首页 > 学术期刊知识库 > ips细胞研究的论文

ips细胞研究的论文

发布时间:

ips细胞研究的论文

一头乌发的人是不会理解头发花白的人痛苦的,特别是少白头,年纪轻轻就要面临求医问药和染发的两个选择,但在白发的背后,我们不能忽视一个重要的健康原因!

为什么会长出白头发?

其实头发变白是一个人自然衰老的过程,头发原来就是半透明的,但正常情况下毛母细胞不断地分裂增殖使头发生长的过程中会在毛囊里染上黑色素,而黑色素则是毛母细胞周围的内色素细胞提供的,两者相互配合,为我们生产出了乌黑发亮的黑头发。

为什么头发会变白?

很简单黑色素细胞生产黑色素的原料中断了,要么就是黑色素细胞直接罢工了,因此未经第二道染色工序加工的半透明头发就穿破了头皮,越来越长,最终在光线的反射下变成了一根白头发,当罢工的黑色素细胞或者中断原料供应的的毛囊越来越多,那么满头银丝就成为了现实!

黑色素细胞中断工作的真正原因是什么?

毛母黑色素细胞大量死亡;

毛发生长是周期性的,分为生长期、退行期和休止期,一般为2~7年,这个周期结束后,这些产生色素的黑色素细胞会受损并死亡,进入一个新的更新周期,但因故未能更新,黑色素细胞就再也无法生产黑色素,当然也无法染色,所以就长出了白头发。

酪氨酸酶生成减少或消失;

黑色素是毛囊的黑色素细胞合成的,合成黑色素需要酪氨酸、维生素C等物质的参与, 同时还需有充足的血液供应与正常功能的黑色素合成系统,它们正常工作使头发变黑, 其中任何一个环节发生问题,比如人体内有酪氨酸酶抑制物质等都会造成黑色素合成障碍而出现白发

真正的原因是什么?

到现在为止我们也不能100%确定哪种因素会造成白发,但一般认为造成黑色素形成障碍的原因有几个:遗传因素、微量元素及维生素、心理及内分泌因素和环境因素等,其中最值得注意的是心理与内分泌因素导致的白发!

2011 年《自然》期刊上发表了一项由诺贝尔奖得主Robert Lefkowitz博士领导的研究。该研究发现,长期的压力和经常出现的“战斗或逃避”应激反应最终会导致DNA损伤,不仅会引发衰老和精神疾病,还会影响控制毛发色素的基因!

而内分泌因素则可能是身体某些部位病变所导致,与突然白发相反的是老年人突然黑发,其实也不是好事,一般就是病变导致的激素分泌失调,特别是同时还伴有皮肤变嫩、性功能亢进等现象,这很可能是垂体肿瘤、肾上腺细胞癌等严重疾病发生的早期信号!必须赶紧求医以确定到底是哪里病变所致。

得了白发还有救吗?

与导致白发的原因扑朔迷离一样,如何黑发同样是一个难题,不过医生一般都都会有一些建议:

保持良好的精神状态和乐观情绪:压力增大的应激反应损伤DNA。

戒烟:吸烟增加氧自由基的生成,氧自由基会破坏黑色素。

加强营养、合理膳食补充各种微量元素

规律的头部按摩增加血液循环

拔掉白头发可取吗?

与白发抗争是一个漫长的经历,所以一些操之过急的朋友会把白头发拔掉,但事实上于事无补,拔掉白头发不会少一根,因为过阵子又会长出来,不过比较幸运的是它不会长两根,因为一个毛囊一根头发,不多不少!但大量拔掉白头发会导致头皮发炎。

科学界最新的方法

2018年法国科学家在《科学》期刊上发表了一篇论文称有方法可以保护或者改善毛囊黑色素细胞免受损伤,其工作原理是模仿多巴色素异构酶的作用。这种酶是毛球中天然存在的抗氧化剂,可以保护黑色素细胞免受氧化损伤。通过复制多巴色素异构酶的作用,黑色素细胞的代谢和存活得到显著改善,而且这种制剂正在被配制成洗发水或者喷剂用于保护黑色素细胞。

2019年4月份,江苏大学李遇梅团队在《Cell Reports》发表了一篇《患者iPS细胞来源的诱导黑素细胞在自体移植治疗中的潜能》的论文,利用白癜风患者色素脱失部位的皮肤细胞生成自体iPS细胞,通过高效独特的三维诱导分化培养技术获得了大量具有高增殖能力和体内整合功能的黑素细胞。不过这种方法还仅仅在大鼠身上取得成功,未来还有很长的路要走。

据科学界的最新进展,白发的解决办法正不断取得进展,未来也许不再有白发烦恼。

1却无情无情

1962 年 9 月 4 日 ,山中伸弥出生于日本大阪府。大一之前,山中伸弥都一直居住在奈良市。高中时,山中因阅读医师德田虎雄的著作《只有生命是平等的》而倍受鼓舞,决定从医。

山中的父亲经营著一个生产裁缝机零配件的小工厂,虽然山中小时候也喜爱分解机械,但常常无法将其恢复原样,受到父母的责备。机械道路上的不顺利,成为山中迈上医学道路的另一个诱因。

在父亲的影响下,他立志认真学习终于考入大阪重点中学--大阪教育大学附属天王寺高中,考入高中后其他学生都在认真学习,只有山中热衷于柔道(据说他有梦想成为日本奥运会代表选手),在高中的3年期间他因为练柔道就受伤了10多次(骨折),很多人都说这个孩子大概走错了学校,应该去考大阪体育大附属高中,而不是在这里学习文化知识,三年时间很快就要过去,这个失败的学生将如何面对人生呢?山中伸弥的父亲告诉他:"你多次受伤,看见医生这么为病人减轻痛苦,你将来要成为医生为人类服务。"于是山中就接受了父亲的提议,在学校的最后阶段认真学习,终于考入了著名的国立神户大学医学部。

