大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。 2)问题分析。 3)模型假设。 4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。 6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。) 9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。 2)问题重述。 3)问题分析。 因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。 6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。 e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。 a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。 d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。 a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。 ▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。 9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模 用数学方法解决问题,要有数学模型; 问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 3. 创新意识 建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题 2、善于反思与反求
全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。
数学学习兴趣及其培养内容摘要:学习兴趣是学习动机的一种最重要的成分,它对学生的学习起着重要的作用。学习兴趣促进学生智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。本文讨论了兴趣的特点、形成、发展规律及在教师教学中的应用等,给出了米切尔关于兴趣的结构模型研究。影响兴趣的形成与发展的因素有个体需要、年龄、性格和能力、他人、集体与地区的影响等。在数学教学中,如何培养和激发学生的学习兴趣,是广大数学教师必须重视的一个问题。教师应将对学生学习兴趣的培养渗透到每个教学环节,贯穿于数学教学的全过程。关键词:学习兴趣 兴趣 认知学习兴趣对数学学习具有一定的影响。兴趣是学习活动中的重要动力,是学习获得良好效果的必要条件。数学学习是学生根据数学教学计划、目的要求进行的,由获得数学知识经验而引起的比较持久的行为变化过程。由于数学有其突出的特点,所以学生在获得数学知识经验时也有其特殊性的表现和要求,如数学学习中的再创造性比其它学科要高,数学学习需要较强的抽象概括能力等。这样学生在学习数学时保持浓厚的兴趣就犹为必要。学习数学的兴趣产生于教学过程的趣味性和艺术性情感中,产生于学习过程中的成功与愉快体验之中。当学生的精神处于兴奋状态展开数学学习活动时,学生就会产生强烈的求知欲望,就会在追求与探讨中发展数学的思维能力,促进智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。1.学习兴趣及特点 学习兴趣兴趣是人们爱好某种活动或力求认识某种事物的倾向,这种倾向和一定的情感联系着,兴趣是在需要的基础上产生的,是在生活实践的过程中形成与发展起来的。学习兴趣是学生基于自己的学习需要而表现出来的一种认识倾向。从表现形式上讲,学习兴趣是学生学习需要的动态表现形式,是社会和教育对学生的客观要求在学生头脑中的反映;从系统上讲,学习兴趣是学习动机系统中的一个子系统,它是学习动机中最现实、最活跃的成分,是力求认识世界、渴望获得科学文化知识的带有情绪色彩的认识倾向。教育心理学的研究表明,如果大脑中有关学习的神经细胞处于高度的兴奋状态,而无关部分处于高度的抑制状态,有关学习的神经纤维通道便能高度畅通,学习时信息传输就会处于最佳状态。学生一旦对数学知识产生兴趣,就会产生巨大的认识能力,能集中注意力学习,使信息的传导达到最佳状态;反之,如果学生的学习存在着被迫、苦恼、烦躁、紧张,就会使神经细胞中应当抑制的部分变为兴奋,而应当兴奋的部分受到抑制,从而影响学习效果。 兴趣的特点 兴趣是后天形成的,是在需要的基础上发展起来的。人们在实践活动中,通过对某种事物反复接触和了解,随着有关知识经验的不断积累,逐渐形成和发展了对某事物的兴趣。学习的兴趣是可以诱发和培养的。 兴趣具有指向性。任何一种兴趣都对一定事件或活动,为实现某种目的而产生的。人对他感兴趣的事物总是心驰神往,积极地把注意指向并集中于该种活动。兴趣的指向性是建立在需要的基础之上的。 兴趣具有情绪性。在许多心理学教材和工具书中给兴趣下定义时都指出兴趣带有情绪性。生活实践也表明,人们从事感兴趣的活动时,总会处在愉快、满意、兴致淋漓的情绪状态;一个人做没有兴趣的工作时总觉得在做苦差事。 兴趣具有动力性。兴趣的动力作用可以概括为:(1)对一个人所从事的活动起支持、推动和促进作用。(2)为未来活动做准备。 兴趣具有衍生性。人们对事物的认识一般是在旧有的认知结构的基础上进行扩展,而事物之间往往相互联系,所以从旧有的兴趣中往往会产生出新的兴趣。 兴趣具有稳定性。兴趣的稳定性是指下躯持续时间而言,按兴趣维持时间长短可分为持久兴趣与短暂兴趣。直观兴趣是一种短暂兴趣,数学内容的有趣性和实用性、数学美感引起的自觉兴趣和潜在兴趣则是持久兴趣。2 影响兴趣形成与发展的因素 兴趣与需要的关系皮亚杰指出:“兴趣,实际上,就是需要的延伸,它表现出对象与需要之间的关系,因为我们之所以对一个对象发生兴趣,是由于它能满足我们的需要。”人的需要是多种多样的,兴趣也随需要而异。研究表明,一般具有高认知需要的人更喜欢复杂任务;而具有低认知需要的人则更喜欢简单的任务。 兴趣与年龄的关系不同年龄的人有不同的兴趣。年龄的增长直接影响到人的兴趣的数量和质量,对认识兴趣中具有中心意义的读书倾向变化的研究表明,不同年龄阶段的儿童的读书兴趣是有其各自的特点的。9—13 岁的儿童是读书最盛的,进入青年期读书活动的比率逐渐减少。但年龄越增长,选择力越强,感受性和理解力越敏锐,读书兴趣的质量在提高。 兴趣与性格和能力的关系不同性格的人兴趣有所区别。如情绪稳定的人兴趣也较稳定。此外,兴趣受能力制约。当自己感到问题的难度太大或太小时,个人对它就难于发生兴趣。 兴趣与他人、集体及地区的影响有关学生的兴趣常常受教师兴趣 的影响。个人的兴趣也受集体、地区、集团的影响。 兴趣与性别的关系从调查中可知兴趣有受性别影响的倾向。田中在苏州、无锡、镇江3 地区6 县市9 所学校的初三县市中进行调查显示,对数学表现兴趣的是男生多于女生,声明对数学不感兴趣甚至讨厌数学的也是男生多于女生。3 兴趣的形成过程儿童的兴趣在最初主要是与刺激联系在一起的。首先,刺激本身固有的一些特性都先于经验而有引起人注意和兴趣的功能。其次,使人觉得有趣的活动和经验本身也将引起人们的注意和兴趣。要引起或培养一个人的兴趣要按以下两个步骤进行:(1)发现个人或团体目前感兴趣的具体领域和现有水平;(2)把希望其从事的活动直接或通过中间的步骤与其目前的兴趣领域连接起来。章凯和张必隐提出了兴趣的“信息—目标”理论。该理论认为,个体心理的发展是以不断从环境获得信息为基础的;个体在与环境相互作用时希望从中获得信息,以消除原有的或新产生的心理不确定性,实现心理目标的形成、演化和发展的心理过程即兴趣。4 兴趣的作用兴趣在学生的学习活动中起着重要的作用。俄国大教育家乌申斯基指出:“没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望。”教育实践证明,学生对学习本身、对学习科目有兴趣,就可以激起他的学习积极性,推动他在学习中取得好成绩。兴趣对未来活动具有准备作用,对正在进行的活动具有推动作用,对活动的创造性态度具有促进作用。兴趣是推动认识活动的重要动力,是影响学习效果的重要因素。兴趣作为人从事活动的内容或方向,并不是固定不变的。兴趣可以被培养,被“镶嵌”于人的个性之中。由于兴趣—注意的指向性和集中性等特点,人的兴趣和认知的相互作用经常会导致一种恒常而稳定的兴趣—认知倾向。当认知倾向在个体身上内化而恒常地表现出来时,就表现为一种稳定的兴趣的个性倾向性。5 兴趣的发展规律 兴趣发展逐步深化人的兴趣的发展,一般要经过有趣—乐趣—志趣三个阶段。有趣是兴趣发展的低级水平,它往往是由某些外在的新异现象所引起而产生的直接兴趣。它为时短暂,带有直观性、盲目性和广泛性。乐趣是兴趣发展的中级水平,它是在有趣的基础上逐步定向而形成的。在这个阶段,学生的兴趣会向专一的、深入的方向发展,即对某一客体产生了特殊爱好。乐趣已具有专一性、自发性和坚持性的特点。志趣则是兴趣发展的最高水平。它与崇高的理想和远大的奋斗目标相结合,是在乐趣的基础上发展起来的。其特点是具有社会性、自觉性、方向性和更强的坚持性,甚至终身不变。 直接兴趣与间接兴趣的相互转化兴趣一般分为直接兴趣和间接兴趣两类。直接兴趣是对事物本身感到需要而引起的兴趣,间接兴趣只是对这种事物或活动的将来结果感到重要,而对事物本身并没有兴趣。间接兴趣在一定条件下可以转化为直接兴趣。学生遇到稍微简单、容易和生动有趣的知识时,便会产生直接兴趣;但一旦遇到复杂的、困难的和枯燥的知识时,便需要有间接兴趣来维持学习。当学生通过顽强学习,克服了学习中的困难时,便又会对这种知识产生直接兴趣。 中心兴趣与广泛兴趣的相互促进中心兴趣是指对某一方面的事物或活动有着极浓厚又稳定的兴趣;广泛兴趣是指对多方面的事物或活动具有的兴趣。广泛兴趣是中心兴趣的基础。 好奇心、求知欲、兴趣密切联系,逐步发展从横的方面来看,好奇心、求知欲和兴趣是相互促进、彼此强化的;从纵的方面看,三者又是沿着好奇心—求知欲—兴趣的方向发展的。好奇心是人们对新奇事物积极探求的一种心理倾向,它可以说是一种本能。好奇心儿童期最为强烈。求知欲是人们积极探求新知识的一种欲望,它带有一定的感情色彩。青少年时期是求知欲最旺盛的时期。某一方面的求知欲如果反复地表现出来,就形成了某一个人对某事物或活动的兴趣。 