首页 > 学术期刊知识库 > 毕业论文惯性

毕业论文惯性

发布时间:

毕业论文惯性

当然不应该了,因为毕业论文这个做法我认为是非常好的,可以从中看出孩子们学习到了什么,所以一定不要取消毕业论文这一项。

不应该。这是对学生的一种考察,而且这个流程也是相当的重要了,也是有助于提升学生质量的。

1、归纳方法与演绎方法:归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。

门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。

2、分析方法与综合方法:分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。

分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。

3、因果分析法:就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。

要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。

4、比较分析法:比较分析法又称类推或类比法。它是对事物或者问题进行区分,以认识其差别、特点和本质的一种辩证逻辑方法。在资料不多,还不足以进行归纳和演绎推理时,比较分析法更具有价值。康德说:“每当理智缺乏可靠论证的思路时,类比这个方法往往能指引我们前进。”

5、定性分析法与定量分析法:就是通过确定事物的质的关系和数量关系以认识问题和分析问题的辩证思维方法。任何事物或任何问题都是质和量的统一,事物的质量。表现为一定的量,又表现为一定的质。

因此,在研究中,只有弄清质的方面,又弄清量的方面,才能找出其中规律性的问题。在研究中,定性分析就是据事论理,划清事物质的界限。定量分析就是对问题的规模、范围、数目等数量关系的情况及变化,进行精确的统计,计算、分析、对比,就是弄清事物发展中量的变化关系。

6、观察法:观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。

7、文献研究法:文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。

扩展资料:

任何一项研究都离不开方法的支撑。没有研究方法的科学研究是不存在的,没有研究方法,其研究就成了无源之水、无本之木,就不是真正的研究。

1、培根用实验法最早发现了热的运动本质;

2、笛卡儿用他提出的直觉——演绎创立了解析几何学;

3、伽利略用实验——数学方法发现了自由落体定律,运用理想实验出现了惯性定律,开创了动力学研究的先河;

4、牛顿用公理化的方法、归纳与演绎的方法完成了经典力学体系;

5、汤姆生、卢瑟福、玻尔等用模型化的方法揭开了物质微观粒子的结构,建立了各种原子结构模型;

6、爱因斯坦运用理想实验方法、演绎方法和各种非理性的直觉、顿悟方法创立了相对论;

7、康德和拉普拉斯运用思辨的方法与假说方法提出了天体演化学说;

8、拉瓦锡用定量方法、理论思维方法创立了氧化学说;

9、凯库勒以基本灵感与想象发现了苯的环状结构式;

10、门捷列夫用分类、比较法发现了元素周期表;

11、海特勒与伦敦等把量子力学的理论引入了化学研究,创立了量子化学。

达尔文用观察法、实验法、分类法、比较法等提出了进化论。从中不难发现,这些物理学、化学、天文学等自然科学领域的研究成果都是通过各种各样的方法来实现的。吴文俊的数学、袁隆平的杂交水稻等最新研究成果也都是采用新的方法取得的,因此,要想做好研究工作,取得一定研究成果,必须使用一定的研究方法。