1987年 3月:神户大学医学院毕业

1987年7月:国立大阪病院临床研修医

1993年 3月:大阪市立大学医学研究科博士毕业

1993年4月:格拉斯通研究所(Gladstone Institute)博士研究员

1996年 1月:日本学术振兴会特别研究员

1996年10月:大阪市立大学医学部助手(药理学教室)

1999年12月:奈良先端科学技术大学院大学遗传因子教育研究中心助理教授

2003年 9月:升任奈良先端科学技术大学院大学遗传因子教育研究中心教授

2004年10月:京都大学再生医科学研究所(Institute for Frontier Medical Sciences)教授(再生诱导研究分野)

2008年 1月:京都大学物质-细胞统合系统据点iPS细胞研究中心长

2012年10月,获得诺贝尔生理或医学奖。

2012年10月,获得2012年度日本"文化勋章"。

山中伸弥是诱导多功能干细胞(iPScell)创始人之一。2007年,他所在的研究团队通过对小鼠的实验,发现诱导人体表皮细胞使之具有胚胎干细胞活动特征的方法。此方法诱导出的干细胞可转变为心脏和神经细胞,为研究治疗多种心血管绝症提供了巨大助力。这一研究成果在全世界被广泛套用,因为其免除了使用人体胚胎提取干细胞的伦理道德制约。

2006年山中伸弥等科学家把4个转录因子通过逆转录病毒载体转入小鼠的成纤维细胞,使其变成多功能干细胞。这意味着未成熟的细胞能够发展成所有类型的细胞。

山中伸弥从其他科学家已经公布的研究结果中挑选出24种最有希望的转录因子。在试验室中他发现这24种转录因子中的确有4种转录因子可以将人体细胞重组成干细胞。他把4种基因注入皮肤细胞,从而得到"鸡尾酒"iPS细胞。

事实证明这4个转录因子中,其中一个转录因子确实是"一次天大的冒险",因为这一个是与癌症相关的转录因子。数月后他又发现即使不使用这个致癌基因,他仍然能够重组细胞,这样癌变的几率会大大降低。但新创造的干细胞仍然会发生癌变,在他的实验中,121只老鼠中,有20%产生了肿瘤。这说明使用逆转录病毒,可能使基因产生变异,引发肿瘤等副作用。他表示下一步的研究目标是在不使用逆转录酶的情况下实现细胞重组。

2007年 Meyenburg Award(Meyenburg基金会 [Meyenburg Foundation]/德国癌症研究中心 [German Cancer Research Center, DKFZ])(德国)

2008年 《时代》杂志"世界百大影响力人物"(The World's Most Influential People)(美国)

2008年 罗伯特·科赫奖(德国)

2008年 科学技术特别奖(日本)

2008年 邵逸夫生命科学与医学奖

2009年 拉斯克基础医学奖

2011年获得国际最高学术大奖之一的沃尔夫医学奖,与其一起获奖的还有美国怀特黑德研究所的Rudolf Jaenisch。

2012年,山中伸弥与美国软体工程师利努斯·托瓦兹获得芬兰"千年技术奖",二人分别获得60万欧元的奖金。

2012年10月:与英国发育生物学家约翰·格登(John Gurdon)因在细胞核重新编程研究领域的杰出贡献而获得诺贝尔生理学或医学奖。山中因研发出诱导多能干细胞(iPS细胞)而为人所知。

2015年12月,获颁香港中文大学荣誉理学博士。

Shinya Yamanaka念高中时迷上柔道,因为受伤经常上医院,他在爸爸的建议下随后考入国立神户大学医学部,准备以后做一名骨科医生。大学毕业做临床实习期间,他发现自己对手术其实没有什么天分,别人做20分钟的手术他两个小时也未必完成;并且他觉得做医生再优秀也只能帮助少数的病人,而医学研究有成果的话通常可以帮助更多的病人,所以他的兴趣转向基础医学研究。在大阪市立大学博士期间,Shinya的主要工作是研究血压调节的分子机理]。在研究过程中,Shinya对小鼠基因敲除和转基因技术感到震惊,于是他在申请博士后位置的时候联系的都是利用这些技术的实验室。

这位失败的骨科医生最后被加州Gladstone Institute的Thomas Innerarity纳入门下(图一)。Thomas实验室研究的是血脂调节,跟Shinya博士期间的工作有点关系。Shinya的新课题是研究ApoB mRNA的编辑蛋白ApoBEC1。

ApoB是低密度脂蛋白的主要构成成分。ApoB mRNA可以被编辑酶ApoBEC1脱氨提前终止翻译,形成两种不同大小的蛋白:全长的ApoB100和大约一半长的ApoB48。经过编辑的ApoB48在血浆中会被迅速清除。Thomas预测,如果在肝脏中过表达ApoBEC1,那么血脂就可能降低;如果这个模型可行的话,也许未来通过基因疗法可以帮助一些肥胖病人降低血脂。

Shinya一周七天地勤奋工作,花了六个月做成了转基因鼠。有一天早上,帮他维护小鼠的技术员告诉他:Shinya,你的许多小鼠都怀孕了,可是小鼠是公的。Shinya说你不是跟我开玩笑吧。他到老鼠房一看,果真有很多公鼠看起来怀孕了。他杀了其中几只,发现原来是小鼠得了肝癌,肝脏肿大撑大了肚皮。

ApoBEC1过表达后低密度脂蛋白是降低了,但是高密度脂蛋白却升高了,同时还得了肝癌,这买卖不合算啊。Shinya在一次讲座中总结了其中的经验教训:其一,科学是不可预测的;其二,不要尝试在病人身上做新基因的治疗;其三,也许最重要的是,不要相信导师的假说。

Thomas对结果不能符合预期很失望,但是这个预想之外的结果却引起了Shinya的好奇:究竟是什么机理使小鼠得肿瘤的呢?好在Thomas足够开明,他允许Shinya偏离实验室的主要方向,继续探索ApoBEC1的致癌机理。可以想见,ApoBEC1过表达以后也可能会编辑ApoB之外的其它mRNA,找到这些mRNA也许可以解释ApoBEC1为什么能致癌。

