首页 > 学术期刊知识库 > 热学定律的研究论文

热学定律的研究论文

发布时间:

热学定律的研究论文

我也正在写。。。后天交

同志你好: 以下是我总结的材料,请核对后使用 祝愿你工作愉快 工程热力学 热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。 工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。 工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。 为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。 工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。 这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律 。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。

热力学定律论文的参考文献

热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡 热力学第一定律:如果一个系统与环境孤立,那么它的内能将不会发生变化。引申得到,体系的内能变化等于它从环境吸收的热量与环境在其之上做功的总和。(delta)U=(delta)w+(delta)q 热力学第二定律有几种表述方式: 克劳修斯表述:热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物; 开尔文-普朗克表述:不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。 熵表述:随时间进行,一个孤立体系中的熵总是不会减少。 热力学第三定律:通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。 .否勒和.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0k,称为0K不能达到原理。一、热力学第一定律 在19世纪早期,不少人沉迷于一种神秘机械, 这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,这种不需要外界提供能量的永动机称为第一类永动机。 热力学第一定律是能量守恒定律, 它是说能量可以由一种形式变为另一种形式, 但其总量既不能增加也不能减少, 是守恒的。本世纪初爱因斯坦发现能量和质量可以互变, 所以能量守恒定律改为质能守恒定律。这一定律指出物质既不能被消灭也不能被创造, 一度被无神论当作宇宙永恒的根据. 热力学第一定律的产生是这样的:在18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。 二、热力学第二定律 在人们认识了能的转化和守恒定律后,制造永动机的梦想并没有停止下来。不少人开始企图从单一热源(比如从空气、海洋)吸收能量,并用来做功。将热转变成功,并没有违背能量守恒,如果能够实现,人类就将有了差不多取之不尽的能源,地球上海水非常丰富,热容很大,仅仅使海水的温度下降1℃,释放出来的热量就足够现代社会用几十万年,从海水中吸取热量做功,则航海不需要携带燃料!这种机械被人们称为第二类永动机。但所有的实验都失败了,因为这违背了自然界的另一条基本规律:热力学第二定律。 1824年,法国陆军工程师卡诺设想了一个既不向外做工又没有摩擦的理想热机。通过对热和功在这个热机内两个温度不同的热源之间的简单循环(即卡诺循环)的研究,得出结论:热机必须在两个热源之间工作,热机的效率只取决与热源的温差,热机效率即使在理想状态下也不可能的达到100%。即热量不能完全转化为功。 1850年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。不久,开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。这就是热力学第二定律的"开尔文表述"。奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。 热力学第二定律有多钟说法,最流行的有两种: 1. 克劳修斯(Clausius)的表述: "热量由低温物体传给高温物体而不引起其它变化是不可能的"。 热量从高温传到低温处的过程可自发进行,反之,热量从低温传到高温处虽可以进行,但有条件,如通过制冷机将热从低温处转到高温处,除了这部分能量转化之外,必然引起其它变化,就是还要消耗电功变成热,就是说,使热量从低温向高温转移的同时,需消耗另一部分功,变成为热。 2. 开尔文(Kelvin)的表述: "从单一热源取出热使之完全变为功,而不发生其它变化是不可能的"。 这种说法的意思是从功转变成热,可不引起其它变化,(如摩擦生热,机械功完全转成热而不发生其它变化),但是其反过程,将热变成功,除了这些能量转换外,必然引起其它变化,否则就不能发生。 克劳修斯和开尔文的两种表述实际上是一致的,假如热量可以由低温传给高温物体而不引起其它变化,则热可以完全变为功而不引起其它变化;在上述例子中,如果可以无条件地将低温热源中的热传给高温热源,则整个过程是高温热源中的热完全转变为功(热没有消耗到低温处),并且没有发生其它变化(气体的状态没有变化)。即克劳修斯的说法不成立的话,则开尔文的说法也不能成立,两种表述是一致的。 当然,"第二类永动机是不能制成的"也是一种较流行的说法。 热力学第二定律是人类从生产和生活实践中所总结出来的经验规律,它的命运不象热力学第一定律那样一帆风顺,从它的诞生到20世纪初都在不断遭受人们的非议和攻击,在各个时期都有不少人用各种方式企图来否定它,他们大多数是想制造所谓的"第二类永动机",当然,都以失败而告终。 热力学第二定律有丰富的含义,解释了自然界能量转化方向的深刻的规律,它描述能量自动传递的方向: 分子有规则运动的机械能, 可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能。 克劳修斯说法和开尔文说法都揭示了热的传递和转化的不可逆过程:克劳修斯说法实质上说热传递过程是不可逆的;开尔文说法实质上说功转变为热的过程是不可逆的。 正是各种不可逆过程的内在联系,使得热力学第二定律的应用远远超出热功转换的范围,成为整个自然科学中的一条基本规律。 但热力学第二定律是有适用范围的,它只能用于宏观观世界,微观世界如个别分子的运动不能用热力学第二定律去恒量,而对于超客观的世界如宇宙,由于它是一个开放的不平衡的体系,热力学第二定律也无法解释其发展规律,因而它后有非平衡态热力学使热力学得以延伸。 三、热力学第三定律 是否存在降低温度的极限?1702年,法国物理学家阿蒙顿已经提到了"绝对零度"的概念。他从空气受热时体积和压强都随温度的增加而增加设想在某个温度下空气的压力将等于零。根据他的计算,这个温度即后来提出的摄氏温标约为-239℃,后来,兰伯特更精确地重复了阿蒙顿实验,计算出这个温度为℃。他说,在这个"绝对的冷"的情况下,空气将紧密地挤在一起。他们的这个看法没有得到人们的重视。直到盖-吕萨克定律提出之后,存在绝对零度的思想才得到物理学界的普遍承认。现在我们知道,绝对零度更准确的值是-℃。 1848年,英国物理学家汤姆逊在确立热力温标时,重新提出了绝对零度是温度的下限。 随着低温技术的发展,人们不断向低温极限冲击,但越是接近绝对零度,温度的降低越困难。1906年,德国化学物理学家能斯特(Walther Nernst, 1864-1941)在观察低温现象和化学反应中发现热定理,1912年,能斯特又这一规律表为绝对零度不可能达到原理:"不可能使一个物体冷却到绝对温度的零度。"这就是热力学第三定律。 根据热力学第三定律,在绝对零度下一切物质皆停止运动。 绝对零度虽然不能达到,但可以无限趋近。 迄今为止,人类获得的最接近绝对零度的温度是(×10-9K),这是2003年由德国、美国、奥地利等国科学家组成的一个国际科研小组,日前改写的人类创造的最低温度纪录。 此外,还有人提出热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。 ********************************************************************************************* 四、克劳修斯和开尔文简介 1. 克劳修斯(1822~1888) 克劳修斯在1822年出生于普鲁士的克斯林。他的母亲是一位女教师,家中有多个兄弟姐妹。他中学毕业后,先考入了哈雷大学,后转入柏林大学学习。为了抚养弟妹,在上学期间他不得不去做家庭补习教师。 1850年,克劳修斯被聘为柏林大学副教授并兼任柏林帝国炮兵工程学校的讲师。同年,他对热机过程,特别是卡诺循环进行了精心的研究。克劳修斯从卡诺的热动力机理论出发,以机械热力理论为依据,逐渐发现了热力学基本现象,得出了热力学第二定律的克劳修斯陈述。 在《论热的运动力……》一文中,克劳修斯首次提出了热力学第二定律的定义:"热量不能自动地从低温物体传向高温物体。"这与开尔文陈述的热力学第二定律"不可制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用的功,而其他物体不发生任何变化"是等价的,它们是热力学的重要理论基础。同时,他还推导了克劳修斯方程--关于气体的压强、体积、温度 和气体普适常数之间的关系,修正了原来的范德瓦尔斯方程。 1854年,克劳修斯最先提出了熵的概念,进一步发展了热力学理论。他将热力学定律表达为:宇宙的能量是不变的,而它的熵则总在增加。由于他引进了熵的概念,因而使热力学第二定律公式化,使它的应用更为广泛了。 1855年,克劳修斯被聘为苏黎世大学正教授,在这所大学他任教长达十二年。这期间,他除了给大学生讲课外,还积极地进行科学探索。 1857年,克劳修斯研究气体动力学理论取得成就,他提出了气体分子绕本身转动的假说。这一年,他发表了《论我们称之为热能的动力类型》一文,在这篇文章中他将气体分子的动能不仅看做是它们的直线运动,而且而且看作是分子中原子旋转和振荡的运动。这样,他就正确地,尽管不是充分地(只有量子理论才能给予充分的解释),确定了实际气体与理想气体的区别。同年,他还研究了电解质和电介质。他重新解释了盐的电解质溶液中分子的运动;他建立了固体的电介质理论。