首页 > 学术期刊知识库 > 机械类论文外文文献翻译

机械类论文外文文献翻译

发布时间:

机械类论文外文文献翻译

发个样例给你看看大型轴齿轮专用机床设计的设计摘要:结合机电一体化的需要,设计以单片机作为控制系统的X-Y型工作台。通过对X-Y型工作台机械结构设计和控制电路接口的设计,阐述了机电一体化设计中的共性和关键技术。这种工作台通常与整机设计成一个整体,其形状,尺寸,结构因机器类型不同而有较大差异,但其工作原理有着共同点。关键词:X-Y数控十字滑台;机电一体化;单片机 Abstract : Combine mechanical-electrical integration’s need, design a Model X-Y workingbench with one-chip computer as the of the control system. Though describing the workingbench mechanical’s design of structure and interface of the control circuit to Model X-Y, have explained generality in the design of mechanical-electrical integration and its key technology. This kind of workingbench is usually designed with the complete machine into a whole , its form , size, there is a greater difference because types of the machine are different in the structure, but its operation principle has common point. Keywords: X-Y numerical control cross slippery platform; The mechanical-electrical integration; One-chip computer三人行资料网提供!

Calculation of thermodynamic calculation is the basis of the compressor. General the calculation of the compressor in heat-aided design systems have a compressor to help would greatly speed up the design process so that a more rational design. Compressor lubricating oil and has no thermodynamic calculation, the calculation in manual access map errors, data are not consistent with the calculation of the selected request, the result of incorrect calculations or inaccurate. At present there is no response to any oil-lubricated compressor-assisted calculation system. By the calculation of the required number of charts, prepared without oil lubricated compressor Thermodynamics-aided design system, simplifies the success of any oil-lubricated compressor thermodynamic calculation process, the realization of the data required to calculate the line selection, Chaturvedi smart look-up table, the output of data, save and print, and to improve the accuracy of the calculation parameters and words thermal calculation compressor oil-free-aided design system希望能帮到你

字数和要求怎样,我给你讲解指导~

已发送,请注意查收~~

机械论文外文文献翻译案例

The thermodynamic calculation is the basis of the compressor calculation. With the help of the compressor-aided design system, the ordinary compressor is able to speed up its progress in calculation, which in turn reasonablizes the design; while the thermodynamic calculation of non-oil lubrication compressor caused errors or inaccuracy when pictures are retrieved by hand and figures are not best chosen. It is towards this problem that the compressor-aided design system for the thermodynamic calculation of non-oil lubrication compressor is made by digitalizing all the pictures and figures. This system will simplize the calculating process of the thermodynamic non-oil lubrication compressor, enable to select data on line, retrieve pictures and figures intelligently, output, save and print them and improve the accuracy and reliability of the calculating parameters as words:compressor , thermodynamic calculation, aided design system, non-oil

Calculation of thermodynamic calculation is the basis of the compressor. General the calculation of the compressor in heat-aided design systems have a compressor to help would greatly speed up the design process so that a more rational design. Compressor lubricating oil and has no thermodynamic calculation, the calculation in manual access map errors, data are not consistent with the calculation of the selected request, the result of incorrect calculations or inaccurate. At present there is no response to any oil-lubricated compressor-assisted calculation system. By the calculation of the required number of charts, prepared without oil lubricated compressor Thermodynamics-aided design system, simplifies the success of any oil-lubricated compressor thermodynamic calculation process, the realization of the data required to calculate the line selection, Chaturvedi smart look-up table, the output of data, save and print, and to improve the accuracy of the calculation parameters and words thermal calculation compressor oil-free-aided design system希望能帮到你

机械毕业论文外文翻译

毕业论文外文翻译:将外文参考文献翻译成中文版本。

翻译要求:

1、选定外文文献后先给指导老师看,得到老师的确认通过后方可翻译。

2、选择外文翻译时一定选择外国作者写的文章,可从学校中知网或者外文数据库下载。

3、外文翻译字数要求3000字以上,从外文文章起始处开始翻译,不允许从文章中间部分开始翻译,翻译必须结束于文章的一个大段落。

外文翻译需要注意的问题

1、外文文献的出处不要翻译成中文,且写在中文译文的右上角(不是放在页眉处);会议要求:名称、地点、年份、卷(期),等 。

2、作者姓名以及作者的工作单位也不用必须翻译。

3、abstract翻译成“摘要”,不要翻译成“文章摘要”等其他词语。

4、Key words翻译成“关键词” 。

5、introduction 翻译成“引言”(不是导言)。

(最好)不要某宝,不要个人,一定要选一个正规的润色机构——服务有保障,有售后,北京译顶科技做的不错,可以联系他们一下 终身满意。

CS方向sci三区的一个小刊,之前也是major revision,大四毕业了才中了。。所以在我心目中MV几乎约等于AC,虽然这辈子只投过一篇文章。北京译顶科技做的不错,可以联系他们一下 统一查下。