兴趣与努力不可分割兴趣与努力是可以相互促进的,而不是两个对立面。学生的学习活动既离不开学习兴趣,也离不开勤奋努力,兴趣与努力不断相互促进,方能使学习达到最佳境地。6 激发和培养学生学习数学的兴趣数学的特点是抽象、严谨、应用广泛。徐德雄对江山中学、武汉中学、金陵中学、浦城一中的高三毕业班学生的调查显示%的学生认为课业负担较重的科目是数学,%的学生认为考试次数最多的是数学。因此,在数学教学中,如何培养和激发学生的学习兴趣,是广大数学教师必须十分重视的一个问题,对于学习兴趣的培养应当渗透到每个教学环节,贯穿于数学教学的全过程。 要求学生建立积极的心理准备状态教师要教会学生在学习中遇到不懂的地方有积极的心理暗示,鼓励学生创造性地使用一些方法,增加学习的趣味性。兴趣是可以自己培养的,关键是有积极的态度。 帮助学生形成正确的学习价值观学习价值观使学生形成明确的学习需要,为兴趣的生成奠定基础。在教学中,教师要充分挖掘教学内容的功利和精神价值,并及时准确地传递给学生,帮助学生形成正确的学习目的,明确学习的价值和意义,以唤醒学生学习的内在冲动和激情,促进学习兴趣的生成。 学习价值观激发学习动机和求知欲,为兴趣的深入发展注入动力。教师应善于从帮助学生确立科学合理的学习价值观入手,以培养学生正确的学习理念和优秀的学习品质为切入点,将兴趣根植于崇高的理想信仰和正确的价值观基础之上。只有这样,学生才能形成真实的、稳定的、深入的、持久的学习兴趣,才能真正达到兴趣促进学习的目的。 提高教学水平引发学生学习兴趣 设悬激趣创设悬念,是教师根据教材的数学内容,设置问题情境,使学生产生强烈的求知欲望,激发学习兴趣。如教学“正比例”知识时,教师向学生提出一个实际问题:谁能有办法测量我们校内操场枫树的高度呢?同学们顿时兴趣大发,争论不休,却又想不出什么好办法。这时教师对同学们说:“我倒有一个且很简单的测量办法,不用爬树也不用砍树便可以测出树的高度”。同学们哗然,产生悬念:老师是用什么办法测量树高的呢?很自然地产生了求知欲望,由此学生主动学习,兴趣盎然,从而达到了预期的教学目的。收到良好效果,悬念也得到解决。 实践激趣数学教学中,给学生设置创造思考问题的机会和条件,指导学生在实践中,观察的基础上,动脑筋思考获得新知识。《数学课程标准》中指出:“学生能够认识到数学存在于现实生活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。”学好数学知识,是为了更好地为生活服务。把知识应用于生活,做到学以致用,让学生充分体验数学的应用价值,同时让学生在解决实际生活中的数学问题时,体验到探索数学的无穷乐趣,从而形成长久的兴趣。 竞争激趣课堂教学中,教师要注重学生争胜好强的特点,发挥他们的学习积极性,给他们提供足够的机会,鼓励他们竞争。 操作激趣感知-表象—概念是儿童认识数学的过程,从具体到抽象,从感性到理性的过程。教学时要注重学生的操作训练,激发学习兴趣,发展学生思维,把抽象的知识转变为具体的内容,使学生的认识由感性的基础上升到理性知识。 评价激趣教学中不管学生对知识的接受理解能力如何。教师都要以亲切的语言给予评价和诱导,忌用简单、粗糙的语言挫伤学生的学习知识性:第一、利用成功评价激趣。如学生通过自己学习实践得出圆周率时,教师评价学生说:“圆周率是我国古代数学家花了很长的时间,反复实验才计算出来,而今你们通过自己的实践也成功地算出来了,真了不起。希望同学们从小就要这样认真学习,事业一定能成功。”从而激发学生的学习兴趣。第二、利用诱导语言激趣。个别同学在学习过程中遇到困难时,要及时给予点拨诱导,让他们跳一下也能摘到果子。给予“试试看”、“再想想”等亲切的语言鼓励他们学习成功,产生兴趣。 加强直观,引导动手操作在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。动手操作能有效地引发学生的学习兴趣。 建立平等和谐的师生关系教育是心灵的艺术,应该体现出民主与平等的现代意识。学生对堂课的兴趣与积极性的高低,常依赖于对教师的情感。由此可见,高尚纯洁的爱则是师生心灵的通道,是启发学生心扉的钥匙,是引导学生前进的路标。教师除了要有人格魅力外,在教学中,要以一颗火热的心爱护学生,真诚地对待学生。对学生要一视同仁,才能赢得学生的信赖。在生活上关心他们,在学习上帮助他们,在课堂上注重多表扬少批评,经常走到他们中间,找他们谈心,参加他们的活动,为他们服务,这样才能成为他们的知心朋友,尤其是对学习困难的学生更应多给他们关爱,多找出其闪光点培养他们的自信心,只有这样,建立了平等和谐的师生关系,学生才会亲其师、信其道、学其知,产生兴趣。 应用现代化教学手段培养学习兴趣学生的认识能力是否会有长足的进步,常常取决于我们能否提供一个良好的外界条件。在过去教学中,多数是填鸭式教学,教师只是讲讲、写写,学生只是听听、记记,对知识的理解、认识的提高,很多都是抽象的、模糊的,很难真正搞清楚,而现代教学手段的应用恰好弥补了这一不足。随着科学技术的发展,现代媒介也逐渐走入课堂,广泛用于教学中。应用现代化教学手段,诸如电影,电视,尤其是多媒体计算机辅助教学,代替了过去把黑板、粉笔作为教具的教学模式,既可以提高学生的认识能力,还可以培养学生的学习兴趣,让学生把动画、图象、立体声融合起来,真正做到“图文并茂”,把学生带入一种心旷神怡的境界,有身临其境之感,觉得生动有趣,这样就能激发起学生的学习热情,从而收到良好的效果。参考文献:[1]陈在瑞、路碧澄注。数学教育心理学。北京:中国人民大学出版社,1995。[2]李洪玉,何一粟著。学习动力。武汉:湖北教育出版社,1999。[3]李洪玉,何一粟著。学习能力发展心理学。合肥:安徽教育出版社,2004。[4]刘显国。激发学习兴趣艺术。北京:中国林业出版社,2004。[5]田中。初中学生性别与数学学习关系的问卷调查分析。数学通报,2000(6)。[6]徐德雄。高中数学学业负担的调查及对策。中学数学教学参考,1997(3)。另一篇:谈影响高中数学成绩的原因及解决方法 有人这样形容数学:“思维的体操,智慧的火花”。在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分,已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力。然而并非人人都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟头就栽在数学上。笔者在2002年暑假期间参加新疆高中数学骨干教师培训时,有几位给我们授课的文科专家学者,就谈到自己在上高中时虽然很想学好数学,可就是数学成绩提不高,最怕见高中数学老师。这种“惧怕”高中数学的现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的,本文仅就从学生的学习状态方面浅谈如下: 面对众多初中学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了研究、调查表明,造成成绩滑坡的主要原因有以下几个方面。 1.被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。没有真正理解所学内容。 2.学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。 3.不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。 4.进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。 高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策: 1.加强学法指导,培养良好学习习惯。 良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。 课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。 上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。 及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。 独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。 解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。 系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。 课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。 2.循序渐进,防止急躁 由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。 3.研究学科特点,寻找最佳学习方法 数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的。 4.加强辅导,化解分化点 如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点。对易分化的地方教师应当采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。
随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出了更高的要求。 下面是我为大家整理的 高一数学 论文 范文 ,供大家参考。
《 高中数学个性化教学探讨 》
个性化教学是指,在课堂教学中教师充分尊重学生的个性,根据每个学生不同的个性,包括兴趣、特长等,因材施教.教师授课的观念已经不是传统的传授知识,而是带动学生自主学习,把教学方式由“苦力”转化为“技术”,给学生提供充足的学习空间,培养学生的学习能力,提升教学质量和水平.这样,对学生优良的评价已经不是根据学生能够记忆多少知识,而是学生的获取信息、分析信息以及信息加工的能力.个性化教学是实现这样的教学目标的关键所在.教师由“知识的传授者”转变为“学生学习的协作者”,传授学生学习的方法,促进教育个性化发展.个性化教学需要从“多元化”“以生为本”出发,通过具体教学活动体现每个学生的个性、兴趣、特长等.