他还提出描述分子极性同电介质常数之间关系的方程。同时他还提出了电解液分解的假说。这一假说,后来经过阿仑尼乌斯的进一步发展成为电解液理论。 1858年,克劳修斯通过细心的研究,推导出了气体分子平均自由程公式,找出了分子平均自由程与分子大小和扩散系数之间的关系。同时,他还提出分子运动自由程分布定律。他的研究也为气体分子运动论的建立做出了杰出的贡献。 1860年,克劳修斯计算出了气体分子运动速度。后来,他确定了气体对于器壁的压力值相当于分子撞击器壁的平均值。运用与概率论相结合的平均值方法,他开辟了物理学一个极为重要的领域,即创建了统计物理学的学科。在后来的著作中,克劳修斯推导出能表示受压力影响的物体熔点(凝固点)的方程式,后来被称为克拉佩龙-克劳修斯方程。 克劳修斯在科学研究方面的主要贡献是建立热力学基础;同时,他在分子运动论以及电解质和固体电介质理论方面也都做出了重大的贡献。鉴于他在物理学各领域中所做出的贡献和取得的成就,1865年,他被选为法国科学院院士。 1867年,克劳修斯受聘于维尔茨堡大学,担任教授。在这所大学里他任教两年。在这期间(1868年),他又被选为英国伦敦皇家学会会长。1869年以后,他任波恩大学教授。1870年他最先提出了均功理论。 1870年至1871年的战争期间,克劳修斯的膝盖惨遭重伤,因此,不得不将学生们的实验课交给克莱门斯凯特来负责。此人虽然被称为"老一辈人"的代表人物,但他并没有给他的继承者留下任何设备与仪器。也许,正是由于这个原因,尽管克劳修斯是当时最先进的物理学家,波恩大学的实验物理却没能得到应有的发展,也没能形成一种科学流派。 克劳修斯不仅在科研方面取得了重大的成就,而且在教学上也取得了良好的效果。他先后在柏林大学、苏黎世大学、维尔茨堡大学和波恩大学执教长达三十余年,桃李芬芳。他培养的很多学生后来都已成为了知名的学者,有的甚至是举世闻名的物理学家。 另外,克劳修斯除发表了大量的学术论文外,还出版了一些重要的专著,如《机械热理论》第一卷和第二卷、《势函数和势》等。 在克劳修斯的晚年,他不恰当地把热力学第二定律引用到整个宇宙,认为整个宇宙的温度必将达到均衡而不再有热量的传递,从而成为所谓的热寂状态,这就是克劳修斯首先提出来的"热寂说"。热寂说否定了物质不灭性在质上的意义,而且把热力学第二定律的应用范围无限的扩大了。 克劳修斯于1888年逝世,终年六十六岁。克劳修斯虽然在晚年错误地提出了"热寂说",但在他的一生的大部分时间里,在科学、教育上做了大量有益的工作。特别是他奠定了热力学理论基础,他的大量学术论文和专著是人类宝贵的财富,他在科学史上的功绩不容否定。他诚挚、勤奋的精神同样值得后人学习。 2. 开尔文(1824~1907) 开尔文是英国著名物理学家、发明家,原名W.汤姆孙。他是本世纪的最伟大的人物之一,是一个伟大的数学物理学家兼电学家。他被看作英帝国的第一位物理学家,同时受到世界其他国家的赞赏。他的一生获得了一切可能给予的荣誉。而他也无愧于这一切,这是他在漫长的一生中所作的实际努力而获得的。这些努力使他不仅有了名望和财富,而且赢得了广泛的声誉。 1824年6月26日开尔文生于爱尔兰的贝尔法斯特。他从小聪慧好学,10岁时就进格拉斯哥大学预科学习。17岁时,曾立志:"科学领路到哪里,就在哪里攀登不息"。1845年毕业于剑桥大学,在大学学习期间曾获兰格勒奖金第二名,史密斯奖金第一名。毕业后他赴巴黎跟随物理学家和化学家V.勒尼奥从事实验工作一年,1846年受聘为格拉斯哥大学自然哲学(物理学当时的别名)教授,任职达53年之久。由于装设第一条大西洋海底电缆有功,英政府于1866年封他为爵士,并于1892年晋升为开尔文勋爵,开尔文这个名字就是从此开始的。1890~1895年任伦敦皇家学会会长。1877年被选为法国科学院院士。1904年任格拉斯哥大学校长,直到1907年12月17日在苏格兰的内瑟霍尔逝世为止。 开尔文研究范围广泛,在热学、电磁学、流体力学、光学、地球物理、数学、工程应用等方面都做出了贡献。他一生发表论文多达600余篇,取得70种发明专利,他在当时科学界享有极高的名望,受到英国本国和欧美各国科学家、科学团体的推崇。他在热学、电磁学及它们的工程应用方面的研究最为出色。 开尔文是热力学的主要奠基人之一,在热力学的发展中作出了一系列的重大贡献。他根据盖-吕萨克、卡诺和克拉珀龙的理论于1848年创立了热力学温标。他指出:"这个温标的特点是它完全不依赖于任何特殊物质的物理性质。"这是现代科学上的标准温标。他是热力学第二定律的两个主要奠基人之一(另一个是克劳修斯),1851年他提出热力学第二定律:"不可能从单一热源吸热使之完全变为有用功而不产生其他影响。"这是公认的热力学第二定律的标准说法。并且指出,如果此定律不成立,就必须承认可以有一种永动机,它借助于使海水或土壤冷却而无限制地得到机械功,即所谓的第二种永动机。他从热力学第二定律断言,能量耗散是普遍的趋势。1852年他与焦耳合作进一步研究气体的内能,对焦耳气体自由膨胀实验作了改进,进行气体膨胀的多孔塞实验,发现了焦耳-汤姆孙效应,即气体经多孔塞绝热膨胀后所引起的温度的变化现象。这一发现成为获得低温的主要方法之一,广泛地应用到低温技术中。1856年他从理论研究上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。这一现象后叫汤姆孙效应。 在电学方面,汤姆孙以极高明的技巧研究过各种不同类型的问题,从静电学到瞬变电流。他揭示了傅里叶热传导理论和势理论之间的相似性,讨论了法拉第关于电作用传播的概念,分析了振荡电路及由此产生的交变电流。他的文章影响了麦克斯韦,后者向他请教,希望能和他研究同一课题,并给了他极高的赞誉。 开尔文在电磁学理论和工程应用上研究成果卓著。1848年他发明了电像法,这是计算一定形状导体电荷分布所产生的静电场问题的有效方法。他深人研究了莱顿瓶的放电振荡特性,于1853年发表了《莱顿瓶的振荡放电》的论文,推算了振荡的频率,为电磁振荡理论研究作出了开拓性的贡献。他曾用数学方法对电磁场的性质作了有益的探讨,试图用数学公式把电力和磁力统一起来。1846年便成功地完成了电力、磁力和电流的"力的活动影像法",这已经是电磁场理论的雏形了(如果再前进一步,就会深人到电磁波问题)。他曾在日记中写道:"假使我能把物体对于电磁和电流有关的状态重新作一番更特殊的考察,我肯定会超出我现在所知道的范围,不过那当然是以后的事了。"他的伟大之处,在于能把自己的全部研究成果,毫无保留地介绍给了麦克斯韦,并鼓励麦克斯韦建立电磁现象的统一理论,为麦克斯韦最后完成电磁场理论奠定了基础。 他十分重视理论联系实际。1875年预言了城市将采用电力照明,1879年又提出了远距离输电的可能性。他的这些设想以后都得以实现。1881年他对电动机进行了改造,大大提高了电动机的实用价值。在电工仪器方面,他的主要贡献是建立电磁量的精确单位标准和设计各种精密的测量仪器。他发明了镜式电流计(大大提高了测量灵敏度)、双臂电桥、虹吸记录器(可自动记录电报信号)等等,大大促进了电测量仪器的发展。根据他的建议,1861年英国科学协会设立了一个电学标准委员会,为近代电学量的单位标准奠定了基础。在工程技术中,1855年他研究了电缆中信号传播情况,解决了长距离海底电缆通讯的一系列理论和技术问题。经过三次失败,历经两年的多方研究与试验,终于在1858年协助装设了第一条大西洋海底电缆,这是开尔文相当出名的一项工作。他善于把教学、科研、工业应用结合在一起,在教学上注意培养学生的实际工作能力。在格拉斯哥大学他组建了英国第一个为学生用的课外实验室。 汤姆孙还将物理学用到完全不同的领域。他研究过太阳热能的起源和地球的热平衡。他的方法可靠而有趣,但只由于他不知道太阳和地球上的能量来自核能,因而不可能得到正确的结论。他试图用落到太阳上的陨石或用引力收缩来解释太阳热能的起源。约在1854年,他估算太阳的"年龄"小于5×108年,而这只是我们现在知道的值的十分之一。 从地球表面附近的温度梯度,汤姆孙试图推算出地球热的历史和年龄。他的估算仍然太低,仅为4×108年,而实际值约为5×109年。地质学家以地质现象的演变为理论根据,很快就发现他的估算是错误的。他们不能驳倒汤姆孙的数学,但他们肯定他的假定是错误的。同样,生物学家也发现汤姆孙给出的时间进程与最新的进化论的观念相悖。这一争论持续了多年,汤姆孙完全不理解别人的反对意见是正确的。最后,直到放射性和核反应的发现,才证明了汤姆孙假设的前提是完全错误的。 流体力学特别是其中的涡旋理论成为汤姆孙最喜爱的学科之一,他受亥姆霍兹工作的启示,发现了一些有价值的定理。他航行的收获之一是在1876年发明了适用于铁船的特殊罗盘,这一发明后来为英国海军所采用,而且一直用到被现代回转罗盘代替为止。汤姆孙的企业生产了许多磁罗盘和水深探测仪,从中大为获利。 基于他的实践经验和理论知识,汤姆孙感到迫切需要统一电学单位,公制的引入使法国革命向前跨了一大步,但是电学测量却产生了全新的问题。高斯和韦伯奠定了绝对单位制的理论基础,"绝对"意味着它们与特定的物质或标准无关,仅取决于普适的物理定律。在绝对单位制中如何确定刻度,如何选择合适的倍数因子使它能方便地应用于工业,如何劝说科技界共同接受这一单位制,所有这一切都是重要并且困难的任务。1861年英国科学协会任命一个委员会开始这项工作,汤姆孙是其中的一员。他们努力工作了许多年,一直到1881年,由汤姆孙和亥姆霍兹起主导作用的在巴黎召开的一次国际代表大会,和1893年,在芝加哥召开的另一次代表大会,才正式接受这一新的单位制,并采用伏特、安培、法拉和欧姆等作为电学单位,从此它们被普遍使用。然而,单位制的问题并未就此解决,后来的一些会议又改变了其中某些标准量的定义,它们的实际值也相应变动了,虽然这种变动是非常小的。 开尔文一生谦虚勤奋,意志坚强,不怕失败,百折不挠。在对待困难问题上他讲:"我们都感到,对困难必须正视,不能回避;应当把它放在心里,希望能够解决它。无论如何,每个困难一定有解决的办法,虽然我们可能一生没有能找到。"他这种终生不懈地为科学事业奋斗的精神,永远为后人敬仰。1896年在格拉斯哥大学庆祝他50周年教授生涯大会上,他说:"有两个字最能代表我50年内在科学研究上的奋斗,就是'失败'两字。"这足以说明他的谦虚品德。为了纪念他在科学上的功绩,国际计量大会把热力学温标(即绝对温标)称为开尔文(开氏)温标,热力学温度以开尔文为单位,是现在国际单位制中七个基本单位之一。 开尔文的一生是非常成功的,他可以算作世界上最伟大的科学家中的一位。他于1907年12月17日去世时,得到了几乎整个英国和全世界科学家的哀悼。他的遗体被安葬在威斯敏斯特教堂牛顿墓的旁边。