毕业论文外文翻译:将外文参考文献翻译成中文版本。翻译要求:1、选定外文文献后先给指导老师看,得到老师的确认通过后方可翻译。2、选择外文翻译时一定选择外国作者写的文章,可从学校中知网或者外文数据库下载。3、外文翻译字数要求3000字以上,从外文文章起始处开始翻译,不允许从文章中间部分开始翻译,翻译必须结束于文章的一个大段落。参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴.征引过的文献在注释中已注明,不再出现于文后参考文献中。外文参考文献就是指论文是引用的文献原文是国外的,并非中国的。 原文就是指原作品,原件,即作者所写作品所用的语言。如莎士比亚的《罗密欧与朱丽叶》原文是英语。译文就是翻译过来的文字,如在中国也可以找到莎士比亚《罗密欧与朱丽叶》的中文版本,这个中文版本就称为译文。扩展资料:外文翻译需要注意的问题1、外文文献的出处不要翻译成中文,且写在中文译文的右上角(不是放在页眉处);会议要求:名称、地点、年份、卷(期),等 。2、作者姓名以及作者的工作单位也不用必须翻译。3、abstract翻译成“摘要”,不要翻译成“文章摘要”等其他词语。4、Key words翻译成“关键词” 。5、introduction 翻译成“引言”(不是导言)。6、各节的标号I、II等可以直接使用,不要再翻译成“第一部分”“第二部分”,等。 7、注意排版格式,都是单排版,行距,字号小4号,等(按照格式要求)。8、里面的图可以拷贝粘贴,但要将图标、横纵指标的英文标注翻译成中文。 9、里面的公式、表不可以拷贝粘贴,要自己重新录入、重新画表格。

机械毕业论文加工外文翻译

模具的要吗?

太难了,帮不了!在等等消息吧!

本科毕业设计论文外文翻译基本格式

论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。以下是我精心整理的本科毕业设计论文外文翻译基本格式,欢迎大家借鉴与参考,希望对大家有所帮助。

本科毕业设计论文外文翻译基本格式

一、要求

1、与毕业论文分开单独成文。

2、两篇文献。

二、基本格式

1、文献应以英、美等国家公开发表的文献为主(Journals from English speaking countries)。

2、毕业论文翻译是相对独立的,其中应该包括题目、作者(可以不翻译)、译文的出处(杂志的名称)(5号宋体、写在文稿左上角)、关键词、摘要、前言、正文、总结等几个部分。

3、文献翻译的字体、字号、序号等应与毕业论文格式要求完全一致。

4、文中所有的图表、致谢及参考文献均可以略去,但在文献翻译的末页标注:图表、致谢及参考文献已略去(见原文)(空一行,字体同正文)。

5、原文中出现的'专用名词及人名、地名、参考文献可不翻译,并同原文一样在正文中标明出处。

三、毕业论文设计外文翻译的内容要求

外文翻译内容必须与所选课题相关,外文原文不少于6000个印刷符号。译文末尾要用外文注明外文原文出处。

外文翻译要求:

1、外文资料与毕业设计(论文)选题密切相关,译文准确、质量好。

2、阅读2篇幅以上(10000字符左右)的外文资料,完成2篇不同文章的共2000汉字以上的英译汉翻译

3、外文资料可以由指导教师提供,外文资料原则上应是外国作者。严禁采用专业外语教材文章。

4、排序:“一篇中文译文、一篇外文原文、一篇中文译文、一篇外文原文”。插图内文字及图名也译成中文。

5、标题与译文格式(字体、字号、行距、页边距等)与论文格式要求相同。

下页附:外文翻译与原文参考格式

英文翻译 (黑体、四号、顶格)

外文原文出处:(译文前列出外文原文出处、作者、国籍,译文后附上外文原文)