参考资料来源:百度百科-研究方法

本科生应该取消毕业论文,因为写了毕业论文也没啥用,而且很多毕业生的论文水平很低。

惯性力研究论文

论文背景不给无法给出准确的材料,以下是相对论的基本概念,精选一些,希望对你有用。【基本概念】相对论(Principle of relativity relativism[5relEtivizEm] relativity[7relE5tiviti] theory of relativity)相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。狭义相对论最著名的推论是质能公式,它可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论所预言的引力透镜和黑洞,也相继被天文观测所证实。【提出过程】除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。如果设K坐标系中一个事件可以用三个空间坐标x、 y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由 x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc^2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生赫尔斯,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和赫尔斯获得了1993年诺贝尔物理奖。[编辑本段]【狭义理论】·狭义相对论的概念马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。·狭义论原理物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理:光速不变原理。由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是倍光速,人的速度也是倍光速,那么地面观测者的结论不是倍光速,而是倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。·狭义论效应根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。因此第一个问题转化为非惯性系的时空结构问题。在非惯性系中遇到的第一只拦路虎就是惯性力。在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。几经曲折,爱因斯坦终于建立了完整的广义相对论。广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。它那优美的数学形式至今令物理学家们叹为观止。就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。目前学术界公认的最有希望的候选者是超弦理论与超膜理论。[编辑本段]【佯谬问题】·时钟双生子佯谬相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在那个参考系中,B都比A年轻。为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个"超光速"过程。只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速。如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。在B看来,A先是比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。[编辑本段]【广义理论】·广义相对论的概念相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。·广义论公式根据广义相对论中“宇宙中一切物质的运动都可以用曲率来描述,引力场实际上就是一个弯曲的时空 ”的思想,爱因斯坦给出了著名的引力场方程(Einstein's field equation): R_ - \fracg_ R = - 8 \pi {G \over c^2} T_ 其中 G 为牛顿万有引力常数,这被称为爱因斯坦引力场方程,也叫爱因斯坦场方程。该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。 加入宇宙学常数后的场方程为: R_ - \fracg_ R + \Lambda g_= - 8 \pi {G \over c^2} T_ ·广义论原理由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速。

经典物理中的相对性原理--狭义相对论浅说(原创)初中物理中讲物体的运动状态要取决于参照物,高中以后叫他参考系。那么现在让我们来推敲一下,在一个光子上做一个坐标系K,并且始终跟踪着光子,那么VK=c=3×10八次方m/s.在一个人身上再做另外一个坐标系K′,则Vk=V,让K′与K同样直线运动,那么,K相对于K′的相对速度即为W=w-v=c-v;那么K的相对速度就小于c了,换言之,这个光量子相对于人而言的速度小于普适常量c,这可是经典力学所绝不能容忍的,然而这一切也都将被用狭义相对性原理来解释清楚。在忽略引力场的情况下,下属假定可以成立,假定在一条铁轨上,在相距非常远的A、B两地同时发生了闪电,那么在A、B地两地中点M的观测者是否能够证实这两场闪电是同时发生的吗??答案是肯定的,他只需在自己的面前摆两面互相垂直的镜子就行了,两道闪电的光会通过平面镜同时设入他的眼睛,然而在一列高速行驶(V火车=)的列车上时上述实验还能进行吗??当然不能,因为那时你将看到两道闪电的光不同时射入你的眼睛,为什么在同一事实上会由于观测者的角度不同而产生如此大的偏差呢??事实上,我们仅仅是以自己的时间为这一事件的量尺的,所以从经典力学中我们学来的一个观点我们必须加以摒弃,即绝对的时空观,如果我们认为时间同样是相对的而非想经典力学中那样把时间提到了一个特殊的地位,那么一切问题就都迎刃而解了,我们需要把时间引入我们的坐标系中,两个三维的刚体中K于K′是重合的,那么我们便可以根据洛仑兹变换的最终方程--11a方程:x²+y²+z²-c²t²=x′²+y′²+z′²-c²t′²;达成了x的守恒,取而代之的是t与t′的不同不同。这样一来经典物理中的漏洞便被简单地弥合了。

论文关键词 :惯性 物体 惯性力

摘要 :物体受到惯性力加速下落直到与加速系接触,此时仍受到惯性力。

假如这里脱离了任何天体的引力,飞船在靠惯性飞行。那么飞船里的人和一切物体都处于‘失重’状态,可以飘在空中,从手里松开的任何东西也不会往下落。如果飞船又开动了火箭,以一定的加速度 向前飞行,那么飞船里的人又感到有了‘重量’,原来在空中漂浮的东西又纷纷加速下落的情形。’这说的是物体受到惯性力加速下落的情形。

‘如果把飞船看作加速系统,那么这个力的大小等于地板使人做加速运动的力,因而力的大小反映了人的惯性质量。’这说的是物体受到惯性力与加速系接触的情形。

如果把飞船看作加速系统,那么人对飞船地板的压力的大小等于地板使人做加速运动的力,因而力的大小反映了人的惯性质量。如果把飞船看作加速系统,人对地板的压力可以看作是人在加速系中受到惯性力产生的。质量大的物体受到的惯性力大, 质量小的物体受到的惯性力小。加速度不同时,受到的惯性力不同。

此种情形是否可以当做施力与受力情形分析呢?