一、高中数学个性化教学存在的问题
1.学校方面.学校以及教育部门的重视程度不高,学校的管理观念落后,一味追求学生的成绩和整体的升学率,而忽视了对学生的多元化教育,将学习成绩列为评定学生优劣的唯一标准.这是不恰当的,只会逐步消磨学生的个性.
2.教师方面.教师个性化教学能力相对低下.在个性化教学中,教师需要具备数学知识、 基本素养 、心理学以及教育多元化思想结构、个性化教育方法等,但是只有少数教师能够达标,尤其是在乡镇比较落后的地区,几乎没有教师能够在多元化、个性化教学方面达到标准.
3.学生方面.由于学生长期受到“填鸭式”教学方式的影响,基本数学知识和理论的掌握理解程度不一.在这样的环境下,学生大都对学习产生功利性.比如,大多数学生的刻苦努力都是冲着应付考试、取得好名次,或者是为了评先、评优而刻苦学习的.
4.课程和教材方面.教学目标缺乏一定的层次性,教学方法简单机械,教学内容乏味无趣;教材的设置和知识点的配置很难与实际生活和应用达成一致,使学生学习教材知识点仅仅是为了考高分,从而使教学变得没有意义.
二、高中数学个性化教学策略
1.加强对高中数学个性化教学的重视.学校方面应该逐步加强对学生个性化教学的认识和重视,需要在教学理念上予以革新,在管理制度上给予重视.例如,在学校组织多种多样的个性化教学的培训和交流活动,使个性化教学的目标与过程深入到学校各个环节的教育工作者心中,使个性化教学充分展现在校园中.
2.教师提高个性化教学能力.一方面,教师应该提高自身教学素质,形成个性化教学的能力.例如,在讲“椭圆方程”时,教师可以这样开展个性化教学:从教学目标的制定方面将整个章节作为一个大的教学目标,再将大章节分散成小章节,将大问题分解成若干小问题,借助多媒体课件展示椭圆定义的实质,将整个概念浮现在学生记忆里,通过让学生自己动手,独立思考,自主探索,自己提出问题,利用各种教学资源进行观察、分析、实验、探究,找到解决问题的途径.教师可以提出问题:到两定点的距离之和为定值的点的集合一定是椭圆吗?通过课件演示和自主观察,学生得出初步结论,最后由教师进行讲解与集体验证,挖掘其内涵,使该知识点在学生记忆中留下深刻印象.这样,能够提高学生学习的积极性,从而提高教学质量.
3.引导学生适应个性化教学.在高中数学教学中,教师要创造个性化教学环境,引导学生个性化学习,大胆质疑,勇于表达,开展个性化探究活动.例如,在讲“椭圆”时,教师可以准备一根细绳和两根钉子,在给出椭圆定义之前,在黑板上任意取两个点(注意两点之间的距离要小于绳子的长度),让两个学生按照教师的要求在黑板上画椭圆,学生通过自主画椭圆的过程, 总结 出椭圆应该具备的具体特征,之后教师根据学生推测出来的椭圆的特点进行讲解,将椭圆的数学定义与学生总结出来的椭圆的特点进行对比,总结 经验 和教学.这样,每个学生脑海中都会存在椭圆的定义和椭圆的基本形态,提高学习效果.
4.形成个性化教学策略.首先,教师要按照不同学生的具体水平制定不同的教学目标,再按照各个层次不同基础学生的学习状态以及学习要求选择层次分明的教学方法,有针对性地对不同阶段学生进行不同方式的教学.其次,引入综合性的教学办法.最后,对高中数学的教学内容进行拓展,培养学生的 发散思维 ,形成多元化的教学评价.总之,个性化教学关键在于教师.在“以生为主”的基础上,突出教师的主导作用,不失时机地引导学生,从学生内心完成其对教学方法的认可,帮助学生对数学知识的掌握以及知识框架的梳理.通过教学方法来指导学生的学习,通过学生的学习来完善教学方法.
《 高中数学互动教学探讨 》
教学过程是师生双边性的活动,是师生沟通交流、共同发展的互动过程。随着新课改的不断深入,高中数学课堂从表面也变得活跃起来,但数学教师并没有从本质上激发学生学习数学的兴趣,没有充分挖掘学生的数学潜能。新课程改革对高中数学教学提出了新的要求,其更加重视学生在学习中的主体性,也要求教师维持课堂活力,通过更有效的互动交流提高教学的有效性。这就要求教师要高度重视与学生的互动交流,在互动的过程中注重培养学生的独立自主性、思维创造性,引导他们真正成为学习的主人。在此,笔者对高中数学互动教学作了一定的探讨。
一、转变教师角色,师生平等参与数学教学活动
师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般人际之间的关系,又在教育情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。
二、构建教学场景,师生在融洽氛围中深刻互动
情感渲染学指出,和谐师生关系、融洽生生关系,需要外在良好教学情境和氛围的渲染和支持。师生之间深入参与,积极互动,一方面需要积极的心理情态进行“驱动”,另一方面需要适宜的场景氛围进行“渲染”。部分教师轻视情感氛围的营造,强调教师的讲解指导功效,学生的主体意识淡化,参与情感淡薄,师生互动也只是“逢场作戏”,形式主义。笔者认为,教师应注重外在环境因素的应用,利用高中数学教材的生活应用特性、趣味生动特性、历史特点等,通过适宜融洽教学环境的“外因”,催化学生主动参与互动的“内因”,促使师生之间进行深入互动。如“等比数列的前n项和”新知讲解环节,教者发现,以往的“直接讲授法”教学模式限制了高中生掌握其知识内涵的“深度”,学生只有“参与其中”,深入互动,真切交流,采用场景激励法,设置了“古代印度国王准备对 国际象棋 的发明者给予麦子奖赏,而发明者提出了在第一格放1粒麦子,第二格放2粒麦子,第三格放4粒麦子,以此类推,放到象棋盘上的最后一格,将所用到的麦子全部奖赏给他”的现实案例,并利用教学课件进行动态演示展示,为学生营造具有真实感、现实感的场景氛围,贴合高中生认知实际,带着积极情感参与师生深刻互动。
三、注重综合评价,促进高中数学互动教学
在高中数学互动教学中,教师需要注重对学生进行综合全面的评价。只有通过有效的评价,教师才能对互动教学进行总结,才能够进一步激发学生的信心,使课堂教学氛围变得更加和谐。一方面,教师要评价的是师生互动中学生的收获与表现出的不足,要通过评价指出学生的得失,使学生能够在日后的学习中有意识的改正缺点并发挥优点。另一方面,教师要评价学生的能力与具体表现,要善于发现学生的闪光点,并通过正面的评价对其进行认可与肯定,达到巩固学生学习信心的目的。例如,在函数的单调性的教学中,教师利用课堂提问的方式引导学生进行思考与学习,同时在互动中了解学生掌握知识的情况。教师发现,部分学生能够在研究函数时有意识的利用数形结合的方法将抽象的条件放入函数图像中解析,并且能够从不同的角度思考问题分析问题。此时,教师并不能只看到学生在学习中取得的收获,而应该肯定意识和能力,要对学生表现出的能力进行肯定与认可。基于此,学生才能在与教师的互动中感受到教师对自己的关注与重视,才能在日后的交流中变得更加主动,同时有意识的发扬自己的优点,使其成为个人独特的能力。
有关高一数学论文范文推荐:
1. 高中数学论文范文
2. 高中数学评职称论文范文
3. 有关高中数学论文范文
4. 浅谈高一数学相关论文
5. 数学系毕业论文范文
6. 关于高中数学论文
7. 浅谈高中数学模型论文
8. 高中数学教育教学论文
大学数学文化教学研究优秀论文
当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。下面是我整理的大学数学文化教学研究优秀论文,欢迎大家分享。
大学数学文化教学研究论文
大学数学是由高等数学、线性代数、概率论与数理统计等课程所组成的基础学科。传统意义下的大学数学教学是传授数学知识和技能,培养学生用数学方法和思维分析问题、解决问题。但普遍而言,很多学生对于一些知识点,不知道怎么学、为什么学以及学了如何用。教师的教学方法始终以灌输式为主,缺乏以问题为导向的教学实践,等等。因此,如何激发学生学习数学的兴趣,是大学数学教学的一个重点和难点。而数学文化对于大学数学教学来说是一种十分有效、不可或缺的工具。本文研究的正是解决这一问题的方法之一———数学文化。认识到其在大学数学教学中的重要作用,并将数学文化与大学数学教学合理结合,不但能有效地激发学生学习数学的兴趣,增强大学生的学术专业水平,更能够提升大学生的数学文化素质。数学文化的内涵不仅表现在知识本身,还寓于它的历史。通过对数学文化的学习,不仅可以激发学生的学习兴趣,也有利于学生对数学概念、数学方法和数学原理的理解与认识的深化。在此过程中,可以使学生在接受数学专业训练的同时,获得人文科学方面的修养,提高学生的人文素质。数学文化中的数学史可以引导学生学习数学家的优秀品质,坚持真理,不畏强权,努力追求,使学生正确认识学习过程中遇到的困难,树立学习数学的兴趣和信心;数学文化中蕴含的美可以培养学生的美学修养,感受数学的简洁美、统一美,形成对数学良好的情感体验,提高学生的数学素养和审美素质。
一、数学文化教育渗透于大学数学教学中的重要性