由于已知ApoBEC1需识别底物mRNA的特异序列才能编辑,Shinya据此设计引物扩增,找到了ApoBEC1的一个新底物-抑制蛋白翻译的基因Nat1。ApoBEC1过表达后,Nat1蛋白消失。从逻辑上讲,如果编辑Nat1是导致ApoBEC1致癌的重要分子,那么Nat1敲除的小鼠也会长癌。

基因敲除比起转基因要更加复杂,需要把构建的质粒原位整合到体外培养的胚胎干细胞中。基因敲除技术不就是Shinya博士阶段做梦都想学的技术吗?于是Shinya找到所里做基因敲除的专家,当时还是助理教授的Robert Farese,从他的助手Heather Myers那里学了这项技术的每个细节,并成功地获得了Nat1敲除的杂合鼠。Heather Myers是Shinya的终生好友;Shinya发现iPS以后,也公开表达了对Heather Myers的感激,因为是她告诉Shinya,胚胎干细胞不仅仅是做敲除小鼠的手段,其本身也可以是非常有趣的研究对象。

在Shinya兴致勃勃地继续追问Nat1的功能时,他的妻子带着女儿离开他回到了日本。半年后他决定中断研究带着三只珍贵的Nat1杂合鼠,也跟随家人回国。

毛毛虫阶段

凭借他在博士后期间发表的四篇高质量的一作论文,1996 年Shinya在母校大阪市立大学找到了助理教授的职位,继续他的Nat1研究。

再一次地与预测出现偏差:Nat1敲除后,纯合子小鼠在胚胎发育早期就死了,根本无法观察到成鼠是否得肿瘤。Shinya进一步研究发现,敲除Nat1的胚胎干细胞在体外根本不能像正常干细胞一样分化。此时他想起了Heather Myers的话:胚胎干细胞不仅是研究的工具,它本身也可以是非常有趣的研究对象。他的关注点开始转移到胚胎干细胞上来。

在刚回大阪的头几年,Shinya由于刚起步,只能得到少量的研究资助,他不得不自己一个人养几百只小鼠,日子过得非常艰苦。同时大阪市立大学医学院的基础研究很薄弱,周围的人不理解Shinya研究Nat1在胚胎干细胞中的功能有什么意义,总是劝说Shinya做一些更靠近医药临床方面的研究。而Nat1的研究论文提交给杂志后一直被拒稿。种种压力与不得志,Shinya因之得了一种病叫PAD(Post America Depression,离开美国后的抑郁症;自创的玩笑话),几乎要放弃科研回国做骨科医生。

在他最低谷的时候,有两件事情把他从PAD中挽救了回来。其一是James Thomson(俞君英的导师,2007年几乎与Shinya同时宣布做出了人的iPS) 在1998年宣布从人的囊胚中采集并建立了胚胎干细胞系:这些干细胞在体外培养几个月后还可以分化成不同胚层的细胞,比如肠上皮细胞,软骨细胞,神经上皮细胞等。这给了Shinya巨大的鼓舞,他开始更加坚信胚胎干细胞研究是有意义的,将来必然有一天会用于临床。第二件事是条件更加优越的奈良先端科学技术研究生院看上了他的特长,招聘他去建立一个做基因敲除小鼠的facility,并给他提供了副教授的职位。

成蛹阶段

千辛万苦脱了几层皮后,Shinya终于拥有了自己独立的实验室。第一次可以招帮手,好爽啊。但是问题又来了:研究生的生源是有限的,学生会倾向于选择资历更老条件更好的实验室,而不一定会选择刚起步的实验室;你想招但人家不来啊。为了吸引学生到他实验室,Shinya冥思苦想了好一阵,提出了一个雄心勃勃的计画,声称实验室的远景目标是研究怎么从终末分化的成体细胞变回多能的干细胞。

当时科学界的主流是研究怎么把胚胎多能干细胞分化成各种不同组织的细胞,以期用这些分化的功能细胞取代受损的或者有疾病的组织细胞。Shinya认为自己的实验室没有实力跟这些大牛竞争,那不如反其道而行之,研究怎么从分化的细胞逆转为多能干细胞。

当时科学界的主流观点认为,哺乳动物胚胎发育过程中的细胞分化是单向的,就像是时间不可逆转。这个观点也并非没有破绽,比如植物组织就具有多能性,一些植物的茎插入土壤会重新长出一棵植株,也即已经分化的茎细胞可以改变命运分化出新的根茎叶细胞。而早在1962年,也即Shinya出生的那一年,英国的John Gurdon爵士(与Shinya共享诺贝尔奖)报导了他的惊人发现:把蝌蚪的肠细胞核移植到去核的蛙卵中,新细胞可以发育成蝌蚪。如果把杂合细胞发育到囊胚期,用囊胚期的细胞核再做一次核移植,那么就可以发育出可生育传代的成蛙。进一步地,为了说服人们接受终末分化的细胞核也具有多能性,他把成蛙不同组织的细胞进行体外培养,发现核移植后来源不同的杂合细胞都可以发育到蝌蚪阶段。1997年,Ian Wilmut和Keith Campbell基于同样的原理,把羊的乳腺细胞核移植到去核的羊卵中,成功地培育出了克隆羊多莉。2001年,科学家发现,通过与 干细胞融合,胸腺细胞核获得了很大程度的重编程。

Shinya计画的第一步是找到尽可能多的,类似于Nat1参与维持干细胞功能的因子(维持因子的意思是这些因子是胚胎干细胞在体外培养维持多能性所必需的)。他大胆推测,如果过表达这些维持因子也许可以让终末分化的细胞变回多能干细胞。一旦成功,诱导的多能干细胞会有着胚胎干细胞所不具备的优势:它不仅可以绕开胚胎干细胞引起的伦理问题,病人本身的诱导干细胞改造后重新植入病人时,由于是自身的细胞,将不会有免疫排斥的难题。