楼主好狠哪~~~~哎,到学校图书馆查找呗。。。英文 查找,用google什么的在线翻译。。其实,没那么困难滴,,,过关就看个人造化啦~祝楼主好运~

机械设计毕业论文外文翻译

INTRODUCTION The rapid development of science and technology, product features requirements of the growing number and complexity of the increase in life expectancy shortened, replacement faster. However, the design of the products, especially mechanical products in the design means, is力不从心, failed to keep pace with the needs of the times. At present, computer-aided product design drawings, design, manufacturing, production planning has been a relatively extensive and in-depth study and achieved initial results, and product development programmes of the early computer-aided design is far from meeting a need. To this end, the author read a lot of literature on the basis of a summary of the design and scholars at home and abroad to design the method used, and discussed the various methods of organic link between product design and mechanical Computer trend of development. Under the current domestic and foreign scholars to design machinery design methods used by the main features of the programme can be summed up modern design for the following four major types. 1, systematic design method Systematic design of the main features are: design as from a number of design elements of a system, every design element of independence, there are various elements of the organic links and a level of all the design elements Combined, you can design systems to achieve the task. Systematic design idea in the 1970s by the German scholar Professor Pahl and Beitz, a system based on the theory, developed a design of the general pattern, and advocate of the design work should be rational. German Engineers Association in this on the basis of design, develop standards VDI2221 "technology systems and product development design methods. The development of the product design process of mechanical model, basically follow the German standards VDI2221 the design. In addition, many of our product design and scholars in the programme design and also learn from other developed countries cited the systematic design, which is representative: (1) The user needs as the product concept of functional characteristics, structural design and part design, process planning, operations control, and so on the basis of the product development process of the macro, the use of Quality Function layout methods, systems and information needs of users will be reasonable and effective And converted to the various stages of product development objectives and operations control technology means a point of order. (2) products as organisms on the level of life, and life systems through the use of the product design process can demand level of success and realize the concept of functional requirements of the specific levels and product design level. At the same time using the system icons to life the abstract expression of the functional requirements of products, product features a system structure. (3) the mechanical design system in the application of science into two basic questions: First, to design products as a system to process, to determine the best of its components (modules) and their mutual relations and the other is the product design Process as a system, according to the design objectives, correct and reasonable to determine the design of all aspects of the work and the various design stage. As each designer to study issues and to consider the perspective of the different emphases, to design a programme of specific research methods also differ. Here are some representative of the systematic design design elements of With five design elements (functions, effects, effects of vector, shape and surface elements parameters) described "product solution" that a product design elements of the five identified, all the characteristics of products and value characteristics already identified. Chinese scholars have also adopted similar design methods described product of the original understanding. graphical modeling law Development of the design analysis and guidance systems "KALEIT, with a clear level of the graphic description of the product structure and functions related to the abstract information, and the system structure and function of the graphical modeling, and the function of the connection between. Will be assisted design divided into two methods and information exchange, the use of Nijssen information analysis methods can be used graphic symbols, with a variety of semantic model structure, the integration can be described conditions can be divided into binding type, can relations between any combination of features , Will design solutions and information technology integration, the design process to achieve a different level of abstraction of information between the graphical modeling. The literature [11] semantic network design as a design tool in the development of the semantic network design ASK, using nodes and a network of lines describing the design, components of the node that the unit design tasks, functions, components or processing Equipment, etc.), and lines used to adjust the definition node between different semantic relations, which in the design process for all the activities and results of pre-built model, the early design requirements to the definition of a specific structure can be described by the relationship between The definition of the expression, and a computer-aided design process from abstract to concrete leap. "idea" - "design" law Will be divided into product design "concept" and "design" in two stages. "Idea" phase of the mission is to seek, select and design portfolio to meet the requirements of the original understanding of tasks. "Design" stage of work is the concrete realization of the original understanding of the conceptual stage. The programme will be "ideas" for the specific description: According to a suitable functional structure, designed to meet the requirements of the mandate of the original understanding. Functional structure of the sub-function by "structural elements" to achieve, and "structural elements" of the physical connection between the definition of "functional carrier", "functional carrier" and "structural elements" and formation of