠性分析。

IEC 61850标准的应用

IEC 61850标准作为新一代的网络通信标准而运用于智能变电站中,支持设备的即插即用和互操作,使智能变电站具有高度的开放性。IEC 61850标准是智能变电站的网络通信标准,同时正在进一步发展成为智能电网的通信标准[8],因此,使用IEC 61850作为CPPS通信网路的通信标准是最佳选择。

IEC 61850的核心技术[9]包括面向对象建模技术、XML(可扩展标记语言)技术、软件复用技术、嵌入式 操作系统 技术以及高速以太网技术等。

通信网络配置与分析

对于CPPS开放式通信网络的网络配置,可参考智能变电站的三层二网式网络结构配置,构建CPPS的3层式通信网络,如图3所示。

其中,底层为位于发电厂、变电站和重要负荷处的大量PMU、STU/IED,分别负责采集实时信息和执行保护控制功能。中间层为控制子站(过程控制单元PLC),每个控制子站与多个PMU、STU/IED相连,以完成该分区系统层面的保护控制,并根据需要将数据上传到SCADA主站控制中心。SCADA主站控制中心接收各控制子站的上传数据,处理以后将控制信息下发到各控制子站,以实现CPPS的广域保护控制功能。注意,各层设备均嵌入GPS实现精确对时,保证全系统的同步数据采样。

5 CPPS的分布式控制机理

要建立坚强自愈的智能电网,必须利用新型控制机理建立可靠的电力控制系统。根据电力故障扩大的路径和范围以及故障的时间演变过程,文献[10-11]中提出建立时空协调的大停电防御框架,建立了电力系统的3道防线,为实现智能电网的广域动态保护控制奠定了良好的基础。

电力系统的分布式控制(Distributed Control,DC)是相对于传统的SCADA主站集中控制方式而言的,指的是多机系统,即用多台计算机(指嵌入式系统,包括PLC控制子站和STU/IED等)分别控制不同的设备和对象(如发电机、负荷、保护装置等),各自构成独立的子系统,各子系统之间通过通信网络互联,通过对任务的相互协调和分配而完成系统的整体控制目标[12]。分布式控制的核心特征就是“分散控制,集中管理”。在电力系统的3道防线的基础上,结合分布式控制技术,建立CPPS的3层控制架构,如图4所示。

其中,分布式控制层主要是在故障发生的起始阶段(缓慢开断阶段)采取的控制 措施 ,其控制目标应该是保证系统在不严重故障下的稳定性,防止故障的蔓延。过程控制层是在系统已经发生严重故障时(级联崩溃开始阶段)所采取的广域紧急控制措施,需要付出较大的代价。通常针对可能会使系统失稳的特定故障,往往需要投切非故障设备以保证系统的稳定性。广域的紧急控制措施应该在故障被识别出的第一时间立即实施,控制措施实施越晚,控制效果越差。优化控制层是在前两层控制均拒动或欠控制而没有取得控制效果,同时在检测到各种不稳定现象后所采取的控制措施,通常需要进行多轮次的切负荷和振荡解列。在电力恢复阶段,要有自适应的黑启动和自痊愈的控制方案。

6 结语

将CPS 方法 引入到电力系统中,建立CPPS的模型平台,为建立坚强自愈的智能电网提供新的思路。文中对CPPS中的同步PMU测量技术、开放式通信 网络技术 、分布式控制技术分别进行了简单介绍。

大一物理论文范文参考

21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!

中学物理中的物理模型

摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。

关键词:中学物理;教学;物理模型

一、物理模型的概念及功能

物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。

物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。

人们建立和研究物理模型的功能主要在于:

一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;

二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;

三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。

二、中学物理教材中经常碰到的几种物理模型

物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:

1.物理对象模型 即把物理问题的研究对象模型化。

例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。

另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。

2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。

如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。

教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。

3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。

4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。

5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。

如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。

再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。

6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。

三、物理模型在中学物理教学中的地位和作用

1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一

物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。

如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。

2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托

人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。

爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。

诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。

3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化

例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。

四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法

物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:

1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。

2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。

3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。

4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。

总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。

物理猜想与中学物理教学

【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。

【关键词】中学 物理猜想 物理教学

【中图分类号】 G 【文献标识码】 A

【文章编号】0450-9889(2014)11B-0076-02

随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。

一、物理猜想对中学物理教学有着重要的意义

新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。

1.提高学生学习兴趣和增进学生学习主动性

学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。

2.提高学生的思维能力

在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。

3.有利于学生巩固所学的物理知识

物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。

4.培养学生创新能力

在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。

二、教师在物理课堂教学中引导学生进行物理猜想的方法

教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。

1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想

科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。

2.激励学生讨论,诱发物理猜想

在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。

3.鼓励学生大胆猜想

在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。

4.创造良好的猜想条件

在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。

物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。

【参考文献】

[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)

[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012

[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)

[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)

【论文关键词】大学物理;现状分析;教学改革 【论文摘要】文章根据农科类大学物理教学的现状和教学改革的发展,从教学的几个环节,提出了大学物理教学内容及教学方法改革的几点想法,提出建议,以促进农科类大学物理在教学内容、教学目的、教学效果等方面得到更好的发展,实现农科类院校大学物理教学改革的目的。 大学物理是研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的学科。物理学的研究对象是非常广泛的,它的基本理论渗透到自然科学的很多领域,应用于生产技术的各个部门,它是自然科学和工程技术的基础。它包含经典物理、近代物理和物理学在科学技术方面的应用等基本内容,这些内容都是各专业进一步学习的基础和今后从事各种工作所需要的必备知识。因此,它是各个专业学生必修的一门重要基础课[1]。 在农科类各专业开设大学物理课的作用,一方面在于为学生较系统地打好必要的物理基础,另一方面是使学生学会初步的科学的思维和研究问题的方法。这对开阔学生的思路、激发探索和创新精神、增强适应能力、提高人才的素质都将起到非常重要的作用。