在这个远大前景的感召下,Shinya果然"忽悠"了三个学生加入他实验室。很快地,他们鉴定出一系列的在胚胎干细胞特异表达的基因。其中一个基因就是Fbx15。Shinya的学生Yoshimi Tokuzawa发现Fbx15除了特异表达于胚胎干细胞外,它还能被另外两个胚胎干细胞维持因子Oct3/4和Sox2直接调控。Shinya跟Yoshimi说:Fbx15应该参与维持干细胞多能性和胚胎的发育,我猜你没有办法得到Fbx15敲除的纯合鼠。Yoshimi构建质粒做了基因敲除小鼠,把染色体上的Fbx15基因通过同源重组替换成抗G418药物的基因neo。

复杂的生命又一次愚弄了Shinya:Fbx15敲除的纯合鼠活得很健康,没有显见的表型。Shinya又挑战他的学生说:好吧,Fbx15也许不是小鼠胚胎发育所必需的,但是它应该是维持体外胚胎干细胞所必需的,我打赌你没有办法在胚胎干细胞中彻底敲除这个基因。勤快的Yoshimi于是用较高浓度的G418从干细胞中筛到了纯合的敲除株,还是活得好好的,没有表型。Shinya后来在回忆的时候打趣到:小鼠很happy,细胞也很happy,唯一不happy的就是可怜的学生Yoshimi了。

但是花这么多精力做的敲除小鼠不能就这么算了吧。Shinya又一次开动脑筋,想要废物利用。他发现由于Fbx15只在胚胎干细胞表达,Fbx15 promoter操控的抗药基因neo在成体的成纤维细胞里不表达,所以细胞对药物 G418敏感;而敲除鼠里得到的胚胎干细胞却可以在很高浓度的 G418中生长。如果终末分化的成纤维细胞能诱导成胚胎干细胞,那么它就会产生对 G418的 抗药性。即便成纤维细胞只是获得了部分胚胎干细胞的特性,那么它也应该能抗低浓度的 G418 。Fbx15敲除鼠实际上提供了很好的筛选诱导干细胞的系统!

凭借他鉴定胚胎干细胞维持因子的出色工作,2004年Shinya在名气更大的京都大学找到新的职位。除了Fbx15敲除鼠的筛选系统,Shinya还积累了他鉴定的加上文献报导的24个维持因子。Shinya跃跃欲试,他准备破壳而出,拍翅成蝶了!

Shinya的另一位学生Kazutoshi Takahashi此前已经发表了一篇关于干细胞致癌性的Nature文章。Shinya决意让他来承担最大胆的课题-逆分化成体细胞,因为他知道,有一篇Nature文章保底,即便接下来的几年一无所获,他的学生也能承受得了。

即便有很好的筛选系统,这个课题在当初看来也是非常冒险甚至是不可行的。当时的人们普遍认为成体细胞失去了多能性,也许成体细胞本身就是不可逆转的,你做什么也没有用。即便通过转核技术实现了成体细胞核命运的逆转,那也只是细胞核,不是整个细胞。胚胎细胞和成体细胞的染色体是一样的,细胞核具有全能性,尚可理解。而且要实现细胞核的逆转还需要转到卵细胞,让卵细胞质帮助它重编程,而卵细胞质中的蛋白不计其数。如果要实现整个细胞命运的逆转需要让细胞质中所有的蛋白重新洗牌。即便细胞可以重新编程,那也应该是很多蛋白共同参与的。Shinya当年在手上的仅仅是24个因子。也许有另外几百几千种因子被遗漏,缺少其中一种都无法实现重编程。用这24个因子异想天开要实现细胞重编程,根据已有的知识从逻辑上讲可能性几乎为零。

Kazutoshi这个愣头青不管这些,他给成纤维细胞一一感染过表达这些因子的病毒,结果当然没有筛选到任何抗 G418的细胞。Shinya知道如何保持学生的斗志,他故作镇定地说:你看,这说明我们的筛选系统很好啊,没有出现任何假阳性。

在试了一遍无果后,Kazutoshi大胆提出想把24个病毒混合起来同时感染细胞。Shinya觉得这是很愚蠢的想法:没人这么干过啊同学,不过死马当作活马医,你不嫌累的话就去试吧。

等了几天,奇迹竟然发生了。培养板上稀稀疏疏地竟然出现了十几个抗 G418的细胞克隆!一个划时代的发现诞生了。

关键实验取得突破以后,其后的事情就按部就班了。Kazutoshi每次去掉一个病毒,把剩下的23个病毒混合感染成体细胞,看能长多少克隆,以此来鉴别出哪一些因子是诱导干细胞所必需的。最后他鉴定出了四个明星因子:Oct3/4, Sox2, c-Myc,和 Klf4。这四个因子在成纤维细胞中过表达,就足以把它逆转为多能干细胞!

那抗 G418的细胞克隆就一定是多能干细胞吗?他们通过一系列的指标,比如基因表达谱,分化潜能等,发现这些细胞在相当大的程度上与胚胎干细胞相似。

2006年Shinya报导了小鼠诱导干细胞,引起科学界轰动[13];2007年,他在人的细胞中同样实现了细胞命运的逆转,科学界沸腾了[14]。

回过头来,种种不可能,Shinya怎么就幸运地成功了呢?通过更多的研究,我们知道,干细胞特性的维持是由一个基因网路来共同作用的,通过上调某些关键基因就可以重建这个网路,逆转细胞的命运;山中伸弥最后鉴定的四个因子也不是必须的,用24个因子以外的其它因子进行组合可以达到同样的目的。这好比是一张大网,你只要能撑起其中的几个支点,就可以把整张网撑起来。

iPS的发现有着不同寻常的意义。首先,它更新了人们的观念,从此之后人们不再认为细胞的命运不可逆转,不单可以逆转,细胞其实还可以实现不同组织间的转分化(Transdifferentiation)。其次,iPS细胞绕过了胚胎干细胞的伦理困境,很多实验室都可以重复这个简单的实验得到iPS,开展多能干细胞的研究。其三,iPS细胞具有很多胚胎干细胞所没有的优势:来自于病人自身的iPS细胞体外操作后重新植入病人体内,免疫反应将大大减少;如果将病人的体细胞逆转为ips细胞,在体外分化观察在这个过程中出现的问题,就可以实现在培养皿里某种程度上模拟疾病的发生;疾病特异的iPS在体外扩增和分化以后,还可以用于筛选治疗该疾病的药物,或者对药物的毒性进行检测。