在施力物体看来,受力物体具有惯性,当运动状态发生改变时,受力物体需要力。当施力物体与受力物体相接触受力物体产生加速度时(例如,施力物体飞船,受力物体飞船里的人),从惯性力的角度分析,受力物体受到惯性力,质量大的物体(受到)惯性力大, 质量小的物体惯性力小,因惯性力而产生的对施力物体的力也就(大或)小,在施力物体看来,改变受力物体运动状态时,产生相同的加速度,质量大的物体(受力物体)需要的力大,质量小的物体需要的力小。

质量大的物体惯性大,受到的惯性力也大,质量小的物体惯性小,受到的惯性力也小。物体受到的力f=ma,物体受到的惯性力f=-ma.受到的力与惯性力方向相反数值相等。

在飞船中,人对飞船地板的压力与飞船地板对人的支持力是一对作用力与反作用力。人对地板的压力可以看作是人受到惯性力产生的。把飞船看作施力物体,飞船地板对人的`支持力可以看作飞船施的力。惯性力与支持力合力为零。

什么是惯性力?我们是如何定义惯性力的?

物体由于具有惯性,受到外力时会产生一个反作用力。

惯性力也使物体产生加速度,当物体与参照系接触时,由于受到惯性力而对参照系产生压力时,此物体才会有受力的感觉。

惯性力与惯性力能相互抵消吗?相对于加速系加速运动的参照系,加速度能相互相加或相减吗?受力与加速系产生相同加速度的物体, 在加速系看来处于什么状态?

我们知道,在车厢里的桌面上放一个小球(火车匀速直线运动)。相对于车厢参照系来说,小球保持静止。小球所受合外力为零,现在设想车厢开始向右做加速运动,在车厢里观测,小球将向左做加速运动,而小球并没有受到其他物体的作用力。那么在火车看来相对于车厢做加速运动的参照系里,小球做什么运动?如果加速度相同,方向相反加速度是否相互抵消?惯性力是否相互抵消?

自由落体系中,物体实实在在受到引力了,不过在自由落体系看来,物体不受力,对外(对参照系)不产生力。物体上(物体内部)确实受到引力的吸引。----算是力的相对性吧 (原来的提问是在自由落体系中,物体受到引力,但在自由落体系看来,物体不受任何力,物体具有惯性。那么物体到底受没受力呢?一个受力的物体怎么变成一个不受力的物体呢?)

由于力是物体对物体相互作用,物体对外对其他物体不产生力时,物体不受力。物体不受力时,物体具有保持静止或匀速直线运动的性质。

在自由落体系中,物体受到了引力,不过在自由落体系看来,物体对其他物体对参照系没有力的作用,物体本身是不受力的,所以物体处于惯性状态,物体具有保持静止或匀速直线运动的性质。

惯性力,物体受到惯性力时,物体本身并不受力,而在参照系看来,物体具有受到力的性质。(具有加速度)

在广义相对性原理独特视角中我们说过:一个不受引力作用的加速系统跟一个受引力作用的惯性系统等效

在引力场中自由降落的参考系中就消除了引力,在这个自由落体系中,惯性定律很好地成立,一个不受外力作用的物体将保持其原有运动状态,这一参考系实在是很好的惯性系。(自由落体系属于非惯性系一种)

结论

物体做加速运动时,我们无法判定物体是在非惯性系中(加速系中)或是在惯性系中。物体具有惯性时,我们无法判定物体是在非惯性系中或是在惯性系中。我们无法用任何实验判定物体是在惯性系中或是在非惯性系中。