同时,也为学生今后在工作中进一步学习新的知识、新的理论、新的技术等产生深远的影响。 一、大学物理教学现状分析 21世纪是科学技术飞速发展的时代,对人才的要求将更高、更全面,这对我们的大学物理教学也提出了更高的要求,必须跟上时代的步伐。但是,目前以农科类大学物理教学为例存在以下问题: (1)大学物理教材的内容中,以经典物理为主,分为力学、热学、光学、电磁学和近代物理,内容各自独立,彼此之间缺乏联系,没有形成统一的物理系统。教学内容大部分标题与中学类似,学生看到目录后学习热情和兴趣锐减。 (2)经典物理和近代物理的比例极不平衡,经典物理部分占物理教学内容的80%以上,而且基本上都是20世纪以前的成果,没有站在近代物理学发展的高度,用现代的观点审视、选择和组织传统的教学内容。同时近代物理的内容非常少,特别是没有反映20世纪后半个世纪以来物理学飞速发展的现代物理思想,使学生对近代物理知识知之甚少,与现代物理严重脱节,因此大学物理教学改革势在必行。 (3)教学手段落后,虽说现在有些老师已经用上了多媒体教学,但是总体对现代化教学手段的充分利用还远远不够,未能充分体现现代化教学手段的优越性,对教学手段的改进也期待着进一步探索。 二、对大学物理教学内容改革的几点想法 (1)从大学物理非物理专业的人才培养的总体要求出发,对农科类各专业采取不同侧重点的教学,现在所用的教材,或是适合我们的短学时,又无配套的教学参考书,或是对农科类相关教学内容不足,我们可以根据不同专业制定不同的教学大纲,注重各部分知识的联系,以近代物理学的发展为主导,完整而系统的讲述物理学的基本内容。同时,教研室可以准备组织力量编写一本少学时且适合农科类各专业学习用的大学物理教学参考书,主要用于帮助学生理解基本概念、基本定理,帮助学生学会分析问题和解决问题,帮助学生提高把物理学的知识应用到实际中的能力。 (2)添加近代物理内容,介绍当今物理学前沿的发展,如量子理论、相对论的时空观等,启发学生兴趣,扩大学生的科学视野,开阔学生的思路。把近代科学技术成就和前沿课题的内容融入教材中,补充一些物理学与相关专业的交叉或补充的前沿的新发展内容,使学生在学习基本理论的同时了解现代科技发展的新信息、新动向。 (3)对经典物理部分进行处理,精选与现代科技、现代物理知识紧密联系的内容,删去陈旧部分,避免和中学物理的内容重复,将经典物理延伸至近代物理,增添新意。 (4)将相关学科的基础知识纳入教材。如今科学技术越来越向交叉学科发展。因此,针对农科类各专业,在教材内容的选择上,增加农业应用方面的内容,紧密联系学生专业进行因材施教。 三、关于大学物理教学方法和教学手段改革的想法 (1)注重应用,弱化计算。传统的物理教学方法是以物理理论和计算公式为主,要求学生会解题,而对物理概念的理解和应用则一掠而过。其实,学生对用数学方法解决物理问题不适应,导致对解题产生畏惧心理。因此在教学中不应以做题为目的,使学生陷入题海之中,而是要着重应用方面的教学,适当进行习题练习,重点培养学生应用物理知识分析问题的能力,培养学生的创新能力。 (2)灵活运用多媒体教学。多媒体教学已经成为现代教育中的重要组成部分,适当的多媒体教学可以提高学生的学习效率,有利于发挥学生的主观能动性,发展学生的个性,实现“以学生为本”的教育理念。在多媒体电子课件中,加入动画、演示实验、图示说明和物理学的一些基本模型等,以弥补传统教学的不足,增加课堂教学的形象性,对学生动态认识和掌握物理概念有着重要的作用[2]。 (3)在考试方面,可改变现在的考试模式,采用多种考试方法结合。一方面闭卷笔试,采用试题库考试,另一方面,采取书写小论文、新想法等方式,加强学生学习的自觉性,减轻学生的压力,同时也提高了学生的发现问题和探究问题的能力。 (4)重视学生动手能力的培养。物理学是建立在实验基础上的,所以大学物理包括理论和实验两部分,学生通过大学物理实验,增强了动手能力、分析问题解决问题的能力,培养了良好的实验素质。根据物理实验室开放实验的实践经验,实验室向学生开放,给学生提供观察和实际操作的机会,学生可以根据自己的实际情况选择观看和操作实验,从中体会物理学知识的奥秘。 四、展望 本文从大学物理的教学现状、教学内容、教学方法改革等方面对大学物理教学改革的发展进行了探讨,提出了大学物理教学改革的几点建议。由于物理学在不断发展,教学思想也在不断发展,大学物理教学改革更是发展的。所以,大学物理任课教师必须既懂得物理理论又会动手作实验,同时还要熟悉与农科各专业相关的前沿知识。这就需要教师要教学与科研并重,在熟悉教学的基础对前沿科技进行研究,具有较高的教研能力,让学生在学好大学物理的同时,对现代科技有一定的了解。教师应该在现有教学基础上,不断探索,在传授知识的同时启发学生发现问题、解决问题的能力和创新思维能力,成为高素质的全面型人才