但是这仅仅是新的开始,生命科学如此复杂和不可预测,要把这些愿景变成现实,让iPS真正造福人类,这其中还有重重的困难。Shinya Yamanka,这位科学的宠儿,怀着最初帮助更多病人的理想,无畏地踏上了新的征程。

头发突然变黑,说明自己的头发质量是好的。如果头发突然变白,那肯定就不是一件什么好事。头发肯定是黑色的,如果是变白色,肯定象征着自己的身体不太健康。

白细胞研究论文

扣扣号是1135开头的,中间是452,结尾是139。他们做这个服务的

慢性白血病:是一种造血系统的恶性肿瘤,系骨髓中各系列细胞呈慢 性弥漫性恶性增生并浸润全身各组织,增生的细胞常无明显的成熟障 碍。 • 根据细胞类型分为: 慢性粒细胞白血病 慢性粒单细胞白血病 慢性淋巴细胞白血病 幼淋巴细胞白血病 毛细胞白血病等 主要内容 • 慢性粒细胞白血病 • • • • • 1.疾病概述 2.病因及发病机制 3.临床表现分期 4.诊断标准及实验室检查 5.治疗 1 CML疾病概述 CML疾病概述 1 慢性粒细胞白血病 (简称慢粒)亦称 为慢性髓细胞白血 病(CML),是一 种起源于多能干细 胞的髓系增生性肿 瘤,粒细胞生成显 著增多,而清除率 相对缓慢,造成粒 细胞在体内积聚。 2 特点:外周血白细胞 总数增加,骨髓和外 周血中粒细胞显著增 多,脾脏明显肿大, 多因急性变而死亡 3 CML在不同国家、不同地 区和不同种族发病不尽相 同,在欧美西方国家,发 病率约为万。 在 我国则约为 万,占白血病病人的15%, 中位发病率年龄为45-50 岁,男性多于女性 2 CML病因及发病机制 病因及发病机制 1 较公认的因素 是电离辐射 (放射性药物、 放射治疗、X线 诊断和治疗及γ 射线的接触), 暴露于辐射的 人群有较高的 CML发病率 2 化学因素:常 年接触苯类化 合物以及某些 药品,如保泰 松、氯霉素及 烷化剂等,可 诱发CML 3 病毒因 素:RNA 肿瘤病毒 4 遗传:尚待进 一步研究,当 母体患慢粒时, 妊娠的下一代 子女可不受影 响,孪生兄弟 一人患CML, 另一人未发现 相同的遗传学 异常,也不会 患此病。 3 CML临床表现 临床表现 • 起病缓慢,其自然病程包括无症状 期、慢性期、加速器及急变期4个阶 段,多数患者是在症状出现之后方 去就诊并得以诊断。 只有极少数人 在体检和因为其他原因检查血液时 才发现血液异常,此时脾脏可能已 有轻度肿大或不大。 查看更多

慢性白血病:是一种造血系统的恶性肿瘤,系骨髓中各系列细胞呈慢性弥漫性恶性增生并浸润全身各组织,增生的细胞常无明显的成熟障碍。

嗯哼  楼主想要多少(zi)呐,有木有  小题目Y

细胞坏死的研究论文

长期以来细胞坏死被认为是因病理而产生的被动死亡,如物理性或化学性的损害因子及缺氧与营养不良等均导致细胞坏死。坏死细胞的膜通透性增高,致使细胞肿胀,细胞器变形或肿大,早期核无明显形态学变化,最后细胞破裂。另外坏死的细胞裂解要释放出内含物,并常引起炎症反应;在愈合过程中常伴随组织器官的纤维化,形成瘢痕。 但是近期的研究表明,细胞坏死可能是细胞“程序性死亡”的另一种形式,具有包括引发炎症反应在内的重要生理功能。当细胞凋亡不能正常发生而细胞必须死亡时,坏死作为凋亡的“替补”方式被采用。

慢性坏死是缓慢发生的死亡过程,与其他细胞死亡的类型有一定的关系,例如细胞凋亡与细胞坏死可以互相转换,此种细胞坏死的类型就是慢性坏死。2009年6月12日,北京生命科学研究所王晓东实验室在Cell上发表题为“Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-α”的文章。该文章报道了蛋白激酶RIP3是决定TNF-α诱导的细胞坏死的关键蛋白 。目前有研究表明,细胞坏死是一种“不安全”的细胞死亡方式,往往会导致细胞内的质膜破裂,细胞自溶,引发组织急性炎症(比如说心肌缺血坏死可能导致急性心肌炎症)。细胞坏死常出现在病理变化中,而细胞凋亡则是一种正常的生理现象。我国厦门大学生命科学学院教授韩家淮教授发现,在某些细胞中,RIP3蛋白的表达量是控制细胞凋亡或细胞坏死的关键。如果RIP3表达量高细胞则走向坏死路径;RIP3表达量低细胞则走向凋亡路径。RIP3就是一个控制细胞凋亡或坏死的生物学开关。

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

细胞骨架的研究论文

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。 线粒体基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子。