the interaction between the functional diagram ( Mechanical movement diagram). Programme of "design" is based on functional diagram, the first qualitative description of all the "functional carrier" and "structural elements", then all the quantitative description of "structural elements" and connecting pieces ( "functional vector") the shape and location have The structure of. Roper, H. use of graph theory theory, the help from his definition of "total design unit (GE)", "structure elements (KE)", "functional structure elements (FKE)", "connecting structure elements (VKE)", "Structural parts (KT)", "structural elements parts (KET)" concept, and describes elements of size, location and transmission parameters of the relationship between the number of thumbs, the design intuitive design experts design "stage. From the design methodology of the point of view, the design task will be clear after the design work is divided into three steps: 1) access to functions and functional structure (referred to as "functional"), 2) find effects (referred to as the "effect"); ) To find structure (referred to as "the configuration of the Rules"). And use the following four strategies described machinery idea stage of the process: Strategy 1: were considered "functional" and "effect" and "configuration rules." Therefore, we can work in various steps to create variations in the respective programmes, resulting in the original understanding of the broad spectrum. Strategy 2: "effect" and "configuration rules" (including the designer to create the rules) association, to consider a separate function (usually associated with the design task). At this point, to identify the typical configuration rules and their effects need to have a wealth of experience, the programme spectrum far less than a strategy of the programme spectrum. Strategy 3: "functional" and "effect", "configuration rules" are closely related. Applicable to the function, and the configuration of the rules of no choice, with special requirements of the areas, such as ultra-small machinery, large machinery, high-value function parts, and those with special requirements of the functional components, and so on. Strategy 4: In view of the structural design requirements of the solution. The strategy starting from the existing parts, through different parts of the order and connection, was expected to function. Matrix Design In the programme design process used in "requirement - to" logic tree ( "or" tree) described requirements, the relationship between the function, to satisfy the requirements of functional design solution set, a different design. According to "request - to" logic tree establishment of a "request - to" association matrix, meet the requirements necessary to describe the complex relationship between function, expressed functional requirements and the relationship between the will matrix as a mechanical system design basis, the mechanical system design space as a functional decomposition of space, only that each sub-space design of a module, in the abstract phase of the high-level, with each module design movement conversion matrix And a vector for the operation of restraint that in the abstract phase of the low-rise, each module design parameters were expressed as a matrix and the equation of motion. bond graph Law Will form a system components into the function to generate energy, energy consumption, changing energy forms, such as various types of energy transmission and use of bond graph of the function of the components that will be based on the functions of the model and bonding with plans to achieve functional The automatic generation of structural and functional structure and bonding between the automatic conversion plans to seek bond graph generated by a number of design methods. 2, modular design structure From the perspective of planning products: the definition of its mandate to design features of the product structure is based on the use of existing products (such as GM parts components, etc.) described the design task, that is, when the mandate of decomposition on each task to consider whether there is the corresponding Solutions products, so that in the planning stages of product design tasks to eliminate the contradictions that might exist in the early forecast production capacity, costs and the development of the process of designing the plan adjustable, which can improve the design efficiency and design of reliability, At the same time also reduce the cost of new products. Feldmann will describe the function of the design task is divided into four levels of product structure, (1) products → (2) functional components → (3) main function components → (4) functional components. And the use of application-oriented features of the directory structure, a more specific functional components of the qualitative and quantitative description. At the same time developed for early in the product development and design tools used by early STRAT. Machinery specialized for most of that function can be used existing product solutions and new solutions with only a small number of special features, therefore, for the use of mechanical design features of the product structure, machinery specialized for the evaluation of the design, manufacture risk is very beneficial. Functional Analysis of the products promoted on the basis of the product is broken down into a function of one or more of the basic modular structure, through the selection and combination of these modular structure formed into various products. These basic structure can be parts, components, or even a system. The ideal modular structure should be standardized interface (connectivity and with the Department of), and is serialized, universal, integrated, hierarchical, flexible, economic, with interchangeable, compatibility and relevance of the . China's combination of software component technology and CAD technology, design and composition of deformation design combined, according to grade modular theory, machine processing center will be divided into Youdadaoxiao product level, component level, component-level and component level, and use CAD technology and expertise to their portfolio into different species, different