物体受力在做加速运动的现象与物体处于静止或匀速直线运动状态受到惯性力的现象(或者说参照系受到力看到不受力的物体做加速运动的现象)是等效的。(没有接触任何物体时的物体加速度。)

惯性力与力能互相抵消。当非惯性系中,惯性力与力相互抵消时,非惯性系就是一个很好的惯性系。例如引力场中的自由降落系。

通常我们所说的惯性系是非惯性系的一部分,当惯性力与力相互抵消时,非惯性系就是一个惯性系,相对于惯性系做加速或减速运动的参照系就是非惯性系。 我们不知道物体是在惯性系中受到力,或是在非惯性系中受到惯性力。

理论物理方面的期刊中国物理快报理论物理通讯物理学报等等。还有一些有理论物理传统的大学的学报,比如北京大学、清华大学、北京师范大学、中国科技大学等等

惯性论文参考文献

建议你先去问下你的导师以及你的学长学姐,其次就是看下文献,物理类的话你可以去参考下现代物理、应用物理、物理化学进展

长沙理工大学硕士论文

长沙理工大学简称长沙理工,是一所以工为主,理、管、经等多学科的大学。以下是长沙理工大学硕士论文,欢迎阅读。

自从1906年动画产生,对动画本质的探讨可谓仁者见仁智者见智,但是哪种观点更具有说服力和科学性呢?目前尚难说清。本文将从物理学的角度来分析和探讨在动画制作当中物理学的重要性,进而阐释动画的本质。

从西班牙阿尔塔米拉洞穴的野牛奔跑图到中国的舞蹈纹盆,从西方的“魔术幻灯”到中国的“走马灯”,无不体现出人们对运动画面创造的欲望,从动画的起源可以看出物理学原理在人们表现运动画面时的运用。物理学原理在动画的起源和发展,以及动画片制作中的运用主要表现在角色和物体运动的创作以及空间和时间的转换等方面。然而无论是动画的起源还是动画形成的根据,无不体现着物理学原理在动画形成中所起到的重要作用。下面将从动画形成以及制作过程中物体的运动、时空的转换等多方面,从物理学角度探寻动画的本质。

一、动画中角色和物体的运动

动画角色的动作和运动,一般是以动画角色本身类别属性的动作为准则,以物理学原理为依据,赋予动画角色以个性的动作、语言和情感。物理学原理在动画角色动作设计和情节处理上具有重要作用,无论是遵循或打破运动规律,无论是为了使得动作和谐还是创造夸张性的动作,都体现着物理学原理的重要性。

(一)基本物理学在动画物体运动中的重要作用

遍悉动画中的角色动作和物体运动,作用力与反作用力、牛顿定律、曲线运动等物理学原理都有所体现。下面针对几个常用的物理学概念来说明其在动画角色动作和物体运动设置中的表现。

1.参考物:参考物是描写发生相对运动时物体的位置变化,是参考物体是否运动以及运动快慢的标准。参考物对于动画的产生和发展以及动画中物体的运动设计都具有重要的作用,并且也促进了动画的产生。早期动画大师万氏三兄弟,在创作动画之初画的`一匹奔跑的马,因对参考物和运动周期的忽视而失败。而后来所画的猫捉老鼠,猫和老鼠互为参考物,才使中国动画取得了创造性的开端。

有了参考物,动画才能创造出绚丽、夸张的动作,才能将人物的鲜明性格、生动情节表现得淋漓尽致。风的旋转、水的流动以及人物的运动有了参考的对象,也就有了运动的准确性和趣味性。《海底总动员》中海流的运动以及《天空之城》中云层和龙卷风的运动都是参考物巧妙运用的效果。

2.加速度:加速度指的是运动物体在某一瞬时的速度对时间的变化率,反映了物体运动速度的变化情况。加速度具有矢量性,瞬时性和相对性。加速度的矢量性,在动画当中表现为物体的速度变化。《猫和老鼠》中三个木墩由上而下滚动追赶小狗时,充分将加速的相对性和瞬时性表现了出来。