你们学校没有CNKI吗??那里面你要的文章用卡车装。

线粒体内是含有骨架结构的赵和平的小麦线粒体微丝骨架系统的研究这篇文章就是对小麦线粒体的肌球蛋白和肌动蛋白进行了定位、纯化、及ATP酶活性研究采用在完整线粒体悬浮液中加入肌动蛋白丝可以使线粒体水解ATP的活性明显增加,表明线粒体的表明有肌球蛋白的存在;使用NEM处理线粒体,对照加入ATP,然后都加入肌动蛋白丝,经负染电镜观察,结果表明微丝可以结合在线粒体上,该结果同样表明线粒体表面存在肌球蛋白。线粒体蛋白提取液的电泳图谱中有一210kD的条带对抗兔骨骼肌肌球蛋白重链的多克隆抗体有交叉反应。 通过DE-52离子交换层析、超滤浓缩、S-300凝胶过滤等步骤纯化出了重链为210kD的肌球蛋白,在高等植物方面国内外还没有纯化出与该分子量相近肌球蛋白的类似报道。 利用聚合解聚的方法从线粒体丙酮粉中纯化出了肌动蛋白。比较分析了小麦线粒体肌动蛋白与动物肌动蛋白分别激活小麦线粒体肌球蛋白和动物肌球蛋白的异同。对小麦线粒体的肌球蛋白和肌动蛋白的免疫胶体金定位的结果表明肌球蛋白位于线粒体的外膜上,与前面鉴定小麦线粒体表面存在肌球蛋白的结果一致;肌动蛋白定位与线粒体内部,国内外尚无类似结果报道。本论文的结果证明学线粒体内部存在微丝骨架系统,从而证明微丝骨架不仅存在于细胞质,而且存在于细胞器中。

细胞工程研究的论文

动物细胞和植物细胞工程制药探讨论文

在日复一日的学习、工作生活中,大家都跟论文打过交道吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么你知道一篇好的论文该怎么写吗?下面是我为大家整理的动物细胞和植物细胞工程制药探讨论文,欢迎阅读与收藏。

摘要:

细胞工程是生物制药工业中的关键技术,其在医药领域的应用使得生物制药行业得到了极大的发展,细胞工程制药前景广阔。通过对相关文献和数据的整理和分析,概述了细胞工程制药领域相关技术及其在生物制药工业中应用的意义与展望。

关键词:

细胞工程;生物制药;动物细胞工程;植物细胞工程;转基因;反应器;

1、生物制药及细胞工程概述

生物制药是生物技术的综合利用,从生物体、生物组织、细胞和体液中分离出有效成分,制备用于预防、治疗和诊断的产品[1]。天然的生物材料赋予了生物制药安全性高、副作用小、营养价值较高的特点,这些显着的优势使生物药物越来越受人们的青睐,这也是生物药物市场不断扩大的重要原因之一。

细胞工程是以细胞为研究对象,按照需求利用细胞和分子生物学的理论设计和操作,使细胞在遗传学上的特性发生变化,达到改良或创造新品种的目的,在大规模地培养和繁殖后,最终提取出对人类有利的产品。在工业上,主要包括上游工程(包括细胞培养、遗传操作和保存)和下游工程(包括转化细胞在生物制品生产中的应用)[2]。如今,细胞工程在生物制药工业发挥着不可替代的作用。

2、动物细胞工程制药

、动物细胞工程制药的概述及早期发展

动物细胞工程制药最早能够追溯到20世纪50年代,用动物细胞生产病毒,也就是在生物反应器中培养动物细胞,进行大规模培养后,再接种减毒或灭活的病毒来生产疫苗[3]。常见的动物细胞培养技术流程,一般是先将动物组织分散成单个细胞、细胞群(团)后,接种于培养基中进行原代培养,再经过10~50代的传代培养,就初步得到了需要的细胞系。然而,由于自然界的细胞普遍表达水平低,通过这种方法生产的产品不仅产量低,而且成本高,因此,早期动物细胞培养并没有得到充分的重视。

、杂交瘤技术

杂交瘤技术在20世纪70年代的创建,是动物细胞技术发展新的里程碑。随着杂交瘤技术在工业领域的应用,各种新产物相继出现,在生产用于疾病诊断和治疗的生物制品中具有重要意义[3]。1984年的诺贝尔生理学或医学奖颁给了创立抗原选择抗体学说以及发明单克隆抗体技术的3位科学家。他们提出将能够分泌特异性抗体的B淋巴细胞与能够无限增殖的骨髓瘤细胞融合筛选,形成能产生特定抗体的杂交瘤细胞。这种方法得到的融合细胞可以稳定生产特异性强、效价高的单克隆抗体。

、动物细胞大规模生产技术

动物细胞大规模生产指在人工条件下,在细胞生物反应器内大量培养有用的动物细胞,是生产药品的技术,也是制药业的关键技术。由于动物细胞对外界环境变化高度敏感,细胞培养放大工艺需要从实验室规模逐级放大到生产规模,各个反应器中工艺的差别成为目前放大过程的一大技术挑战[4]。通过动物细胞生产生物制品已成为全球生物产业的主要支柱,目前通过动物细胞培养获得较多的生物制剂是蛋白和抗体。

、动物生物反应器

动物生物反应器可以从转基因动物体内源源不断地获得人类需要的某种蛋白,并进行工业化生产蛋白质。依据产生蛋白部位的不同,可分为多种类型的生物反应器,如血液生物反应器、唾液腺生物反应器等。科学家发现,由于雌性动物的乳腺能够高效表达重组蛋白并进行一定的修饰,乳腺生物反应器成为最被看好的生物反应器发展方向。随着技术的发展,乳腺生物反应器的产物已经扩大到了抗凝血酶、凝血因子、人蛋白,还有各种溶菌酶、超氧化物歧化酶、干扰素等许多具有极高医用价值的酶或细胞因子。作为一种全新的生物生产模式,由于其在生产天然产物时的高产量、低成本的优势[5],乳腺生物反应器在生物医药行业将得到更广泛的应用。