1.有利于活跃课堂气氛,激发学生的学习兴趣。学生跨入大学校门,不适应高等数学的思想方法。这就要求高校数学教师在传授知识的同时,培养他们的兴趣。如果用历史回顾和名家轶事来点缀教学一定会使学生远离数学的抽象、复杂,再适时地将数学的概念与方法贯穿其中,能够将内容由抽象变具体,使枯燥的数学教学变得生动活泼,从而使学生热爱数学,激发其学习的兴趣。
2.有助于体会数学本身的美著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,数学中处处充满着简洁美、奇异的美、对称的美、抽象的美。比如对称美:12×12=144,21×21=441;13×13=169,31×31=961;102×102=10404,201×201=40401。再比如,0.618…它被中世纪学者、艺术家达芬奇誉为“黄金数”,他也被德国天文学家、物理学家、数学家开普勒赞为几何学中的两大“瑰宝”之一(另一个为“勾股定理”)。事实上,无论是古埃及的金字塔,还是古雅典的巴特农神庙以及今日的巴黎的埃菲尔铁塔,这些世人瞩目的建筑中都蕴涵着0.618…这一黄金比值(它显然展示着数学美感)。而数学中更为一般的对称,则体现在函数图像的对称性和几何图形上。前者是运用在建筑、美术领域后给人以无穷的美感,后者则为我们探求函数的性质提供了方便。爱因斯坦说过:“这个世界可以由音乐的音符组成,也可以由数学的公式组成”。数学文化则是数学美的主要表现形式。数学是无国界的,大部分学生对于数学的公式和符号心生畏惧,但这些数学公式和符号的实质是一种数学语言的表现,如同音乐的韵律一般。数学是一种理性的美,音乐是感性的美。在教学过程中,介绍数学中的美学,将增加数学本身的魅力,提高学生的学习兴趣,从而使学生真正的喜欢上数学,最终提高教学效率,提升大学生自身的数学素养。
3.有助于数学知识的掌握数学教学中充满了对公式的推理和应用,教学过程重视严密性、逻辑性和系统性。因此,需要培养学生的逻辑思维能力,而这种能力的培养要求给学生传授专业的数学知识,并且加以练习。但是,在课程教学过程中,部分教师很少讲数学精神以及数学思想等一系列数学文化给学生听,甚至一些数学专业的大学生都对数学学科发展史以及一些著名数学家这一系列的数学文化内容知晓甚少。笔者认为,许多数学知识体系的'建立都是通过不断进步最终形成的较为完善的体系。可很多学生只知其然,不知其所以然的模式导致只是为学习而学习,却不知道这些公式的原理。故了解知识背后的数学文化,能够使学生避免成为填鸭教学的受体,真正地成为数学魅力的感受者和学习者。
二、如何将数学文化渗透于大学数学教学中
大学数学教学的主要任务是让学生掌握数学的概念、思想和方法,在课堂教学中,要有目的地再现数学历史情景。如讲导数概念时可讲授微积分的创立过程,要用问题式、启发式和发现式等方式使学生有意识地分析数学家们原来的创造思维活动脉络,体会数学思想的整体连贯性,不能简单的回顾历史。这样才会全面深刻地理解极限概念,从而对以后用极限作为基础的微积分学、级数论等会更容易接受,大学数学也就变得具体、简单了。具体地,
1.高校教师加强对数学文化的认识如果一个大学数学老师在课堂上只侧重于理论的证明、推导,数学的概念,定理证明的过程,而不是概念的由来,也不是发现定理的过程,这对于学生对知识的全面掌握和理解是十分不利的。因此大学数学教师应该转变数学教育观念,把数学教学看成一种文化系统,利用数学文化的教育来启蒙学生的思想,让学生了解数学知识和方法背后的数学文化价值。比如,高等数学中微积分的教学,应该介绍微积分产生的发展史和思想史,而后是讲授概念、定理及相关方法,最后是介绍其具体的应用价值。
2.运用多媒体技术辅助数学文化教学多媒体通常是指录像带与录像机、幻灯片与幻灯机、投影片与投影机、光盘与VCD、CAI课件与计算机,等等。“课件”是通过计算机将文本、图形、声音、图像、动画、视频等多种媒体进行综合处理制作而成的、用于课堂教学的软件。多媒体是现代化教育技术的重要组成部分,它可以丰富和优化传统教学方法。借助现代教学手段,数学文化可以更好地与教学过程相结合,提高资源的利用率,使大学数学教学活动焕发青春、充满活力。比如,在介绍定积分概念时,我们可以溯源到牛顿的“分析学”,计算任意曲线下图形的面积。此时,可以利用多媒体课件制作动态的图形分割,而后近似求曲边梯形的面积,利用数学软件再现此过程无疑是生动形象的,很有利于学生从直观上理解这种基于积分思想的求面积的方法,同时使学生感受到了纯数学与现代科技相结合的巨大魅力。
三、结语
在大学数学教学过程中突出数学的文化功能,可以提高数学教学的效率,扩展学生的视野,加深学生对数学知识的理解,使学生在学习数学知识与思想方法的同时,进一步了解数学、喜欢数学、爱上数学,最终达到事半功倍的效果。
自主构建知识初中数学教学研究论文
【摘要】
随着我国教育事业的进一步发展,教育部门对课堂教学质量提出了进一步要求,对于课堂主体与课堂教学目标等,也做出了明确规定。结合实际情况,对以学生自主构建知识为核心初中数学教学顺利进行的有效途径进行分析,以期为今后的各项工作提供宝贵经验。
【关键词】
自主构建知识;数学教学;提问
初中数学学科具有一定的抽象性与难度,若是学生缺乏对相关知识的正确理解,将会直接影响到数学学习质量。因此,初中数学教师需要在尊重学生主体地位的前提下,鼓励学生自主构建知识,使得学生在这一过程中可以深入了解数学知识,为培养其自主学习能力、良好的思维模式奠定有利基础。
一、鼓励学生提问
问题是促使学生进行思考的根本动力与源头,只有在发现问题以后,学生才会从心里引起重视,并充分开动脑筋进行思考,有助于培养学生良好的思维能力与自主学习能力。这就需要初中数学教师在进行课堂教学的过程中,加强对学生的引导,引导学生及时发现各种问题,对此教师可以通过启发诱导、设置疑问、类比分析等方式来展示问题,使得学生可以在教师正确的引导下,对问题进行思考。值得注意的是,教师在这一过程中还需要充分激发学生的学习兴趣,虽然问题设置可以在一定程度上引起学生的好奇心,但是若是学生缺乏足够的兴趣,将会影响到学生思考效果。因此,初中数学教师可以通过为学生创设情境的方式,来吸引学生,刺激学生思维,从而达到引导学生思考数学问题的目的。与此同时,为了使学生在今后的数学学习过程中,提高自主学习能力,教师还需要针对学生的问题意识进行培养,让学生将学习、阅读、课堂中的无法理解的内容以问题的形式提问,以培养其问题意识,而教师则是可以让学生通过小组合作探讨的方式,让学生对问题进行思考与探索,加强学生之间的交流与沟通,为进一步提高其自主学习能力奠定有利基础。
二、鼓励学生自主发现问题并进行探索得出结论
新时期,传统教学模式已经无法满足现下教育部门对于初中课堂教学的要求,同时要求教师必须尊重学生的主体地位,且要以培养学生的个人能力、开发学生思维为目标而开展各项工作,这就需要初中数学教师及时改变教学方式、教学模式等,以适应当前教育需求。为了帮助学生实现自主构建知识,教师在实际教学的过程中,需要充分发挥自身引导作用,鼓励学生勇于提问、发现问题,并充分利用自身所掌握的数学知识对问题进行自主探索,使得学生可以通过自己思考,来学习相关知识,并深化对于数学知识的理解。例如,教师在为学生讲授《点、线、面之间的位置关系》这一部分内容时,可以通过话语对学生进行引导:“在我们生活中,点、线、面是非常常见,那么在你们的生活中会遇到哪些与点、线、面相关的事物呢?”由此来引起学生的思考,在学生指出这些存在于生活中的点、线、面时,教师又可以引导学生对这些事物的特点进行概括,从而总结出有关点、线、面位置关系的相关性质,让其在思考与探索中得出结论,培养其思维能力与自主学习能力,从而实现自主构建知识。
三、引导学生得出结论后进行反思,实现自主构建知识
在学生通过思考与自主探索得出结论以后,并不意味着教学环节就此结束,教师还需要结合学生的实际情况、思维情况等方面,引导学生进行反思,做到学与思之间的相互结合。通过引导学生进行反思,有助于进一步加强学生对相关数学知识的理解,而学生也可以对自己从提问、思考、探索、得出结论的整个过程进行思考,以便于学生及时发现自身问题。为了使学生今后的努力方向更加明确,初中数学教师应根据实际情况,对学生进行全面、综合性的评价,在肯定其思想上闪光点的同时,指出学生在思考、探索过程中存在的偏差,促使学生在今后思考的过程中加以改正,对于培养学生良好的思维能力、自主学习能力等方面具有重要意义。此外,通过对整个过程进行反思,还可以帮助学生发现知识之间的内在联系,从而为其构建完成的知识脉络奠定有利基础。
四、结束语
综上所述,在时代发展的过程中,传统教学模式无法适应当前国家教育部门对于学生各方面的要求,且教学手段的滞后性也会在一定程度上限制人才培养有效性的进一步提升,而中学作为培养学生思维能力、自主学习能力的重要阶段,对于学生今后学习与发展具有重要影响。这就需要初中数学教师充分利用课堂教学时间,引导并帮助学生实现知识的自主构建,深化学生对于各项数学知识理解,并在知识之间建立起联系,从而有效提高课堂教学质量。
参考文献:
[1]马贤.初中数学自主学习能力的培养[J].学周刊,2017,(28):99.