同志你好: 以下是我总结的材料,请核对后使用 祝愿你工作愉快 工程热力学 热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。 工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。 工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。 为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。 工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。 这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律 。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。

热力学第一定律(thefirstlawofthermodynamics)就是不同形式的能量在传递与转换过程中守恒的定律,表达式为Q=△U+W。表述形式:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。该定律经过迈耳、焦耳等多位物理学家验证。热力学第一定律就是涉及热现象领域内的能量守恒和转化定律。十九世纪中期,在长期生产实践和大量科学实验的基础上,它才以科学定律的形式被确立起来。

热力学第二定律是什么

热力学定律论文参考文献

同志你好: 以下是我总结的材料,请核对后使用 祝愿你工作愉快 工程热力学 热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。 工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。 工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。 为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。 工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。 这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律 。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。

化学基本观念是学生通过化学学习所获得的对化学的总观性的认识,化学基本观念不是具体的化学知识,它是在具体化学知识的基础上通过不断的概括提炼而形成的,它对学生科学素养的养成将发挥重要的作用。下面是我为大家整理的化学本科生 毕业 论文,供大家参考。

[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课, 文章 阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。

[关键词]化工热力学;能源化学工程;教学实践;教学体会

化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维 方法 的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。

1明确教学内容与课程主线

结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。

2改变单一课堂教学模式,培养学生自主学习能力

化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。

3课堂教学与工程实践密切结合,培养学生初步的工程观点

化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。

4考核方式方法研究

传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。

5结束语

在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。

参考文献

[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.

[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.

[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.

[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.

[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.

[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.

[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.

摘要:随着我国科学技术的不断发展,化学工程技术在化学生产中的应用越来越广泛。化学工程技术作为化学生产中重要的一项技术,不仅能够有效的节约在化学生产中所需要的时间,而且还能够提高化学工程的生产效率。因此,本文通过对化学工程技术的技术概念进行了阐述后,又详细的介绍了超临界流体技术、传热技术以及绿色化学反应技术在化学生产中的应用,并且分析了现如今的化学工程技术存在的问题,同时提出了相应的对策,从而使得化学工程技术在化学生产中能够有更好的发展。

关键词:化学工程技术;化学生产;应用;分析

在我国,科学技术一直是我们的一项重要的生产技术,随着科技的快速发展,在化学生产过程中也开始广泛的采用化工技术。化学工程技术主要是一项研究化学生产过程中需要采用的相关技术,其主要目的是对化学工程产品进行开发、设计、制造和管理。由于化学工程技术能够有效的提高产品的质量,同时也能够提升化学生产中的工作效率,因此我们对化学工程技术有了更广泛的关注,并不断的将其拓展到化学生产中的各个领域,使得化学工程技术能够发展的更好,进而不断的推进我国的经济发展和科技发展,使我们的生活条件更加优越。

1化学工程技术的技术概念阐述

现如今,化学产品已经成为了人们生活中非常常见的物品,例如药物、食品和日用品,还有农业药物和工厂生产所需的原料等等。因此化学工程技术变成为了一项炙手可热的技术,不断的受到人们的关注。化学工程技术是根据化学理论基础与相关的技术相结合的一项应用于化学生产中的技术,利用化学设备,通过一系列的化学反应进行产品的大量生产。在化学生产的过程中,化学的反应物和设备对于工程的技术要求是非常高的,而化学工程技术的优势就在于能够满足化学反应的要求,进而提高了化学产品的质量。除此之外,化学工程技术还有一项更大的优势就是对废物的处理,这项技术能够尽可能不对环境造成很大的影响,正符合我国当前对生产的要求。

2化学工程技术在化学生产中的应用

超临界流体技术在化学生产中的应用

超临界流体技术主要的内容是,控制一定的温度和压力,使得需要的流体处于液体与气体中间的状态。这种流体的特点集合了气液的优点,它的粘度低与气体相似,它的密度很高与液体相似,这就导致它的扩散能力很强,介于气体和液体之间。同时它还拥有很强的溶解能力和压缩能力。将这种技术应用于化学生产中,通过控制温度与压力,得到超临界流体,利用其拥有的优势来达到节省能耗的目的。现如今,我们将这种技术应用于更过多领域,比如,高分子材料、复合材料、有机物材料和无机物材料。

传热技术在化学生产中的应用

化学工程之中的传热技术主要是分为两方面,一方面是微细尺度传热技术,另一方面是强化传热过程。首先微细尺度传热,是以热对流、热传导、热辐射为主要的内容,从空间尺度和时间尺度微细进行讨论和研究的一项传热技术。这项技术在微米、纳米科学中得到了广泛的应用,并取得了不错的成绩,因此人们更加关注它在化学生产中的应用。强化传热过程,主要的重点是通过调试换热器设备,不断改进生产过程中的传热系数,使其能够有能力不断的对外放热。为了强化传热过程,就要增加冷热流体间的温差,这就必须通过改变换热的面积来提高传热系数,从而来提高传热的效率,使得在化学生产的过程节能减耗。

绿色化学反应技术在化学生产中的应用

通常化学生产的产品一般对我们生活有一些影响的,因此我们就需要采用绿色化学反应来防止化学生产的过程中对环境造成污染,这是从源头来解决污染问题的技术方法。绿色化学只得就是通过使用化学的技术与方法,结合相关的知识来解决化学对人们和环境造成的危害。主要要求就是,化学生产过程中用到的试剂、催化剂、反应原料,和反应完成后的产物与副产物都必须对人类和环境无危害,同时也要保证绿色环保。例如,采用绿色无毒的原料方面,可以将石油原料装换成生物原料。像是在化学产品尼龙的生产过程中,原先采用的是含苯的石油化工原料,我们将可以其原料改换成生物原料,一样也可以制成尼龙,不仅保护了环境,而且也保护了人体收到伤害。除此之外,这项技术在绿色食品生产中也起到了很大的作用,绿色食物是对人体很有益的,在其生产过程中一般禁止使用化学药剂,这样不仅减少了对人体的伤害,同时也减少了对环境的影响。然而生产绿色食品的代价就是成本高,为了可以降低成本又能够有质量,我们可以将化学技术与生物技术相结合,开发基因技术,提高并促进农作物的产量和质量,生物技术与化学反应技术相结合可以在以下过程中充分的利用。

3现今化学工程技术存在的问题

化学工程技术需要进一步的提高

现如今,我国的化学工程技术应用的领域非常更广泛,但是仍存在一些不足。滴状冷凝在工业上的应用仍然不能有很好的表现,因为在获得滴状冷凝后,冷凝的液滴不能够被长久的保存,所以,我们应该在这问题上有进一步的研究,从而来解决这个问题。使得我国的化学工程技术能够有更好的发展,人们能够有更好的生活条件。