specifications of the functional module, the module from the combination of these functions into different processing center overall programme. To select a design for the directory structure of the variation machinery tools, the design of the proposed elements for a complete, structured format, a solution set design directory. And Set Design listed in the directory comment on each of the additional information, very beneficial to design engineers choice of the elements. According to the connectivity features of mechanical parts and components, will be summarized into four types: 1) The components of direct targeting, and self-adjustment of parts, 2) a common structure of the assembly, 3) have nested structure and inlay Shell-like components of the connection, 4) a modular architecture and modular components of the connection. And a quasi-symbols that the typical components and rules of the connection between the components, to achieve this connection between the components of the algorithm and the concept of visualization. In the mechanical system design, "features a" module on the functions of decomposition, and provides the best functional decomposition "tablets" of the extent of the functional and institutional forms of one-to-one. "Structure to establish" as a function of the module is the choice of targets in order to achieve mapping , based on knowledge of product design features Knowledge-based product design features of the main features are: to use the computer to identify the language describing the characteristics of the product design experts in the field of knowledge and experience to establish the appropriate knowledge base and reasoning machine, and then use the storage areas have been established by the knowledge and reasoning Mechanisms to achieve computer-aided design products. The mechanical system design is based on products with the characteristics, and design experts in the field of knowledge and experience to push volume and decision-making, the completion of several comprehensive. To achieve this stage of the computer-aided design, we must study the automatic acquisition of knowledge, expression, integration, coordination, management and use. To this end, the scholars at home and abroad designed for mechanical systems design knowledge of automated processing done a lot of research work, the method used can be summarized in the following few. coding method According to "campaign conversion" feature (the function million) institutions will be classified, described and use the code function yuan and institutional categories, which established a "body system design expert system" Knowledge Base. On this basis, will be the dual logic and fuzzy comprehensive evaluation of combining theory, the establishment of the "expert systems" reasoning mechanism, and for the four-position for the design of the machine. Use of biological evolution theory, through natural selection and sexual reproduction to the principle of evolution of organisms to the body design, use of network theory methods to express the structure for topology, and then through the coding technology, the structure and institutions Performance of individual chromosomes into the binary string, and in accordance with design requirements of fitness, the use of biological evolution theory of reproduction control mechanism, through the selection, crossover, such as a sudden variation means to eliminate low value of the individual are not suited to the fast evolution Be the best adaptation of the individual, that is, most with the design requirements of the agency programme. knowledge of the law mixed The complex mechanical systems design, mixed use of the knowledge expression describes the design of various types of knowledge is particularly suited to this point has been the design of many scholars of the consensus. In the development of complex product design intelligent decision support system DMDSS, will be the rules, framework, processes and neural networks, and other knowledge that organic combination of methods to adapt to different types of knowledge in the design of the description. Knowledge will be a single expression of a variety of methods (rules, framework and process), according to object-oriented programming principles, the framework of the groove with that object's properties, with rules that target the dynamic characteristics, with the knowledge that the treatment process, group Into a hybrid form of knowledge, and successfully developed the "object-oriented NC gantry milling machine gearbox design intelligent system GBCDIS" and "transmission structure design expert system GBSDES". use of the knowledge-based development tool Coupling in the CAD system, the use of the knowledge-based development tools NEXPERT-OBJECT, through the use of object-oriented approach, to create an object-oriented database design method for coupling the designer to design and structural design Provided extensive and reliable method of the design spectrum. NEXPERT describe the use of linear guide the design of the need to design based on knowledge of the content, which seek to knowledge-based solutions, and developed a linear guide design expert system. Design Law Directory Construction of the "modules", "functional element solution" and "institutions" three progressive design directory, and this directory of three progressive design principles of the programme as a mechanical transmission system intelligent design and development of the knowledge base of design Aids. Based on the example of the way In the development of expert systems design knowledge base, using the basic predicate described design requirements, design conditions and the selected programme, described by frame "Project" and various "concept entity," through case-based reasoning of the technologies used to produce candidate With the horsepower to product design requirements. 4, Intelligent Design Intelligent Design is the main characteristics: According to the theories of design, through the use of 3D graphics software, intelligent design software and virtual reality technology, and multimedia, hypermedia tools for product development design, the concept of products, description of the product结构.