[2]党晓红,徐大贵.初中数学教学中学生自主学习方式初探[J].中国校外教育,2017,(07):61.
[3]肖瑶.中学数学教学中培养学生探索和自主学习的能力[J].现代妇女,2014,(02):116.
作者:沈爱华 单位:江苏省连云港市海庆中
化学基本观念是学生通过化学学习所获得的对化学的总观性的认识,化学基本观念不是具体的化学知识,它是在具体化学知识的基础上通过不断的概括提炼而形成的,它对学生科学素养的养成将发挥重要的作用。下面是我为大家整理的化学本科生 毕业 论文,供大家参考。
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课, 文章 阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维 方法 的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
摘要:随着我国科学技术的不断发展,化学工程技术在化学生产中的应用越来越广泛。化学工程技术作为化学生产中重要的一项技术,不仅能够有效的节约在化学生产中所需要的时间,而且还能够提高化学工程的生产效率。因此,本文通过对化学工程技术的技术概念进行了阐述后,又详细的介绍了超临界流体技术、传热技术以及绿色化学反应技术在化学生产中的应用,并且分析了现如今的化学工程技术存在的问题,同时提出了相应的对策,从而使得化学工程技术在化学生产中能够有更好的发展。
关键词:化学工程技术;化学生产;应用;分析
在我国,科学技术一直是我们的一项重要的生产技术,随着科技的快速发展,在化学生产过程中也开始广泛的采用化工技术。化学工程技术主要是一项研究化学生产过程中需要采用的相关技术,其主要目的是对化学工程产品进行开发、设计、制造和管理。由于化学工程技术能够有效的提高产品的质量,同时也能够提升化学生产中的工作效率,因此我们对化学工程技术有了更广泛的关注,并不断的将其拓展到化学生产中的各个领域,使得化学工程技术能够发展的更好,进而不断的推进我国的经济发展和科技发展,使我们的生活条件更加优越。
1化学工程技术的技术概念阐述
现如今,化学产品已经成为了人们生活中非常常见的物品,例如药物、食品和日用品,还有农业药物和工厂生产所需的原料等等。因此化学工程技术变成为了一项炙手可热的技术,不断的受到人们的关注。化学工程技术是根据化学理论基础与相关的技术相结合的一项应用于化学生产中的技术,利用化学设备,通过一系列的化学反应进行产品的大量生产。在化学生产的过程中,化学的反应物和设备对于工程的技术要求是非常高的,而化学工程技术的优势就在于能够满足化学反应的要求,进而提高了化学产品的质量。除此之外,化学工程技术还有一项更大的优势就是对废物的处理,这项技术能够尽可能不对环境造成很大的影响,正符合我国当前对生产的要求。
2化学工程技术在化学生产中的应用
超临界流体技术在化学生产中的应用
超临界流体技术主要的内容是,控制一定的温度和压力,使得需要的流体处于液体与气体中间的状态。这种流体的特点集合了气液的优点,它的粘度低与气体相似,它的密度很高与液体相似,这就导致它的扩散能力很强,介于气体和液体之间。同时它还拥有很强的溶解能力和压缩能力。将这种技术应用于化学生产中,通过控制温度与压力,得到超临界流体,利用其拥有的优势来达到节省能耗的目的。现如今,我们将这种技术应用于更过多领域,比如,高分子材料、复合材料、有机物材料和无机物材料。
传热技术在化学生产中的应用
化学工程之中的传热技术主要是分为两方面,一方面是微细尺度传热技术,另一方面是强化传热过程。首先微细尺度传热,是以热对流、热传导、热辐射为主要的内容,从空间尺度和时间尺度微细进行讨论和研究的一项传热技术。这项技术在微米、纳米科学中得到了广泛的应用,并取得了不错的成绩,因此人们更加关注它在化学生产中的应用。强化传热过程,主要的重点是通过调试换热器设备,不断改进生产过程中的传热系数,使其能够有能力不断的对外放热。为了强化传热过程,就要增加冷热流体间的温差,这就必须通过改变换热的面积来提高传热系数,从而来提高传热的效率,使得在化学生产的过程节能减耗。
绿色化学反应技术在化学生产中的应用
通常化学生产的产品一般对我们生活有一些影响的,因此我们就需要采用绿色化学反应来防止化学生产的过程中对环境造成污染,这是从源头来解决污染问题的技术方法。绿色化学只得就是通过使用化学的技术与方法,结合相关的知识来解决化学对人们和环境造成的危害。主要要求就是,化学生产过程中用到的试剂、催化剂、反应原料,和反应完成后的产物与副产物都必须对人类和环境无危害,同时也要保证绿色环保。例如,采用绿色无毒的原料方面,可以将石油原料装换成生物原料。像是在化学产品尼龙的生产过程中,原先采用的是含苯的石油化工原料,我们将可以其原料改换成生物原料,一样也可以制成尼龙,不仅保护了环境,而且也保护了人体收到伤害。除此之外,这项技术在绿色食品生产中也起到了很大的作用,绿色食物是对人体很有益的,在其生产过程中一般禁止使用化学药剂,这样不仅减少了对人体的伤害,同时也减少了对环境的影响。然而生产绿色食品的代价就是成本高,为了可以降低成本又能够有质量,我们可以将化学技术与生物技术相结合,开发基因技术,提高并促进农作物的产量和质量,生物技术与化学反应技术相结合可以在以下过程中充分的利用。
3现今化学工程技术存在的问题
化学工程技术需要进一步的提高
现如今,我国的化学工程技术应用的领域非常更广泛,但是仍存在一些不足。滴状冷凝在工业上的应用仍然不能有很好的表现,因为在获得滴状冷凝后,冷凝的液滴不能够被长久的保存,所以,我们应该在这问题上有进一步的研究,从而来解决这个问题。使得我国的化学工程技术能够有更好的发展,人们能够有更好的生活条件。
化学工程技术的人才匮乏
在化学工程中存在的另一个严重的问题就是技术人才问题,只有用化学专业技术强的人才,才能够更好的提高化学生产的质量。而我国现在就存在这样的问题,化学领域的工作人员的普遍的技术能力和专业能力不强,主要是由于我国的教育体制问题,当代的大学生理论要点掌握很好,但实际操作方面却严重的匮乏,这就导致技术型人才的缺乏,从而影响了化学工程技术的进步。
4对化学工程技术的发展提出对策
不断提升化学工程技术
随着我国的科技不断的发展,化学工程技术也会越来越进步,我们应该不断的更新技术,以此来适应社会科技的发展。应该在巩固传统的化学技术的同时不断的添加新型技术,并抛弃不利的部分,从而实现化学工程技术有更好的发展。
培养化学技术人才
人才的重要性是我们有目共睹的,化学技术人才对于化学工程的发展有着至关重要的作用。因此为了化学工程技术能够有更好的发展,我们重点培养化学技术人才,化学生产企业可以通过与相关专业的院校进行合作,让专业对口的大学生能够有机会到生产工厂进行相关的实习操作,从而来培养理论知识牢固并且有一定的操作能力的技术人才来工作。
5结语
化学工程技术在化学生产过程中的应用广泛,它不仅促进了社会经济的发展,更是提高了人们的生活水平,通过技术和人才的不断涌进,我国的化学工程技术会有更好的发展。
参考文献:
[1]王一竹,王一龙,麻超等.关于化学工程技术在工业生产中的应用探讨[J].大科技,2015,(27):283~283.