3.惯性原理:即物体在不受外力作用的条件下,将保持原来的匀速直线运动状态,或者是原来的静止状态。动画片在表现物体的惯性运动时,往往依据原理运用动画夸张变形的手法,获得更为强烈的运动效果。而对于较轻或者柔软的东西,随着主物体的运动而表现出来的伴随运动使得角色的运动更加流畅和真实。如《怪物史克莱》中,菲奥娜公主在教训强盗时,惯性原理的巧妙运用使辫子和衣服的摆动使公主表现得十分敏捷。

此外,物理学原理在动画制作中的经典运用仍数不胜数,如《机器人瓦力》中瓦力利用灭火器向外喷射所产生的反作用力实现了太空中自由的飞行和曼舞;《龟兔赛跑》中夸张的造型及运动形态变化,强化了速度和摩擦力之间的矛盾,使兔子的奔跑动作更具戏剧化;《木偶奇遇记》中小火力把大狐狸从帽子中拖出,通过离心力的作用夸张猫的动态,增加了趣味性。总之,从物理学原理在动画中的出色表现可以看出,物理学原理是动画运动的基础,也是动画产生和发展的源泉。

(二)天体物理学在动画当中的运用

天体物理学主要运用在科幻类的动画片当中,如在太空中飞船的飞行,以及失重状态下人物和物体的运动状态等,都是在天体物理学原理的作用下设计的。比如《机器人瓦力》中,瓦力处于失重状态在太空漫步,以及《星际旅行》中飞船进取号的旅程。天体的运动以及飞船的飞行都完美地体现了天体物理学在动画当中的运用。

二、物理学原理在动画后期制作中的应用

物理学原理不仅仅在浮于动画的喜剧和夸张动作表现上,同时在动画后期制作中也多有运用。如表现在画面之间的时空转换和动作衔接,动画背景的烘托和渲染等。

(一)光学原理的运用

动画片中的光线与电影中实实在在的O光不同,是虚拟的场景灯光表现,是动画师根据需要人为设计的,这就使得它具有更大的夸张性和灵活性。比如说动画当中利用夸张的光线、高对比度和阴影的效果来表现空间层次感、渲染气氛、突显人物性格等。

(二)画面的时间感和时空的转换

无论是理查德威廉姆斯的“无论是米开朗基罗还是达.芬奇,要想绘画出球体运动的细节,他们必须得画出其中的时间点和空间幅度。可见时间点和空间幅度的重要性。”还是格里穆乃特维克的“动画的一切皆在于时间点和空间幅度”,都无不体现着时间和空间在动画中的重要作用。

动画中夸张的时间处理增加了其趣味性,同时也使得动画角色和物体的运动更具流畅性和戏剧性。《大力士》中的人物从梯子急速爬入空中,虽已爬出梯子但仍继续,突然意识到危险,然后停顿、堕落。一瞬间的意识感知,通过动画形象动态情绪的表现、时间的夸张使运动更具有戏剧性。

另外,动画空间感不仅在动画角色的运动设计中具有重要作用,更在镜头的运用中有突出表现。如镜头的推拉摇移、灯光的布置、蒙太奇等,通过时空的转换,营造特定的空间感、层次感来表现特定的效果。其时空运动都是由一张张画虚拟而成,比电影的时空表现更具虚拟性。如《机器人瓦力》中利用相对论使得飞船的时空穿梭更加合情合理。

三、结论

综上所述,没有物理学原理在动画起源、发展中的应用,很难有目前世界动画的空前繁荣;没有物理学原理在动画制作中的巧妙运用,不可能有《猫和老鼠》给大家带来的七十多年的欢笑。所以动画角色和物体的运动通过遵循或者刻意打破物理原理,来实现动作的连续性,创造出可爱而夸张的动作。画面之间的连贯性和衔接性,无论是角色的动作还是画面之间的时空转换,都是物理学在动画中的精彩表现。物理学在动画中的运用和表现,不仅仅是针对于动画的起源以及运动规律的形成,更是证实了动画的本质是其个性的运动和特有时空感的完美结合。

参考文献:

[1]理查德威廉姆斯.原动画基础教程[M].北京:中国青年出版社,2006.