化学工程技术的人才匮乏

在化学工程中存在的另一个严重的问题就是技术人才问题,只有用化学专业技术强的人才,才能够更好的提高化学生产的质量。而我国现在就存在这样的问题,化学领域的工作人员的普遍的技术能力和专业能力不强,主要是由于我国的教育体制问题,当代的大学生理论要点掌握很好,但实际操作方面却严重的匮乏,这就导致技术型人才的缺乏,从而影响了化学工程技术的进步。

4对化学工程技术的发展提出对策

不断提升化学工程技术

随着我国的科技不断的发展,化学工程技术也会越来越进步,我们应该不断的更新技术,以此来适应社会科技的发展。应该在巩固传统的化学技术的同时不断的添加新型技术,并抛弃不利的部分,从而实现化学工程技术有更好的发展。

培养化学技术人才

人才的重要性是我们有目共睹的,化学技术人才对于化学工程的发展有着至关重要的作用。因此为了化学工程技术能够有更好的发展,我们重点培养化学技术人才,化学生产企业可以通过与相关专业的院校进行合作,让专业对口的大学生能够有机会到生产工厂进行相关的实习操作,从而来培养理论知识牢固并且有一定的操作能力的技术人才来工作。

5结语

化学工程技术在化学生产过程中的应用广泛,它不仅促进了社会经济的发展,更是提高了人们的生活水平,通过技术和人才的不断涌进,我国的化学工程技术会有更好的发展。

参考文献:

[1]王一竹,王一龙,麻超等.关于化学工程技术在工业生产中的应用探讨[J].大科技,2015,(27):283~283.

[2]侯海霞,柯杨,王胜壁等.解析化学工程技术在化学生产中的应用[J].山东工业技术,2015,(14):91.

[3]裘炎,王杲.探析化学工程技术在化学生产中的应用[J].化工管理,2015,(20):90.

[4]刘玉琴.浅谈化学工程技术在化学生产中的应用[J].中国化工贸易,2014,(25):95~95.

[5]刘洋.浅析化学工程技术在化学生产中的应用[J].城市建设理论研究(电子版),2015,(9):662~663.

化学本科生毕业论文相关文章:

1. 化学本科毕业论文范文

2. 化学毕业论文综述范文

3. 化学毕业论文范文精选

4. 化学毕业论文

5. 化学毕业论文范例

热力学第一定律参考文献去知网找。知网是用来进行学术文献的查阅、下载与期刊发表的,是一个很好用的查询参考文献的网站,所以,热力学第一定律参考文献去知网找。

热力学第三定律毕业论文

热力学第二定律是什么

热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡 热力学第一定律:如果一个系统与环境孤立,那么它的内能将不会发生变化。引申得到,体系的内能变化等于它从环境吸收的热量与环境在其之上做功的总和。(delta)U=(delta)w+(delta)q 热力学第二定律有几种表述方式: 克劳修斯表述:热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物; 开尔文-普朗克表述:不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。 熵表述:随时间进行,一个孤立体系中的熵总是不会减少。 热力学第三定律:通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。 .否勒和.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0k,称为0K不能达到原理。一、热力学第一定律 在19世纪早期,不少人沉迷于一种神秘机械, 这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,这种不需要外界提供能量的永动机称为第一类永动机。 热力学第一定律是能量守恒定律, 它是说能量可以由一种形式变为另一种形式, 但其总量既不能增加也不能减少, 是守恒的。本世纪初爱因斯坦发现能量和质量可以互变, 所以能量守恒定律改为质能守恒定律。这一定律指出物质既不能被消灭也不能被创造, 一度被无神论当作宇宙永恒的根据. 热力学第一定律的产生是这样的:在18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。 二、热力学第二定律 在人们认识了能的转化和守恒定律后,制造永动机的梦想并没有停止下来。不少人开始企图从单一热源(比如从空气、海洋)吸收能量,并用来做功。将热转变成功,并没有违背能量守恒,如果能够实现,人类就将有了差不多取之不尽的能源,地球上海水非常丰富,热容很大,仅仅使海水的温度下降1℃,释放出来的热量就足够现代社会用几十万年,从海水中吸取热量做功,则航海不需要携带燃料!这种机械被人们称为第二类永动机。但所有的实验都失败了,因为这违背了自然界的另一条基本规律:热力学第二定律。 1824年,法国陆军工程师卡诺设想了一个既不向外做工又没有摩擦的理想热机。通过对热和功在这个热机内两个温度不同的热源之间的简单循环(即卡诺循环)的研究,得出结论:热机必须在两个热源之间工作,热机的效率只取决与热源的温差,热机效率即使在理想状态下也不可能的达到100%。即热量不能完全转化为功。 1850年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。不久,开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。这就是热力学第二定律的"开尔文表述"。奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。 热力学第二定律有多钟说法,最流行的有两种: 1. 克劳修斯(Clausius)的表述: "热量由低温物体传给高温物体而不引起其它变化是不可能的"。 热量从高温传到低温处的过程可自发进行,反之,热量从低温传到高温处虽可以进行,但有条件,如通过制冷机将热从低温处转到高温处,除了这部分能量转化之外,必然引起其它变化,就是还要消耗电功变成热,就是说,使热量从低温向高温转移的同时,需消耗另一部分功,变成为热。 2. 开尔文(Kelvin)的表述: "从单一热源取出热使之完全变为功,而不发生其它变化是不可能的"。 这种说法的意思是从功转变成热,可不引起其它变化,(如摩擦生热,机械功完全转成热而不发生其它变化),但是其反过程,将热变成功,除了这些能量转换外,必然引起其它变化,否则就不能发生。 克劳修斯和开尔文的两种表述实际上是一致的,假如热量可以由低温传给高温物体而不引起其它变化,则热可以完全变为功而不引起其它变化;在上述例子中,如果可以无条件地将低温热源中的热传给高温热源,则整个过程是高温热源中的热完全转变为功(热没有消耗到低温处),并且没有发生其它变化(气体的状态没有变化)。即克劳修斯的说法不成立的话,则开尔文的说法也不能成立,两种表述是一致的。 当然,"第二类永动机是不能制成的"也是一种较流行的说法。 热力学第二定律是人类从生产和生活实践中所总结出来的经验规律,它的命运不象热力学第一定律那样一帆风顺,从它的诞生到20世纪初都在不断遭受人们的非议和攻击,在各个时期都有不少人用各种方式企图来否定它,他们大多数是想制造所谓的"第二类永动机",当然,都以失败而告终。 热力学第二定律有丰富的含义,解释了自然界能量转化方向的深刻的规律,它描述能量自动传递的方向: 分子有规则运动的机械能, 可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能。 克劳修斯说法和开尔文说法都揭示了热的传递和转化的不可逆过程:克劳修斯说法实质上说热传递过程是不可逆的;开尔文说法实质上说功转变为热的过程是不可逆的。 正是各种不可逆过程的内在联系,使得热力学第二定律的应用远远超出热功转换的范围,成为整个自然科学中的一条基本规律。 但热力学第二定律是有适用范围的,它只能用于宏观观世界,微观世界如个别分子的运动不能用热力学第二定律去恒量,而对于超客观的世界如宇宙,由于它是一个开放的不平衡的体系,热力学第二定律也无法解释其发展规律,因而它后有非平衡态热力学使热力学得以延伸。 三、热力学第三定律 是否存在降低温度的极限?1702年,法国物理学家阿蒙顿已经提到了"绝对零度"的概念。他从空气受热时体积和压强都随温度的增加而增加设想在某个温度下空气的压力将等于零。根据他的计算,这个温度即后来提出的摄氏温标约为-239℃,后来,兰伯特更精确地重复了阿蒙顿实验,计算出这个温度为℃。他说,在这个"绝对的冷"的情况下,空气将紧密地挤在一起。他们的这个看法没有得到人们的重视。直到盖-吕萨克定律提出之后,存在绝对零度的思想才得到物理学界的普遍承认。现在我们知道,绝对零度更准确的值是-℃。 1848年,英国物理学家汤姆逊在确立热力温标时,重新提出了绝对零度是温度的下限。 随着低温技术的发展,人们不断向低温极限冲击,但越是接近绝对零度,温度的降低越困难。1906年,德国化学物理学家能斯特(Walther Nernst, 1864-1941)在观察低温现象和化学反应中发现热定理,1912年,能斯特又这一规律表为绝对零度不可能达到原理:"不可能使一个物体冷却到绝对温度的零度。"这就是热力学第三定律。 根据热力学第三定律,在绝对零度下一切物质皆停止运动。 绝对零度虽然不能达到,但可以无限趋近。 迄今为止,人类获得的最接近绝对零度的温度是(×10-9K),这是2003年由德国、美国、奥地利等国科学家组成的一个国际科研小组,日前改写的人类创造的最低温度纪录。 此外,还有人提出热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。 ********************************************************************************************* 四、克劳修斯和开尔文简介 1. 克劳修斯(1822~1888) 克劳修斯在1822年出生于普鲁士的克斯林。他的母亲是一位女教师,家中有多个兄弟姐妹。他中学毕业后,先考入了哈雷大学,后转入柏林大学学习。为了抚养弟妹,在上学期间他不得不去做家庭补习教师。 1850年,克劳修斯被聘为柏林大学副教授并兼任柏林帝国炮兵工程学校的讲师。同年,他对热机过程,特别是卡诺循环进行了精心的研究。克劳修斯从卡诺的热动力机理论出发,以机械热力理论为依据,逐渐发现了热力学基本现象,得出了热力学第二定律的克劳修斯陈述。 在《论热的运动力……》一文中,克劳修斯首次提出了热力学第二定律的定义:"热量不能自动地从低温物体传向高温物体。"这与开尔文陈述的热力学第二定律"不可制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用的功,而其他物体不发生任何变化"是等价的,它们是热力学的重要理论基础。同时,他还推导了克劳修斯方程--关于气体的压强、体积、温度 和气体普适常数之间的关系,修正了原来的范德瓦尔斯方程。 1854年,克劳修斯最先提出了熵的概念,进一步发展了热力学理论。他将热力学定律表达为:宇宙的能量是不变的,而它的熵则总在增加。由于他引进了熵的概念,因而使热力学第二定律公式化,使它的应用更为广泛了。 1855年,克劳修斯被聘为苏黎世大学正教授,在这所大学他任教长达十二年。这期间,他除了给大学生讲课外,还积极地进行科学探索。 1857年,克劳修斯研究气体动力学理论取得成就,他提出了气体分子绕本身转动的假说。这一年,他发表了《论我们称之为热能的动力类型》一文,在这篇文章中他将气体分子的动能不仅看做是它们的直线运动,而且而且看作是分子中原子旋转和振荡的运动。这样,他就正确地,尽管不是充分地(只有量子理论才能给予充分的解释),确定了实际气体与理想气体的区别。同年,他还研究了电解质和电介质。他重新解释了盐的电解质溶液中分子的运动;他建立了固体的电介质理论。他还提出描述分子极性同电介质常数之间关系的方程。同时他还提出了电解液分解的假说。这一假说,后来经过阿仑尼乌斯的进一步发展成为电解液理论。 1858年,克劳修斯通过细心的研究,推导出了气体分子平均自由程公式,找出了分子平均自由程与分子大小和扩散系数之间的关系。同时,他还提出分子运动自由程分布定律。他的研究也为气体分子运动论的建立做出了杰出的贡献。 