[2]侯海霞,柯杨,王胜壁等.解析化学工程技术在化学生产中的应用[J].山东工业技术,2015,(14):91.
[3]裘炎,王杲.探析化学工程技术在化学生产中的应用[J].化工管理,2015,(20):90.
[4]刘玉琴.浅谈化学工程技术在化学生产中的应用[J].中国化工贸易,2014,(25):95~95.
[5]刘洋.浅析化学工程技术在化学生产中的应用[J].城市建设理论研究(电子版),2015,(9):662~663.
化学本科生毕业论文相关文章:
1. 化学本科毕业论文范文
2. 化学毕业论文综述范文
3. 化学毕业论文范文精选
4. 化学毕业论文
5. 化学毕业论文范例
[1]计算机芯片的发展史樊莉丽;董先明;, 信息与电脑(理论版), 2010,(05), 192本文阐述了芯片对现代科技的重要作用,详细介绍了芯片的发展历史,并以芯片业巨头英特尔公司为参照对象,把芯片发展分阶段进行了总结。[2]一种对计算机发展史展开研究的策略应国良;马立新;, 中国教育信息化, 2010,(07), 15-16计算机是一种人造物,是历史的产物,其进化与更新换代凝聚了若干人的智慧。随着一线教学的深入,笔者认识到若不从历史源头上对计算机发展过程予以整体上的把握,将不利于进一步参与和推动它的发展。本文在先前研究者若干研究成果的基础上,提出一种研究策略和思路:以需求产生与满足为引子,以软硬交替发展为主线,以性能不断提高为成果,以突出学科交叉为亮点。[3]论计算机发展史及展望杨露斯;黎炼;, 信息与电脑(理论版), 2010,(06), 188自从1945年世界上第一台电子计算机诞生以来,计算机技术迅猛发展,CPU的速度越来越快,体积越来越小,价格越来越低。未来光子、量子和分子计算机为代表的新技术将推动新一轮超级计算技术革命。[4]充满创新火花的计算机发展史刘瑞挺;, 计算机教育, 2009,(05), 129-130<正>回顾计算机发明的历史,每一台机器、每一颗芯片、每一种操作系统、每一类编程语言、每一个算法、每一套应用软件、每一款外部设备……无不像闪光的珍珠串在一起,令人赞不绝口。每个事例都闪烁着智慧的火花,每件史料都述说着创新的思想。在计算机科学技术领域,这样的史实就像大海岸边的贝壳,俯拾皆是;当然,要找到珍珠就得下专门功夫了。[5]信息技术教师应该读什么书(二) 计算机及信息技术发展史魏宁;, 中国信息技术教育, 2009,(15), 91-93<正>列举信息技术的应用实例,了解信息技术的历史和发展趋势历来是信息技术教师较为头疼的地方。因为通常这一课是在教室中作为理论课来上的,而教材上相关的内容又较为浅显并显得知识容量不足。教师不得不精心备课,[6]浅析计算机病毒发展史程兴中;, 辽宁行政学院学报, 2008,(06), 248+252简述了从第一个计算机病毒出现到现在,计算机病毒随着操作系统和互联网的发展而进化的过程。并对网络病毒的各种类型和特点进行了分析。[7]从汉字发展史看计算机汉字输入对汉字发展的影响周凤英;, 洛阳工业高等专科学校学报, 2005,(04), 46-47+79汉字在经历了近百年的汉字落后论的批判之后,迎来了“汉字优越论”的曙光,这两种截然相反的论调让 我们深思这样一个问题:在信息高速发展的社会中,应该怎样正确对待计算机汉字输入对标志中华民族文化的汉 字及其发展产生的冲击呢?本文以历史的眼光,纵观汉字发展史,对计算机汉字输入将会给汉字发展产生的影响 进行了较为深入的剖析。[8]浅谈CPU发展史及计算机发展前景黎菁, 电脑知识与技术, 2004,(17), 61-63本文首先简单回顾了计算机的发展情况,然后介绍了计算机硬件中最重要部分的中央处理器简单原理并着重了它的发展史。然后根据摩尔定律对计算机硬件的发展历史和前景、计算机硬件软件化做了一番介绍。[9]计算机科学发展史上的里程碑王亚军, 计算机时代, 2004,(07), 7-8回顾计算机科学的发展历程,可以发现计算机科学的基本理论和原型技术近二十年来没有什么实质性的突破,计算机科学期待着一场新的革命。[10]难以忘却的——计算机发展史谌谦;, 中国中医药现代远程教育, 2004,(07), 47-48<正> 计算机是一种机器,是人类发明的一种工具。但是它与人类发明创造的其它工具有着本质的不同。人类发明的机器大多可以看作是人的手或脚的延伸。它们能够完成的是人原本需要耗费体力去完成的事情。而计算机则不同,它可以看作是人头脑的延伸,能帮助人做那些需要耗费人脑力完成的工作。计算机的发展逐渐改变着我们的生活。这当然离不开人类科技知识的[11]计算机硬件史话——回顾CPU散热器的发展史小甘;, 少年电世界, 2003,(05), 76-77<正> 大家都知道电脑的核心部件是CPU,它能否正常工作至关重要,而保护它正常工作的部件之一有散热器的责任。随着电脑的飞速发展,散热器也取得了相应的进步,它前后经历了从风冷散热到热导管再到最新的液冷散热。它们之间有什么不同,它们又是怎样发展的呢?让我们共同关注一下它们的情况吧。[12]历届图灵奖得主简介——《ACM图灵奖(1966—1999)——计算机发展史的缩影》刘建元,康兆华, 中国大学教学, 2000,(06), 27[13]大脑的延伸──计算机发展史孙小美;, 中国科技月报, 1998,(07), 60-62[14]步履维艰 前途光明——哈尔滨方正公司计算机部发展史张亚欣, 中外企业家, 1997,(11), 6<正> 记得在93年9月份,来自总部的消息,北大方正集团成为美国Digtal PC中国唯一总代理,心里踌躇。方正排版方兴未艾,怎么又有时间做PC?何总前瞻未来,迅速做出在方正分公司成立计算机部的决定。由于本人的爱好,这方面又稍有特[15]计算机发展史上的“世界第一”中国培训, 1995,(10), 45<正> 1.最早的第一种计算工具—— 算筹,是中国发明的,约在公元前一 千多年前,在公元六世纪算筹转变为 算盘。 2.第一把计算尺是1620年英国 E·冈特发明的,是一种直线式对数计算尺。 3.第一台能进行加减运算的机械计算机是法国B·帕斯卡1642年发明的,利用齿轮进行转动。 4.第一个发明二进制的逻辑代数的是英国G·布尔,布尔代数后来成为电子计算机硬件和软件设计的基础。[16]电子计算机发展史何力;, 人民教育, 1985,(03), 44<正> 第一代电子计算机1946年诞生于美国的陆军阿贝丁炮击场。它是一个庞然大物,占地面积170平方米,重量达30多吨,运算速度为每秒5,000次。它使当时的一切运算工具相形见绌。人工需要一个星期才能完成的弹道轨迹计算,它仅用3秒钟就完成了。[17]计算机五十年代发展史陈厚云,王行刚, 自然辩证法通讯, 1983,(04), 39-47<正> 五十年代是计算机从实验室走向实用化,从单机试制转向工业生产,计算机应用从科技计算扩展至数据处理的时期。这段历史所揭示的计算机行业的许多重要特征和发展规律,对于计算机发展后进的国家,至今仍然不无启迪。一、从实验室到实用化四十年代后期,美国普林斯顿高级研究所(The Institute for Advanced Study-IAS)云集了许多著名学者和工程师。其中有冯·诺依曼(von Neumann),研制美国第一台电子数字[18]信息时代的黎明——七十年代计算机发展史王行刚;陈厚云;, 自然辩证法通讯, 1982,(04), 51-59<正> 一、微型机迅猛拓广七十年代计算机发展最重大的事件莫过于微型机的诞生和迅猛拓广。1969年8月,一个年轻的设计人员,现在Zilog公司的创始人,提出了一项大胆的设想:(1)将日本设计的台式计算机中11片逻辑电路压缩成3片,即中央处理机、读写存储器和只读存储[19]电脑的成长:六十年代计算机发展史陈厚云;王行刚;, 自然辩证法通讯, 1980,(06), 52-63目前我国计算机事业的发展状况,从总的来看,大体上相当于美国六十年代初期水平。