[2]哈德里威特克.动画的时间掌握[M].北京:中国电影出版社,1999.

[3]贾否,陆盛章.动画概论[M].北京:中国传媒大学出版社,2005.

第一步:定课题这一步可以就本专业去查找一些论文题目,一般每个专业都有论文题目库,找到这个论文课题库,里面的题目都是一些比较大的题目,其实这些题目都只是方向性的。那么可以从这些方向性的大题目中,找到自己比较擅长或者感兴趣的两三个方向,再从方向中找到一个自己比较感兴趣的点,来生成我们最终的论文题目。比如:XX平台现状研究,这就是一个大方向,如果我们细化。工商管理的同学可以写“XX平台营销策略现状分析”;财会的同学可以写“XX平台财务现状分析”,或者可以再细化。第二步,找资料。定了课题之后,很多同学就开始发懵,不知道该写什么内容,到底怎么写,写哪些部分哪些点。最好的方法就是学习,为什么每篇论文里都要求有参考文献?那就是让大家学习用的。第二步就是去找资料,到知网、万方等论文数据库,把自己题目中的关键词作为索引,找上五到十篇参考文献,看看前辈们是怎么写的,看看人家的写作方法,思路创新,大纲构架。第三步,列大纲。一定要先梳理出来大纲。一般第一章都是绪论或前言,就是谢谢课题研究背景和意义,文献综述。第二章是一些偏理论的东西。第三章一般就是现状描述,第四章分析问题,第五章发现问题,解决问题。最后再来一个结语就可以了。上述大纲顺序可以拆分,可以组合,顺着这个模板下来最起码不会踩雷。第四步,查重降重这个挺重要的,至于降重方法,回头自己来问我要。太长了,这里就不写了。提醒大家一下,知网的数据库系统算法匹配又升级了,同时还更新了一大批数据。

很基础的方案.物理的最后一章讲了一点儿狭义相对论的原理及一些常用公式.如果你们高数或者微积分已经学完了,可以试从从麦克斯韦方程组开始试着解释论动体的电动力学论文中提到的1个至2个公式.这个题目要想做好的话,可以用心去做.要想忽悠的话,就算推导时出了点儿错,估计都不会被老师发现,因为没几个人愿意去看那些偏微分方程组.

关于惯性研究论文

惯性的物理论文参考题目:1. 惯性质量与引力质量相等的实验验证。2. 谈谈伽利略的相对性原理。3. 惯性系与非惯性系中物理学规律之间联系的讨论。4. 生活中的惯性力,科里奥利力,举例说明自然界中的科里奥利效应。5. 谈谈角动量守恒及其应用。6. 质心参照系的利用。

你要知道惯性的作用

没有了重力你投篮会投不进 篮球会飞上天 一直往上飞 因为没有重力让他落地了 人类不敢跳跃 跳起来就永远回不到地面了 除非有人帮你 还有更严重的 空气会日渐稀薄 直到氧气不足 人类因无法呼吸而灭绝 没有了惯性 这个问题就大了 因为惯性是物体会运动的更笨 前面的人对没有惯性的解释都不确切 没有惯性 事实上现在的很多物理定律就是错的 像在真空中 有惯性条件下 你对一物体施加力 他会永远运动下去 在没有惯性条件下 你必须不停的对他施加力才会让他保持运动 从而我们干什么事都会更加费力 汽车前进需要更大的动力 他每走一步都会像是刚起步一样 需要极大的力 而不是像现在起步之后就只需克服空气阻力了 还有就是人乘车恐怕不能站在车上了 他不可能站稳的 他的脚会受到摩擦力而摔倒 你也不敢在地面跳了 跳起来你就会落在离起跳点很远的地方 因为地球再转 而你不会 你会撞在山崖或者墙上撞死 到时跳跃将成为一项极限运动 如果是惯性和重力同时消失 那你投篮不会投到天上去了 当然你也投不进 而会像推箱子一样 投出去 篮球移动一格 停在了半空 因为没有重力 他不会落下 因为没有惯性 他也不会继续往远处飞去 你会生活在一个四处悬浮着物体的世界里。。。。。。。。