1860年,克劳修斯计算出了气体分子运动速度。后来,他确定了气体对于器壁的压力值相当于分子撞击器壁的平均值。运用与概率论相结合的平均值方法,他开辟了物理学一个极为重要的领域,即创建了统计物理学的学科。在后来的著作中,克劳修斯推导出能表示受压力影响的物体熔点(凝固点)的方程式,后来被称为克拉佩龙-克劳修斯方程。 克劳修斯在科学研究方面的主要贡献是建立热力学基础;同时,他在分子运动论以及电解质和固体电介质理论方面也都做出了重大的贡献。鉴于他在物理学各领域中所做出的贡献和取得的成就,1865年,他被选为法国科学院院士。 1867年,克劳修斯受聘于维尔茨堡大学,担任教授。在这所大学里他任教两年。在这期间(1868年),他又被选为英国伦敦皇家学会会长。1869年以后,他任波恩大学教授。1870年他最先提出了均功理论。 1870年至1871年的战争期间,克劳修斯的膝盖惨遭重伤,因此,不得不将学生们的实验课交给克莱门斯凯特来负责。此人虽然被称为"老一辈人"的代表人物,但他并没有给他的继承者留下任何设备与仪器。也许,正是由于这个原因,尽管克劳修斯是当时最先进的物理学家,波恩大学的实验物理却没能得到应有的发展,也没能形成一种科学流派。 克劳修斯不仅在科研方面取得了重大的成就,而且在教学上也取得了良好的效果。他先后在柏林大学、苏黎世大学、维尔茨堡大学和波恩大学执教长达三十余年,桃李芬芳。他培养的很多学生后来都已成为了知名的学者,有的甚至是举世闻名的物理学家。 另外,克劳修斯除发表了大量的学术论文外,还出版了一些重要的专著,如《机械热理论》第一卷和第二卷、《势函数和势》等。 在克劳修斯的晚年,他不恰当地把热力学第二定律引用到整个宇宙,认为整个宇宙的温度必将达到均衡而不再有热量的传递,从而成为所谓的热寂状态,这就是克劳修斯首先提出来的"热寂说"。热寂说否定了物质不灭性在质上的意义,而且把热力学第二定律的应用范围无限的扩大了。 克劳修斯于1888年逝世,终年六十六岁。克劳修斯虽然在晚年错误地提出了"热寂说",但在他的一生的大部分时间里,在科学、教育上做了大量有益的工作。特别是他奠定了热力学理论基础,他的大量学术论文和专著是人类宝贵的财富,他在科学史上的功绩不容否定。他诚挚、勤奋的精神同样值得后人学习。 2. 开尔文(1824~1907) 开尔文是英国著名物理学家、发明家,原名W.汤姆孙。他是本世纪的最伟大的人物之一,是一个伟大的数学物理学家兼电学家。他被看作英帝国的第一位物理学家,同时受到世界其他国家的赞赏。他的一生获得了一切可能给予的荣誉。而他也无愧于这一切,这是他在漫长的一生中所作的实际努力而获得的。这些努力使他不仅有了名望和财富,而且赢得了广泛的声誉。 1824年6月26日开尔文生于爱尔兰的贝尔法斯特。他从小聪慧好学,10岁时就进格拉斯哥大学预科学习。17岁时,曾立志:"科学领路到哪里,就在哪里攀登不息"。1845年毕业于剑桥大学,在大学学习期间曾获兰格勒奖金第二名,史密斯奖金第一名。毕业后他赴巴黎跟随物理学家和化学家V.勒尼奥从事实验工作一年,1846年受聘为格拉斯哥大学自然哲学(物理学当时的别名)教授,任职达53年之久。由于装设第一条大西洋海底电缆有功,英政府于1866年封他为爵士,并于1892年晋升为开尔文勋爵,开尔文这个名字就是从此开始的。1890~1895年任伦敦皇家学会会长。1877年被选为法国科学院院士。1904年任格拉斯哥大学校长,直到1907年12月17日在苏格兰的内瑟霍尔逝世为止。 开尔文研究范围广泛,在热学、电磁学、流体力学、光学、地球物理、数学、工程应用等方面都做出了贡献。他一生发表论文多达600余篇,取得70种发明专利,他在当时科学界享有极高的名望,受到英国本国和欧美各国科学家、科学团体的推崇。他在热学、电磁学及它们的工程应用方面的研究最为出色。 开尔文是热力学的主要奠基人之一,在热力学的发展中作出了一系列的重大贡献。他根据盖-吕萨克、卡诺和克拉珀龙的理论于1848年创立了热力学温标。他指出:"这个温标的特点是它完全不依赖于任何特殊物质的物理性质。"这是现代科学上的标准温标。他是热力学第二定律的两个主要奠基人之一(另一个是克劳修斯),1851年他提出热力学第二定律:"不可能从单一热源吸热使之完全变为有用功而不产生其他影响。"这是公认的热力学第二定律的标准说法。并且指出,如果此定律不成立,就必须承认可以有一种永动机,它借助于使海水或土壤冷却而无限制地得到机械功,即所谓的第二种永动机。他从热力学第二定律断言,能量耗散是普遍的趋势。1852年他与焦耳合作进一步研究气体的内能,对焦耳气体自由膨胀实验作了改进,进行气体膨胀的多孔塞实验,发现了焦耳-汤姆孙效应,即气体经多孔塞绝热膨胀后所引起的温度的变化现象。这一发现成为获得低温的主要方法之一,广泛地应用到低温技术中。1856年他从理论研究上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。这一现象后叫汤姆孙效应。 在电学方面,汤姆孙以极高明的技巧研究过各种不同类型的问题,从静电学到瞬变电流。他揭示了傅里叶热传导理论和势理论之间的相似性,讨论了法拉第关于电作用传播的概念,分析了振荡电路及由此产生的交变电流。他的文章影响了麦克斯韦,后者向他请教,希望能和他研究同一课题,并给了他极高的赞誉。 开尔文在电磁学理论和工程应用上研究成果卓著。1848年他发明了电像法,这是计算一定形状导体电荷分布所产生的静电场问题的有效方法。他深人研究了莱顿瓶的放电振荡特性,于1853年发表了《莱顿瓶的振荡放电》的论文,推算了振荡的频率,为电磁振荡理论研究作出了开拓性的贡献。他曾用数学方法对电磁场的性质作了有益的探讨,试图用数学公式把电力和磁力统一起来。1846年便成功地完成了电力、磁力和电流的"力的活动影像法",这已经是电磁场理论的雏形了(如果再前进一步,就会深人到电磁波问题)。他曾在日记中写道:"假使我能把物体对于电磁和电流有关的状态重新作一番更特殊的考察,我肯定会超出我现在所知道的范围,不过那当然是以后的事了。"他的伟大之处,在于能把自己的全部研究成果,毫无保留地介绍给了麦克斯韦,并鼓励麦克斯韦建立电磁现象的统一理论,为麦克斯韦最后完成电磁场理论奠定了基础。 他十分重视理论联系实际。1875年预言了城市将采用电力照明,1879年又提出了远距离输电的可能性。他的这些设想以后都得以实现。1881年他对电动机进行了改造,大大提高了电动机的实用价值。在电工仪器方面,他的主要贡献是建立电磁量的精确单位标准和设计各种精密的测量仪器。他发明了镜式电流计(大大提高了测量灵敏度)、双臂电桥、虹吸记录器(可自动记录电报信号)等等,大大促进了电测量仪器的发展。根据他的建议,1861年英国科学协会设立了一个电学标准委员会,为近代电学量的单位标准奠定了基础。在工程技术中,1855年他研究了电缆中信号传播情况,解决了长距离海底电缆通讯的一系列理论和技术问题。经过三次失败,历经两年的多方研究与试验,终于在1858年协助装设了第一条大西洋海底电缆,这是开尔文相当出名的一项工作。他善于把教学、科研、工业应用结合在一起,在教学上注意培养学生的实际工作能力。在格拉斯哥大学他组建了英国第一个为学生用的课外实验室。 汤姆孙还将物理学用到完全不同的领域。他研究过太阳热能的起源和地球的热平衡。他的方法可靠而有趣,但只由于他不知道太阳和地球上的能量来自核能,因而不可能得到正确的结论。他试图用落到太阳上的陨石或用引力收缩来解释太阳热能的起源。约在1854年,他估算太阳的"年龄"小于5×108年,而这只是我们现在知道的值的十分之一。 从地球表面附近的温度梯度,汤姆孙试图推算出地球热的历史和年龄。他的估算仍然太低,仅为4×108年,而实际值约为5×109年。地质学家以地质现象的演变为理论根据,很快就发现他的估算是错误的。他们不能驳倒汤姆孙的数学,但他们肯定他的假定是错误的。同样,生物学家也发现汤姆孙给出的时间进程与最新的进化论的观念相悖。这一争论持续了多年,汤姆孙完全不理解别人的反对意见是正确的。最后,直到放射性和核反应的发现,才证明了汤姆孙假设的前提是完全错误的。 流体力学特别是其中的涡旋理论成为汤姆孙最喜爱的学科之一,他受亥姆霍兹工作的启示,发现了一些有价值的定理。他航行的收获之一是在1876年发明了适用于铁船的特殊罗盘,这一发明后来为英国海军所采用,而且一直用到被现代回转罗盘代替为止。汤姆孙的企业生产了许多磁罗盘和水深探测仪,从中大为获利。 基于他的实践经验和理论知识,汤姆孙感到迫切需要统一电学单位,公制的引入使法国革命向前跨了一大步,但是电学测量却产生了全新的问题。高斯和韦伯奠定了绝对单位制的理论基础,"绝对"意味着它们与特定的物质或标准无关,仅取决于普适的物理定律。在绝对单位制中如何确定刻度,如何选择合适的倍数因子使它能方便地应用于工业,如何劝说科技界共同接受这一单位制,所有这一切都是重要并且困难的任务。1861年英国科学协会任命一个委员会开始这项工作,汤姆孙是其中的一员。他们努力工作了许多年,一直到1881年,由汤姆孙和亥姆霍兹起主导作用的在巴黎召开的一次国际代表大会,和1893年,在芝加哥召开的另一次代表大会,才正式接受这一新的单位制,并采用伏特、安培、法拉和欧姆等作为电学单位,从此它们被普遍使用。然而,单位制的问题并未就此解决,后来的一些会议又改变了其中某些标准量的定义,它们的实际值也相应变动了,虽然这种变动是非常小的。 开尔文一生谦虚勤奋,意志坚强,不怕失败,百折不挠。在对待困难问题上他讲:"我们都感到,对困难必须正视,不能回避;应当把它放在心里,希望能够解决它。无论如何,每个困难一定有解决的办法,虽然我们可能一生没有能找到。"他这种终生不懈地为科学事业奋斗的精神,永远为后人敬仰。1896年在格拉斯哥大学庆祝他50周年教授生涯大会上,他说:"有两个字最能代表我50年内在科学研究上的奋斗,就是'失败'两字。"这足以说明他的谦虚品德。为了纪念他在科学上的功绩,国际计量大会把热力学温标(即绝对温标)称为开尔文(开氏)温标,热力学温度以开尔文为单位,是现在国际单位制中七个基本单位之一。 开尔文的一生是非常成功的,他可以算作世界上最伟大的科学家中的一位。他于1907年12月17日去世时,得到了几乎整个英国和全世界科学家的哀悼。他的遗体被安葬在威斯敏斯特教堂牛顿墓的旁边。