、动物细胞核移植

动物细胞核移植在细胞工程中同样具有良好的前景。将动物的供体细胞核取出,注入另一个去核并且处于减数分裂中期的卵母细胞,改变细胞的遗传特性,以产生新产品,再将其进行体外培养、繁殖、纯化、提取,最终用于疾病治疗。我国对鱼类的核移植研究最早,“中国克隆之父”童第周在20世纪60年代就完成了世界上第一例鱼类细胞核移植。后来,我国学者又尝试在其他多种品系鱼类之间进行核质融合实验,并利用模式动物斑马鱼,揭示鱼类核移植后再程序化的分子机制,取得了巨大的研究成果,推动了鱼类核移植技术及其他相关领域的快速发展[6]。如今,动物细胞工程在生物制药领域意义重大。由于动物细胞结构的复杂性和分工的明确[7],动物细胞工程具有巨大的优势。

3、植物细胞工程制药

、植物细胞工程制药的概述及早期发展

将植物直接入药或者从植物体中提取有效成分是一种生产药物的传统方法。随着技术的成熟,处理和提取过程越来越简便,目前多种中药都是这样生产的。但是,这样的方法只适合容易栽培、繁殖速度快的植物,对于那些生长周期长、提取难度大的植物并不适合,所以受到了诸多限制。比如拥有抗癌成分的红豆杉曾因为人们的大规模砍伐,遭受了毁灭性的破坏[8]。

植物细胞工程制药,是将植物细胞作为基本研究单位,对植物细胞进行一系列操作,改变植物细胞生物特性,最终达到改良或培育新品种的目的[9]。应用植物细胞及组织培养,具有杂质少、提取简单、有效成分含量高和培养周期短的优势。植物细胞工程制药目前主要体现在组织及细胞培养、遗传特性改造以及转基因植物等方面。

、植物细胞工程大规模培养

最早提出应用植物大规模提取天然药物的是20世纪50年代美国的科学家,他们从多升发酵罐中得到了大量药用成分呋喃色酮。我国作为植物药用历史最悠久的国家之一,应用细胞培养技术能够帮助我国传统中药材发挥更大的价值。

丹参是具有活血化瘀、通经止痛功效的一味中药,其中的'主要成分——酚酸类和二萜类,药理作用主要表现在对心血管系统疾病的治疗。目前,由于丹参有效成分含量低、生长缓慢,野生丹参资源遭到大规模破坏,加上各地培育出的品种质量良莠不齐等原因,其在数量以及质量上都难以满足市场的供给需求[10]。经过实验研究发现,用一种10L规模的特殊植物组织反应器培养丹参发根,仅用50天,鲜重增殖倍数高达240倍,各种有效成分含量也得到大幅度提升。这是一种非常适合丹参发根生长及产物积累的方法,而且避免了农药等物质的污染。

、植物转基因技术

转基因植物与转基因动物相比有独特的优势,一方面植物细胞具有全能性,细胞培养条件简单且易于成活;另一方面进入植物体的外源基因,可以在与其他植物杂交的过程中积累有益基因优化表达。利用转基因植物也能生产疫苗,以植物作为生物反应器,将携带抗原基因的载体导入受体细胞,在植物体内表达和修饰这类特定抗原,成为具有免疫活性的蛋白质。香蕉、胡萝卜、土豆等都可以作为受体植物。一些转化编码基因的植物疫苗,如HBsAg、LTB、诺沃克病毒等,已被用于预防和治疗乙型肝炎及细菌性腹泻。在生物和临床试验中,均展示了良好的免疫应答,相较于传统疫苗,具有生产成本低、成功率高、易形成规模化生产等优势。尽管植物转基因疫苗的研究还处于起步阶段,但我国报道的转基因植物生物试验已经取得了一些成果[11],成为我国制药业的重要进步。

、植物生物反应器

植物生物反应器,又名“植物基因药厂”。这种技术拓宽了药用蛋白及疫苗的来源,在降低成本的同时,扩大了生物制药产业规模,并产生了巨大的商业价值。植物生物反应器的研发,对于在全球范围内抢占生物经济制高点有着重要的意义,许多发达国家都已把植物生物反应器的研发列入了国家重点生物技术研究的战略性计划[12]。我国开发植物作为反应器始于20世纪90年代,目前对于植物生物反应器的研发和投入与发达国家还存在一定的差距。在我国“九五”计划对这一项目进行政策扶持后,目前已经取得了大幅度进展[13]。

4、细胞工程制药的意义与展望

研究细胞工程制药的研究进展和前景,对于制药业的发展有重要意义。据统计,世界上50%的医药产品来自细胞工程制药,其中,植物细胞提取物和动物细胞提取物大约各占1/2。细胞工程在生物制药工业中占据重要地位,为新药开发提供了技术操作基础,在治疗免疫性疾病、提升治病疗效、创新医药品等方面都有广泛的应用[8],细胞工程制药的研究在不断取得突破,其影响和前景也日渐得到展现。如今,生物制药与细胞工程已经紧密联系在一起,随着细胞工程技术在生物制药生产中的普遍应用,生物制药行业发展迅速,取得了巨大的经济效益[14]。

伴随着更多新兴技术的出现和更新,在未来细胞工程制药研发过程中,可以充分利用各种技术平台寻找最佳研究方案。与其他相关领域的结合,也将更好地推动我国生物制药领域的发展。近半个世纪以来,细胞工程制药发展迅猛,并且已在医药领域取得了众多的研究成果。所以,在“十四五”规划期间,应更加重视战略性新兴产业,进一步加快和壮大新一代生物技术的发展。

参考文献

[1]雷世成,杨永红生物制药的发展现状、特征及技术平台[J].临床医药文献电子杂志,2019(6):22-24.

[2]李刚,刘鹏,刘诚迅,等我国细胞工程制药的研究现状和发展前景[J].中国现代应用药学,2002(4):28-31.

[3]胡显文,肖成祖.细胞工程在生物制药工业中的地位[J].生物技术通讯,2001(2):39-44.