惯性思维研究论文

常识是人们在实践生活中总结而成的经验,很多时候常识有助于我们“诗意地栖居”,但有时,常识也可能会欺我们。 亚里斯多德看见飘落的叶子,提出“物体质量越大,下降速度越快”这一论断看似符合常理,却被伽利略用铁球实验推翻了。可见,常识有时只是虚渺的烟,绕过去,便会发现真理。 因为常识,我们避开了许多弯路;也因为常识,我们容易形成思维定势。突破这一重围挡,自有康庄大道。 适时跳出常规,超越常识,才会有一片开阔的境地。正如陶渊明抚无弦之琴时悠然道出“但识琴中趣,何劳弦上声?”不被常识的弦束缚身心,突破思维定势的围挡,才能自由地高飞,抵达悠远的天空。 常识中,旭日是淡紫色的吗?当然不可能,但莫奈告诉我们,薄雾中的初日看得不真切,却分明不是红色,他用深邃的笔触点染出波光与日影,创作出《日出?印象》,开创了印象派的先河。突破思维定势的围挡让他超越了一个时代。 我们必须清楚地知道,没有常识,我们寸步难行,但只依靠常识,我们则无法走得更远。恰如看待那只砸中牛顿的苹果,依据常识,我们会认为苹果就应该落到地上;而跳出常识,突破了思维定势,牛顿才发现了万有引力,开启了科学发展的一个全新的时代。 科学家告诉我们,打破常识的壳,突破思维定势,我们便能发现深藏其中的真理;艺术家告诉我们,摆脱常识的锁链,突破思维定势,我们便能跳出更美的舞姿;文学家告诉我们,脱去常识的外衣,突破思维定势,我们便能发现平时看不到的新奇。 常识就像拐杖,很多时候,我们需要它的辅助,但随着我们的成长和研究思考的不断深入,拐杖有时也会牵绊住我们前进的脚步,此时我们必须学会超越常识,突破思维定势的围挡,奋勇前行。 对待常识,我们也要擦亮眼睛,去粗取精,突破围挡,追逐梦想。