1、热力学第三定律的思想史意义热力学三定律的发现具有重要的思想史意义。我们知道,在热力学第二定律的各种表述中,克劳修斯突出了热机作功中热传导的不可逆性,而开尔文则强调了功和热的转化的不可逆性。但从本质上看,他们两人的表述都反映了一切自发过程中有用能量的耗散特性,即物质运动能量的变化总是朝着从利用效率较高的能量向利用效率较低的能量的方向进行;而在这种单方向的不可逆过程中熵总是增加的。根据玻尔兹曼(~1906)对熵和热力学第二定律的几率解释,熵越大表示系统宏观的无序程度也越高。克劳西斯错误地把宇宙看作一个自给系统,认为宇宙的熵将趋向极大值从而最终达到热寂状态。这就是后来人们所批判的所谓“宇宙热寂说”。但是,无论如何不能否认,正是熵的概念和热力学第二定律最先把时间箭头带进了物理学,物理世界不再只是一个如牛顿力学所描绘的存在着的世界,而且是一个演化着的世界。这是对经典物理学及其机械自然观的叛逆。热力学对近代科学传统的叛逆,还表现于它反对在经典物理学中占统治地位的“自然过程的可逆性”概念。克劳修斯指出,能量守恒原理的正确性无可怀疑,但如果以为它证实了宇宙是永恒的循环,那就走得太远了。热力学第二定律揭示了,方向相反的变化并不总是以等量出现,宇宙在一去不复返地总朝着一个方向发展。这是对康德宇宙循环论和拉普拉斯决定论的挑战。应当指出,热力学第二定律仅仅从一个角度开始、而没有穷尽对自然界演化机制的探讨。当时和后世的学者们则从其他角度力图寻找不遵守热力学第二定律的自然过程及其演化机制。在物理学领域里,麦克斯韦(~1879)精心设计的“麦克斯韦妖”的理想实验是第一个违背热力学第二定律的过程,它告诉我们:与自发的随机过程不同,信息和选择行为会导致有序和组织化。在物理学领域之外,生物进化论则描绘了生物界日渐多样化、复杂化的演化史,在今天看来实际是表明有机界的时间箭头是指向有序的。20世纪生命热力学揭示出,生命有机体的熵也在不断增加,而克服熵增、摆脱无序、避免死亡的“惟一办法是从环境中不断地吸取负熵”。[1]总之,不论对于个别天体还是对生命个体而言,归根结底熵增规律都是不可违抗的,除非它们尚属于远离平衡态的开放系统。20世纪以来,对有机界和无机界演化的共同物理机制的探讨,引发了耗散结构理论、协同论和超循环论的诞生,它们为演化物理学的建立奠定了重要基础。如今,人们不仅在自然科学领域,而且在社会科学领域也开始引进“熵”的概念,用以说明各种社会建制的紊乱程度及其克服方法。美国社会学家里夫金和霍华德题为《熵——一种新的世界观》的专著就建议用“熵”的观点来分析社会现象和处理社会问题。