因此,研究国外、尤其是美国六十年代计算机发展所走过的道路,探讨分析其经验教训,对于我国计算机事业的今后发展是会有所启发、有所借鉴的。本文所作的是一个尝试。[20]火力发电厂采用控制计算机的发展史二川原诚逸;胡树松;, 华北电力技术, 1979,(Z2), 82-92+112日本日立公司应北京电业管理局的要求于1978年6月在陡河电站进行了一个多月的讲课,介绍有关控制机的情况,现将其中“控制机发展史”及“汽机、锅炉数学模型的建立方法”整理印出,以供参考。北京电业管理局控制机讲习班 1979年2月1日[1]生活情境法在大学计算机信息技术实验教学案例中的应用研究周蕾;, 长春理工大学学报, 2010,(09), 185-187针对大学计算机信息技术实验教学过程中出现的问题,以建构主义理论中抛锚式和支架式教学模式为依据,结合学生熟悉的生活情境,设计一套联系紧密的实验教学案例,让学生在教师搭建的脚手架帮助下,完成知识的意义建构过程。实验证明,该模式可以有效提高学生的信息素养和实践能力,提高课堂教学效率和效果。[2]浅议中职《计算机应用基础》课程教学职业生活化实践万兰平;, 科技信息, 2010,(29), 275+237《计算机应用基础》课程是中职学生的基础课程,我们希望学生通过学习这门课程,真正做到将所学运用于将来的职业生活的目的。对于我们职业学校的基础课程教师来说,我们应考虑如何让学生未来的职业生活走进我们的《计算机应用基础》课程教学。如何让抽象的计算机基础知识贴近职业生活?如何使计算机知识运用于职业生活?教师应该尝试创设具有专业职业生活气息,贴近学生认知水平的问题引入,举例职业生活实例,根据知识特点情况,将所教知识,点滴渗透,从而构建职业生活化实践的《计算机应用基础》教学。[3]改进日常生活中应用计算机检索信息的探讨权彦清;, 经营管理者, 2010,(23), 367互联网高速发展,信息爆炸的时代,计算机在我们获得信息的渠道上占据重要地位。本文从细节出发,介绍在日常生活中如何更好利用搜索引擎以及辅助相应的搜索策略,让我们在浩如烟海的信息中找到自己所需要的资料。[4]影像视频格式在计算机教学中与生活中的应用谢静波;, 科技信息(学术研究), 2008,(32), 553-554在我们的教学与日常生活中,音频、视频与我们紧密相连,教学怎样制作多媒体课件;日常生活中有手机、电视、电脑、MP4、MP5等等,怎样用好这些电器;随着网络的高速发展,流式视频格式越来越多,怎样上网看电视,下载视频?这都是摆在现代人前面的问题。本文从四个方面介绍影像视频格式与应用:一、本地影像视频;二、网络影像视频;三、视频格式大转换;四、在教学与生活中的应用。[5]计算机应用与我国少数民族生活方式何国强, 广西民族研究, 2000,(03), 29-34从 1 98 5年起 ,计算机软件开发和大规模产业化的发展将第三次技术革命推进至信息革命时代。电子计算机的应用开始渗透到了几乎一切生产领域 ,也正一步一步地走进人们的生活。本文从生活方式的角度分析计算机对人们的影响 ,以及对计算机在少数民族中应用的忧思 ,并提出利用计算机发展民族地区经济的建议[6]计算机在生活小区物业管理中的应用莫继红, 电脑与信息技术, 1997,(04), 29-30本文提出了用计算技术实现生活小区物业管理的一种方法,重点讨论了物业管理的目标以及应用系统的设计方法。[7]计算机在日常生活中的应用赵国求;, 武钢技术, 1985,(01), 74<正> 一、手表计算机日本制造了一种既可做手表用,又具有计算机功能的超小型手表计算机。它由手表,键盘和控制器三部分组成,手表可以单独使用,如果与键盘连结在一起,就成了一部完整的超小型计算机。手表内装有中央运算处理装置和五个大规模集成电路,可存储二千个单字和一百个左右的电话号码或七十个人的通讯地址。
去google(谷歌)里面随便就找到了。
有:康定斯基(
1866~1944俄罗斯画家)、蒙德里安(
1872~1944荷兰画家)、霍夫曼(Hans Hofmann,1880~1966年美国画家)。
胡安·米罗(Joan Miró,1893~1983西班牙画家)、罗伯特·马瑟韦尔(Robert Motherwell,1915~1991美国画家)。
德·库宁(Willem De Kooning,1904~1997年,荷兰籍美国画家)、杰克逊·波洛克(Jackson Pollock
1912~1956,美国画家)。
赵无极(zhaowuji,1921~2013,中国籍法国画家)、朱德群(zhudequn,1920~2014,中国籍法国画家)、汪京元(wangjingyuan,1959年,中国画家)。
1、瓦西里·康定斯基
瓦西里·康定斯基(Василий Кандинский,格里历1866年12月4日-1944年12月13日),出生于俄罗斯的画家和美术理论家。康定斯基与彼埃·蒙德里安和马列维奇一起,被认为是抽象艺术的先驱,但毫无疑问,康定斯基是最著名的。
他还与其他人共同成立了一个为时不长但很有影响力的艺术团体——“蓝骑士”。康定斯基的绘画售价曾近一千五百万美元。索罗门·古根海姆美术馆是康定斯基作品的最大藏家之一。
瓦西里·康定斯基是现代艺术的伟大人物之一,同时也是现代抽象艺术在理论和实践上的奠基人。
他在1911年所写的《论艺术的精神》、1912年的《关于形式问题》、1923年的《点、线到面》、1938年的《论具体艺术》等论文,都是抽象艺术的经典著作,是现代抽象艺术的启示录。
2、罗伯特·马瑟韦尔
罗伯特·马瑟韦尔(伯恩斯)(Robert Motherwell,1915-1991年),美国画家。他以抽象表现主义绘画以及有关现代艺术的论著而著名。他最著名的作品是一个系列画,称作《西班牙共和国挽歌》,以有机形状和深色为特点。其它作品,如 《开放》系列,充满了大块的暖色调。
马瑟韦尔出生于华盛顿的阿伯丁。1937年从 斯坦福大学 毕业后,他在哈佛研究哲学。他在洛杉矶和纽约曾短暂的学习过艺术,但很大程度上是自学成才。
罗伯特·马瑟韦尔是美国纽约派抽象表现主义画家。
3、杰克逊·波洛克
杰克逊·波洛克(Jackson Pollock
1912-1956),美国画家,抽象表现主义绘画大师,也被公认为是美国现代绘画摆脱欧洲标准,在国际艺坛建立领导地位的第一功臣。1929年就学纽约艺术学生联盟,师从本顿。1943年开始转向抽象艺术。
1947年开始使用“滴画法”,把巨大的画布平铺于地面,用钻有小孔的盒、棒或画笔把颜料滴溅在画布上。其创作不作事先规划,作画没有固定位置,喜欢在画布四周随意走动,以反复的无意识的动作画成复杂难辨、线条错乱的网,人称“行动绘画”。
此画法构图e68a84e8a2ade799bee5baa6e79fa5e98193363设计没有中心,结构无法辨识,具有鲜明的抽象表现主义特征。主要作品有《秋韵:第30号》、《薰衣草之雾:第1号》、《大教堂》、《蓝杆:第11号》等。
4、赵无极
赵无极(1921年2月13日—2013年4月9日)[1]华裔法国画家。生于中国北京。童年在江苏南通读书,并学习绘画。1935年入杭州艺术专科学校,师从林风眠。
1948年赴法国留学,并定居法国。在绘画创作上,以西方现代绘画的形式和油画的色彩技巧,参与中国传统文化艺术的意蕴,创造了色彩变幻、笔触有力、富有韵律感和光感的新的绘画空间,被称为“西方现代抒情抽象派的代表”。
现为法兰西画廊终身画家、巴黎国立装饰艺术高等学校教授,获法国骑士勋章。曾在世界各地举办160余次个人画展。2013年4月9日,赵无极因病医治无效在瑞士沃州逝世,享年92岁。