世界上有很多圈,游泳有游泳圈,交友有社交圈,结婚又戴上戒指这圈,圈在我们的生活中无处不在,我们的思想也常常被套上一道隐形的圈。 从“圈”入手

人都有惯性思维,爱用常用的方式思考,善用常用的行为方式处事.久之,就养成了根深蒂固的惯性思维.很多人说,人是习惯的产物,这话一点不假.想想我们生活中的绝大部分时间做的事情都跟习惯有关.最简单的例子,比如:睡觉,要占用我们人生的1/3时光.这是我们人类的生理习惯.还有上学、读书、工作、交友、休闲等等任意领域我们的行为都以习惯性行为为主.当然养成良好的习惯势必会推进我们快速成长的进程.不良的习惯也会滞留我们获取健康美满人生的脚步.人是习惯性的动物,企业由人构成、由人经营,那势必就被人注入了习惯性思维.规范的行为方式锻造了企业的规章制度,思想的价值认可形成了企业的核心文化,同时还有绝大部分操作手法、运作方式、行销手段基本上都是按照套路出牌,按游戏规则办事.这就如同人类的习惯一样,企业也有好习惯和坏习惯.借用最伟大的推销员一句话,好习惯是开启成功的一把钥匙,坏习惯则是向失败敞开的门.习惯的作用对人、对企业、对国家及社会有着同样的作用.事有本末,物有终始.归根结底还是思想决定行为,之所以有习惯,是因为养成了惯性思维.在企业经营中,尤其是市场营销中,有时最怕的就是惯性思维,只看到人家怎么干的、前人怎么做的、政策允许的、行业的游戏规则等等.迷失在自己的惯用套路和行业人的惯性招数上.跟着人家的套路走可以成长、照搬人家的做法可以生存,但想快速成长和突破就得创新,必须打破惯性思维.我先举个生活中的例子:一家化学实验室里,一位实验员正在向一个大玻璃水槽里注水,水流很急,不一会儿就灌得差不多了.于是,那位实验员去关水龙头,可万万没有想到的是水龙头坏了,怎么也关不住.如果再过半分钟,水就会溢出水槽,流到工作台上.水如果浸到工作台上的仪器,便会立即引起爆裂,里面正在起着化学反应的药品,一遇到空气就会突然燃烧,几秒钟之内就能让整个实验室变成一片火海.实验员们面对这一可怕情景,惊恐万分,他们知道谁也不可能从这个实验室里逃出去.那位实验员一边去堵住水嘴,一边绝望地大声叫喊起来.这时,实验室里一片沉寂,死神正一步一步地向他们靠近.就在这时,只听“叭”地一声,大家只见在一旁工作的一位女实验员,将手中捣药用的瓷研杵猛地投进玻璃水槽里,将水槽底部砸开一个大洞,水直泻而下,实验室里一下转危为安.在后来的表彰大会上,人们问她,在那千钧一发之际,怎么能够想到这样做呢?这位女实验员只是淡淡地一笑,说道:“当我们在上小学的时候,就已经学过了这篇课文,我只不过是重复地做一遍罢了.”这个女实验员用了一个最简单的办法来避免了一场灾难.《司马光砸缸》我们都学过,砸缸救人,关键在于舍缸,破缸求命.牺牲缸一个,幸福归大家.但多数人的思维都想得,想活,而不是先想到舍.殊不知,舍弃有时也是一种智慧.舍放前得放后,最终是小舍小得、大舍大得、不舍不得.其实这个“缸”就可以看作我们的惯性思维,很多时候我们对很多机会视而不见,只因我们被我们思维束缚住了.这个时候惟有打破,才能放飞我们的思维,进入一个新天地.还有个案例:大家都知道,广告、广告,广而告之.平面广告得有内容、广播广告得有声音、电视广告都有画面.这是所有人的惯性思维.但是纽约一银行新开业,想迅速打开知名度,在电台做广告.一般做法是宣传一下,搞个大促销,或者请个名人推广.但他们没有采用其他银行开张宣传使用的方法.要想快速获得知名度,就得出位,明显的差异化才会赢得关注.于是他们买断纽约各电台的黄金时段10秒钟,向人们提供沉默时间,他是这样宣传的“听众朋友,从现在开始播放由本市国际银行向您提供的沉默时间.”然后整个纽约所有电台都沉默,听众被这莫名其妙的10秒钟激起了兴趣,纷纷开始讨论.各大媒体也争相报道,成了热门话题.这家银行彻底打破了惯性思维,告诉了世人,谁说广播广告非得在那大费口舌.这个沉默时间以自己的不说话唤起所有人说话.总之,在变化速度不断加快的年代,不仅要关注和追赶变化的步伐,更要鼓励使用创新的方法,使自己变得更快、更好、更异.这个年代永远是创新的企业能走在前端、创新的个人更易于进入公众的视野获得更多的机会.孙子兵法讲以正合、以奇胜.奇招绝对不是常规的方法,肯定创新的方案,超出对手的想象和预测,打破了惯性思维进而才有了出奇制胜的效果.当然,在模仿基础上的积极改进也是一种创新、把其他行业的成功模式用于自己行业也同样是一种创新.然而这一切也都必须从打破惯性思维开始.

  • 索引序列
  • 毕业论文惯性
  • 惯性力研究论文
  • 惯性论文参考文献
  • 关于惯性研究论文
  • 惯性思维研究论文
  • 返回顶部