[4]刘小双,陈飞,赵孟江,等大规模哺乳动物细胞培养中pCO2的控制策略[J]药物生物技术,2019(2):82-87.

[5]谢晶莹,张勇,冯若飞乳腺生物反应器在生物制药领域的研究进展[J].西北民族大学学报(自然科学版),2018(2):61-66.

[6]王学耕,朱作言,孙永华,等鱼类核移植与重编程[J].遗传,2013(4):45-52.

[7]唐亚雄细胞工程在生物制药I业中的地位[J].科技风。2020(6):198.

[8]成静,郭勇.植物细胞工程药物生产的研究进展[J].江西科学,2000(1):62-64.

[9]赵玉平,杨夏,高峰丽植物细胞制药的研究进展[J]中国中医药现代远程教育,2012(12):169-170.

[10]晏琼提高丹参毛状根生产丹参酮的诱导和过程策略研究[D]天津:天津大学,2005.

[11]郝宇娉,陆琳,杨志红.转基因植物疫苗的研究进展[J].核农学报,2020(12):86-102.

[12]张胜利,李东方,许桂芳,等.植物生物反应器在生物制药中的应用[J]资源开发与市场,2011,27(2):102-105.

[13]李从林.细胞工程在制药方面的研究[J]科技风,2021(5):173-174.

[14]陈劼.细胞工程在生物制药工业中的地位[J].中国高新区,2018(3):58.

植物细胞工程技术以及应用论文

1 植物细胞工程基础研究

植物细胞工程是建立在工程技术与现代生物科学基础上的科学技术。它的发展依赖于植物学、分子生物学、植物生理学、遗传学、环境工程学、植物营养学等学科共同的发展和进步的,可为研究生物科学提供非常重要的技术。植物发育的生物学是当代植物科学研究的主要内容。离体培养的器官与培养体细胞胚及调控这种步骤已经建立了良好的实验体系,极大地将植物生物学的内容丰富了,而且还加速了发展。植物的薄层细胞培养已经成为了在离体条件下研究生理生化、植株再生、遗传转化的关键技术。并且应用离体培养的技术来探究花器官的发育,已经在多种植物上实现了开花和结实。原生质体培养为研究单细胞提供了较为良好的技术体系,已应用在植物激素的作用机理、植物细胞的分裂、细胞壁生物学、基因表达、物质跨膜运输等多个研究领域。

2 植物细胞工程技术及其应用

2. 1 加倍单倍体技术及应用

利用植物的组织来培养单倍体的植物材料从而获得单倍体植物,然后再通过自然方法或者人工加倍的方法从而获得双倍体植株的技术,被称为加倍单倍体技术。在这种技术中以使用花药和花粉来进行培养的应用最为广泛。利用这种技术来进行花药和花粉培养获得植株,目前已经在 250 多种植物上实验成功。目前,我国在培养花药和单倍体育种这两方面总体已经处于世界的前列,由多名研究者研制的 N6 培养基已经被大量应用在禾本科植物的花药和花粉培养上,现已被当做是国内外花培使用的通用培养基。而且利用花培技术,我国在多种农作物上都培养出了许多新的品种,例如水稻的中花系列的品种、小麦中的京花系列的品种、油菜中的华油一号等这些已经培育成功的品种的'推广,现已在社会和经济方面都取得了很好的效益。

在遗传上面,我们采用花培技术已获得染色体代的换系和附加系的方法,现在也被大量应用在小麦、大麦和一些茄科植物的身上,这种方法对远缘杂交育种的效率有着极大的提高。

植物存在的一种自然现象就是雌核发育。雌核发育就在离体的条件下通过培养一些没有受精过的子房和胚珠以产生单倍体植株,或者是在活体的条件下用不同种类的花粉或者是被物理方法处理过花粉授予其中,以诱导雌核的发育。目前这种培育方法已经在不下 10 种的植物上获得了成功。在离体条件下,诱导孤雌生殖来获得加倍单倍体的这一技术发展的时间很短,不过现在已经开始使用在构建遗传分析、作物的改良与转基因的受体材料。

2. 2 原生质体培养和体细胞杂交

植物细胞工程的核心技术是原生质体培养和体细胞杂交。

为了不出现植物远缘杂交不亲和性,新的种质资源不断创新,为了实现植物遗传转化和进行细胞学的基础研究提供了重要的科学研究基础。粮食作物、蔬菜、果树、花卉、林木等是获得的原生质体再生植株。农作物和经济作物主要是以原生质体培养,从一年生向多年生、从草本向木本、从高等向低等是近年来的植物发展趋势。原生质体培养、体细胞杂交、体细胞杂质种子评价和利用等是我国大量研究方面。世界前列的是第一次获得的原生质体植株种类数量,先进的成果适用主要是在原生质体培养体系的建立和完善、体细胞杂质种子鉴定、新种质的创制等方面。在植物细胞生理和遗传学、基因组学、蛋白质组学研究中的应用主要是以原生质体培养的技术。

2. 3 加强植物细胞工程基础研究

基础科学的进步与发展是植物细胞工程的发展主要平台。转基因植物、植物生物反应器的研究和应用的推进方面是加强研究基础植物代谢工程、植物细胞工程与植物基因工程的快速有机整合,结合分子标记辅助育种技术等。

3 结语

现代生物技术的发展是需要植物细胞工程的研究与应用来推动的。植物细胞工程作为一个很独立的学科和技术研究,为现代农业化高效率、优质性、可持续发展性做出了重大贡献。生命科学技术和工程技术的进步有力推动了植物细胞技术的发展,也大大有效地推进了现代生命科学技术的进一步发展。

加大对植物细胞工程的基础研究创新 ,将为植物细胞工程的进步提供更为广阔的发展平台,为社会主义现代农业科学技术的发展做出更大的贡献。

  • 索引序列
  • ips细胞研究的论文
  • 白细胞研究论文
  • 细胞坏死的研究论文
  • 细胞骨架的研究论文
  • 细胞工程研究的论文
  • 返回顶部