物理学给人类提供了大量的物质财富,同时也提供了精神财富。物理学的高技术和强渗透性也使之成为社会发展的重要推动力。下面是我为大家整理的物理学论文,供大家参考。

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照教育部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程报告论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现笔记本电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.

一、全息教学在初中物理教学中运用的策略

1.运用全息理论,对初中物理教学课型进行合理选择与搭配

新课改以后,物理课堂教学由传统的讲授内容方面转变到物理的过程方面,其核心是给学生提供机会、创造机会。因此,在物理教学中,教师要善于运用全息教学理论,并根据学生的生活经验和已有的知识背景,对课型合理地选择与搭配,带领学生运用多种方法对物理知识进行重演在现,激励学生发现并提出问题,进而激发学生学习物理的兴趣,培养学生创新和探究能力。例如:在讲静电屏蔽时,首先带领学生对静电屏蔽进行了实验,并得到了正确的结果。突然有一个学生提出问题“:用电吹风吹头时,电吹风其对电视信号有影响,那么是不是静电屏蔽不完全成立?”于是带领学生们又做了如下实验:将一个手机放在一个密闭的纸盒内,用另一部手机呼叫,学生们听到了响声。再让同学思考,如果将手机放在前面做过实验的金属笼内,是否能听到铃声?多数学生根据静电屏蔽原理猜测肯定不能。然而将手机放进铁笼后,仍能听到铃声。学生们都感到疑惑,难道静电平衡理论有误?针对这种现象让大家思考了“静电”二字,然后向学生们解释手机信号是一种电磁波而不是静电,其属一种交变的电磁场,遇到金属网时,金属网会感应出同频率的电磁波,只是强度变小,因此在仍能听到笼中手机铃声,也解释了,也就解释了为什么吹风机对电视信号有影响。这样通过对物理知识重演再现与对比的方式,加深了学生对物理知识的理解,从而提高了教学质量。

2.运用全息理论,根据物理教材和学情选择合适的教学方法

在进行物理教学时,物理教材中的安排的知识点难易程度不同,如果各个知识点都按照相同的教学方法去讲解,容易理解的知识点学生会掌握的相对熟练,而对于相对较难的知识点,就可能会导致学生对其似懂非懂,这样就会不利于学生的学习。这样物理教师在运用全息理论时,不要一味的按照一个教学方法进行讲解要注意对教学方法的改变,使学生能够熟练地掌握知识点。另外,每个学生对于知识点的掌握情况不同,有些学生可能掌握的好一些,有些学生掌握的差一些,因此物理教师要根据学情来选择教学方式,既要照顾那些掌握知识差的同学,也要让掌握较好的同学能够学到更多的知识。例如,在向同学讲解“测量”的知识点时,对与学生来说这个相对知识点相对容易,在日常生活中很容易接触到,因此教师在运用全息教学论时,可以先向学生对所要内容的主旨,主要思路进行讲解,然后对主要知识点进行仔细讲解,经过这样的讲解,学生会很容易对测量知识进行掌握。而在向学生讲解“光学规律”时,学生对其中的规律和容易混淆,如果物理教师还按照讲解“测量”方法向学生进行讲解,学生就很难掌握。因此,教师要改变教学方法,既要向学生进行理论讲解,也要带领学生对个规律进行实验,通过实验加深学生对光学规律的理解,使学生对知识点能够更好地掌握。3.运用全息理论,根据知识内容和特点选择合适的评价方式在物理教学中,物理教师对学生的评价方式非常重要,有的评价方式会激发学生学习物理的知识的兴趣,而有的评价方式可能使学生受到打击,从而失去学习物理的兴趣。因此教师要合理的运用全息理论,并且根据知识内容和特点选择合适的评价方式,激发学生学习物理的兴趣。例如,在课堂上让学生回答问题时,学生回答对了要给与肯定的评价,而如果学生回答错了,要用积极的评价方式去评价,用全息理论去告诉他,其在探讨知识的过程中,没有选择正确的方式方法,让其用正确的方式再去进行探讨,这样既让学生知道了自己了不足,也对学生进行了鼓励学生,这样学生就会乐意去学习,从而大大地提高物理教学质量。

二、结束语

你可以在网上多找下这类的论文期刊看下~像(现代物理、应用物理、物理化学进展)等等这这样的~网上还可以找到很多~你可以去多找下文献参考学习下吧

物理科技论文范文参考

物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。

《 物理学在科技创新中的效用 》

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.

《 应用物理学专业光伏技术培养方案研究 》

一、开设半导体材料及光伏技术方向的必要性

由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。

二、专业培养方案的改革与实施

(一)应用物理学专业培养方案改革过程

我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。

(二)专业培养方案的实施

为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。

三、 总结

半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。

有关物理学博士论文推荐:

1. 有关物理学论文

2. 物理学论文范文

3. 物理学论文

4. 物理学教学专业毕业论文

5. 物理学实验本科毕业论文

6. 物理学本科毕业论文

  • 索引序列
  • 物理失重论文范文参考
  • 失物招领论文参考文献
  • 物理学论文范文参考
  • 大一物理论文范文参考
  • 物理科技论文范文参考
  • 返回顶部