第一定律——系统内能(可以简单认为是热能)的变化=内能传递和外界对系统做功总和;第二定律——热能只可能从高温传向低温,而且过程中必定有损失;第三定律——不可能达到绝对零度。

热力学定律实验论文参考文献

[1] 柴诚敬编著.化工原理课程设计.天津:天津科学技术出版社,[2] 夏 清、陈常贵主编.化工原理(上册).天津:天津大学出版社,[3] 库潘编著.换热器设计手册.中国石化出版社,2007.[4] 周强泰编.锅炉原理(第2版). 北京:中国电力出版社,2006.[5] 景朝晖.热工理论及应用[M].北京:中国电力出版社,2009.[6] 孙丽君,工程流体学.北京:中国电力出版社,2009.[7] 李诚,热工基础.北京:中国电力出版社,2004.[8] 傅秦生,热工基础与应用.北京:机械工业出版社,2003.[9] 刘桂玉,工程热力学.北京:高等教育出版社,1998.

同志你好: 以下是我总结的材料,请核对后使用 祝愿你工作愉快 工程热力学 热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。 工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。 工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。 为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。 工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。 这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律 。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。

热力学第一定律(thefirstlawofthermodynamics)就是不同形式的能量在传递与转换过程中守恒的定律,表达式为Q=△U+W。表述形式:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。该定律经过迈耳、焦耳等多位物理学家验证。热力学第一定律就是涉及热现象领域内的能量守恒和转化定律。十九世纪中期,在长期生产实践和大量科学实验的基础上,它才以科学定律的形式被确立起来。

  • 索引序列
  • 热学定律的研究论文
  • 热力学定律论文的参考文献
  • 热力学定律论文参考文献
  • 热力学第三定律毕业论文
  • 热力学定律实验论文参考文献
  • 返回顶部