机械 ----------------------- 华文版本 Mechanics is the branch of physics concerned with the behaviour of physical bodies when subjected to forces or displacements, and the subsequent effect of the bodies on their environment. The discipline has its roots in several ancient civilizations. During the early modern period, scientists such as Galileo, Kepler, and especially Newton, laid the foundation for what is now known as Classical mechanics. Significance Mechanics is the original discipline of physics, dealing with the macroscopic world that humans perceive. It is therefore a huge body of knowledge about the natural world. Mechanics encompasses the movement of all matter in the universe under the four fundamental interactions (or forces): gravity, the strong and weak interactions, and the electromagnetic interaction. Mechanics also constitutes a central part of technology, the application of physical knowledge for humanly defined purposes. In this connection, the discipline is often known as engineering or applied mechanics. In this sense, mechanics is used to design and analyze the behavior of structures, mechanisms, and machines. Important aspects of the fields of mechanical engineering, aerospace engineering, civil engineering, structural engineering, materials engineering, biomedical engineering and biomechanics were spawned from the study of mechanics. Classical versus quantum The major division of the mechanics discipline separates classical mechanics from quantum mechanics. Historically, classical mechanics came first, while quantum mechanics is a comparatively recent invention. Classical mechanics originated with Isaac Newton's Laws of motion in Principia Mathematica, while quantum mechanics didn't appear until 1900. Both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other so-called exact sciences. Essential in this respect is the relentless use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them. Quantum mechanics is of a wider scope, as it encompasses classical mechanics as a sub-discipline which applies under certain restricted circumstances. According to the correspondence principle, there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. Quantum mechanics has superseded classical mechanics at foundational level and is indispensable for the explanation and prediction of processes at molecular and (sub)atomic level. However, for macroscopical processes classical mechanics is able to solve problems which are unmanageably difficult in quantum mechanics and hence remains useful and well used. Einsteinian versus Newtonian Analogous to the quantum versus classical reformation, Einstein's general and special theories of relativity have expanded the scope of mechanics beyond the mechanics of Newton and Galileo, and made small corrections to them. Relativistic corrections were also needed for quantum mechanics, although relativity is categorized as a classical theory. There are no contradictions or conflicts between the two, so long as the specific circumstances are carefully kept in mind. Just as one could, in the loosest possible sense, characterize classical mechanics as dealing with "large" bodies (such as engine parts), and quantum mechanics with "small" ones (such as particles), it could be said that relativistic mechanics deals with "fast" bodies, and non-relativistic mechanics with "slow" ones. However, "fast" and "slow" are subjective concepts, depending on the state of motion of the observer. This means that all mechanics, whether classical or quantum, potentially needs to be described relativistically. On the other hand, as an observer, one may frequently arrange the situation in such a way that this is not really required. Types of mechanical bodies Thus the often-used term body needs to stand for a wide assortment of objects, including particles, projectiles, spacecraft, stars, parts of machinery, parts of solids, parts of fluids (gases and liquids), etc. Other distinctions between the various sub-disciplines of mechanics, concern the nature of the bodies being described. Particles are bodies with little (known) internal structure, treated as mathematical points in classical mechanics. Rigid bodies have size and shape, but retain a simplicity close to that of the particle, adding just a few so-called degrees of freedom, such as orientation in space. Otherwise, bodies may be semi-rigid, . elastic, or non-rigid, . fluid. These subjects have both classical and quantum divisions of study. For instance: The motion of a spacecraft, regarding its orbit and attitude (rotation), is described by the relativistic theory of classical mechanics. While analogous motions of an atomic nucleus are described by quantum mechanics. Sub-disciplines in mechanics The following are two lists of various subjects that are studied in mechanics. Note that there is also the "theory of fields" which constitutes a separate discipline in physics, formally treated as distinct from mechanics, whether classical fields or quantum fields. But in actual practice, subjects belonging to mechanics and fields are closely interwoven. Thus, for instance, forces that act on particles are frequently derived from fields (electromagnetic or gravitational), and particles generate fields by acting as sources. In fact, in quantum mechanics, particles themselves are fields, as described theoretically by the wave function. Classical mechanics The following are described as forming Classical mechanics: Newtonian mechanics, the original theory of motion (kinematics) and forces (dynamics) Lagrangian mechanics, a theoretical formalism Hamiltonian mechanics, another theoretical formalism Celestial mechanics, the motion of stars, galaxies, etc. Astrodynamics, spacecraft navigation, etc. Solid mechanics, elasticity, the properties of (semi-)rigid bodies Acoustics, sound in solids, fluids, etc. Statics, semi-rigid bodies in mechanical equilibrium Fluid mechanics, the motion of fluids Soil mechanics, mechanical behavior of soils Continuum mechanics, mechanics of continua (both solid and fluid) Hydraulics, fluids in equilibrium Applied / Engineering mechanics Biomechanics, solids, fluids, etc. in biology Statistical mechanics, large assemblies of particles Relativistic or Einsteinian mechanics, universal gravitation Quantum mechanics The following are categorized as being part of Quantum mechanics: Particle physics, the motion, structure, and reactions of particles Nuclear physics, the motion, structure, and reactions of nuclei Condensed matter physics, quantum gases, solids, liquids, etc. Quantum statistical mechanics, large assemblies of particles Professional organizations Applied Mechanics Division, American Society of Mechanical Engineers Fluid Dynamics Division, American Physical Society

两篇都是word的行不

  • 索引序列
  • 机械类论文外文文献翻译
  • 机械论文外文文献翻译案例
  • 机械毕业论文外文翻译
  • 机械毕业论文加工外文翻译
  • 机械设计毕业论文外文翻译
  • 返回顶部