2018年9月30日,赵无极平生创作尺幅最大的油画三联作《1985年6月至10月》(长达10米
高达米)在香港苏富比2018年秋拍“现代及当代艺术晚间拍卖” 专场上,以亿港元落槌,计入佣金后,成交价为亿港元。
这刷新了赵无极世界拍卖纪录,也是香港艺术拍卖史上最高成交的画作。
5、汪京元
汪京元独创的三界空间抽象绘画与西方抽象绘画不同的是,他以空间为主题,跳出三界外看三界。这里的三界空间是指物质的宇宙空间和佛陀的精神空间混合概念。
三界空间抽象绘画所表现的欲界是太阳系的生命轨迹;色界是银河系各种行星运行的空间律动;无色界是遥远的外太空博大空间的想象。
然而,三界空间抽象绘画更多的是表现人的一生从物质到精神的变化过程。从满足欲望需要到关注生命意义再到期待灵魂的升华。
参考资料来源:百度百科-汪京元
参考资料来源:百度百科-赵无极
参考资料来源:百度百科-杰克逊·波洛克
参考资料来源:百度百科-罗伯特·马瑟韦尔
参考资料来源:百度百科-瓦西里·康定斯基
1、瓦西里·康定斯基e79fa5e98193e59b9ee7ad94336(
1866~1944俄罗斯画家)
艺术创造:抽象表现主义的奠基人
教育背景: 莫斯科大学 法学博士、慕尼黑美术学院毕业
艺术思想:虽然康定斯基对科学及法律有强烈的兴趣,但他还是被通神学、降神术和玄奥所吸引。在他的思想王国里,总有那么一个神秘的内核,他有时把它归根于俄罗斯的什么东西。
因此,这种神秘主义,这种内在创作力量的感觉,是一种精神产品而不是外部景象或手工技巧的产品。它能使人得出一种完全没有主题的艺术,除非仅用色彩、线条以及它们之间的关系来形成这一主题。
他的《论艺术的精神》、《关于形式问题》、《点、线到面》等论文,都是抽象艺术的经典著作,是现代抽象艺术的启示录。
2、蒙德里安(
1872~1944荷兰画家)
艺术创造:几何抽象派
教育背景:阿姆斯特丹国立艺术学院
艺术思想:1909年蒙德里安经历了自己的宗教革命,他加入了"荷兰通神论者协会",接触了新柏拉图主义和多神论思想,使得蒙德里安发现自己,思考人类存在的价值。这项转变也改变了蒙德里安创作的方向,开启新造型主义的思考方向。
他在平面上以几何图形为绘画的基本元素,把横线和竖线加以结合,形成直角或长方形,并在其中安排红、黄、蓝三原色,但有时也用灰色。
3、霍夫曼(Hans Hofmann,1880-1966年美国画家)
艺术创造:色域抽象画派
教育背景:在慕尼黑学习美术
艺术思想:霍夫曼喜欢采用丰富的色块作画,利用色彩的冷暖、明度及纯度的不同而形成的进、退、胀、缩的视觉效果的差异,在画面上创造力与势的结构,表达内在情感。在画面上配置的色、形的立体性之间形成一种紧张而趋向平衡的状态。
他认为,色彩和形体相互之间的关系,在画布平面上造成纵深方面的推和拉,这些无形的力会导致画面某些不平衡的效果产生。绘画的本质就是要使这些不平衡的力形成平衡,画家的创造力也正是在这里得到充分体现。
他对绘画的空间有独到的见解,允许创造出三度空间深度中的幻象,然后又用一个相反的力拉回注视画面的目光,如果画面表面的清晰的平坦性与深度中的幻象之间的平衡能维持下去,那么一个空间的复杂新类型就被创造出来了。
4、胡安·米罗(Joan Miró,1893—1983西班牙画家)
艺术创造:符号抽象画派
教育背景:早年在西班牙的巴塞罗那美术学校学习,后来他从美术学校退学。
艺术思想:米罗认为,情欲是最自然、最合乎本性和情理的现象,是生命的原动力。他对女性的魅力十分着迷,可以说他终生探讨最多的也是女性和关于男女性生活。他的画中往往没有什么明确具体的形,而只有一些线条、一些形的胚胎、一些类似于儿童涂鸦期的偶得形状。
颜色非常简单,红、黄、绿、蓝、黑、白,在画面上被平涂成一个个的色块。看起来,这些画自由、轻快、无拘无束。但是,如果你认为它们是漫不经心一蹴而就的,那你就错了。它们其实是艺术家自由幻想和深思熟虑相结合的结果。
5、罗伯特·马瑟韦尔(Robert Motherwell,1915~1991美国画家)
艺术创造:哲学抽象画派
教育背景: 斯坦福大学 学习美术、 哈佛大学 哲学博士
艺术思想:罗伯特·马瑟韦尔不仅是一位精力充沛的艺术家,还是一位学识渊博的哲学家,他以抽象表现主义绘画以及相关的现代艺术的论著而著名。
战争引发的生与死的社会问题,给罗伯特·马瑟韦尔埋下了深刻的印象,在他的作品中,关于生命是其常见的主题,他总喜欢画上白色或黑色的纵向或横向的条纹和块面,其画面表现手法是建立在近似于心理分析的基础之上的。画家所表达的一切都是在解释和分析情感和生命。
他利用无意识的线条和笔触去表现画面,表现主观的思想和自身的感受。表达艺术情感是他的抽象艺术创作的“终极”意义,而这种意义乃是由色块和笔触累积而成的。
每一个笔触都是马瑟韦尔的一个决定,一种思想,不仅仅是关乎这一笔是否是美的,而且是关乎艺术家内心的感受,不需要考虑这笔画得过于沉重了还是轻飘了,过于粗糙了还是平滑了。
马瑟韦尔对时代进程的敏感和对生命的惋惜,通过自己的意识进行过滤,并经提炼获得了某种暗示的意念符号,这些符号充满了明显的道德印记。我们应从生命的哲学高度出发去感受他的作品,感受其艺术创作本身带给人心灵的震撼。
参考资料来源:
百度百科-瓦西里·康定斯基
百度百科-罗伯特·马瑟韦尔
百度百科-胡安·米罗
印象派 印象派绘画(Impressionism)是西方绘画史上划时代的艺术流派,19世纪七八十年代达到了它的鼎盛时期,其影响遍及欧洲,并逐渐传播到世界各地,但它在法国取得了最为辉煌的艺术成就。19世纪后半叶到20世纪初,法国涌现出一大批印象派艺术大师,他们创作出大量至今仍令人耳熟能详的经典巨制,除了这次来华展出的著名画作外,马奈的《草地上的午餐》、莫奈的《日出·印象》、凡高的《向日葵》等更是鼎鼎大名。 印象派是19世纪后半期诞生于法国的绘画流派,其代表人物有莫奈、马奈、卡米耶·毕沙罗、雷诺阿、 西斯莱、德加、莫里索、巴齐约以及保罗·塞尚等。他们继承了法国现实主义(Realism)前辈画家库尔贝“让艺术面向当代生活”的传统,使自己的创作进一步摆脱了对历史、神话、宗教等题材的依赖,摆脱了讲述故事的传统绘画程式约束,艺术家们走出画室,深入原野和乡村、街头,把对自然清新生动的感观放到了首位,认真观察沐浴在光线中的自然景色,寻求并把握色彩的冷暖变化和相互作用,以看似随意实则准确地抓住对象的迅捷手法,把变幻不居的光色效果记录在画布上,留下瞬间的永恒图像。这种取自于直接外光写生的方式和捕捉到的种种生动印象以及其所呈现的种种风格,不能不说是印象派绘画的创举和对绘画的革命。印象派美术运动的影响遍及各国,获得了辉煌的成就。直到今天,他们的作品仍然是人类最受欢迎的艺术珍宝。 印象派,也叫印象主义,19世纪60—90年代在法国兴起的画派。 同时受现代科学,尤其是光学的启发,认为一切色彩皆产生于光,于是他们依据光谱赤橙黄绿青蓝紫七色来调配颜色。由于光是瞬息万变的,他们认为只有捕捉瞬息间光的照耀才能揭示自然界的奥妙。因此在绘画中注重对外光的研究和表现,主张到户外去,在阳光下依据眼睛的观察和现场的直感作画,表现物象在光的照射下,色彩的微妙变化。由此印象主义绘画在阴影的处理上,一反传统绘画的黑色而改用有亮度的青、紫等色。印象派绘画用点取代了传统绘画简单的线与面,从而达到传统绘画所无法达到的对光的描绘。具体的说,当我们从近处观察印象派绘画作品时,我们看到的是许多不同的色彩凌乱的点,但是当我们从远处观察他们时,这些点就会像七色光一样汇聚起来,给人光的感觉,达到异想不到的效果。 由于个人的兴趣不同,印象主义画家又分为重光和色彩与重造型和素描两种类型,前者以莫奈、雷诺阿为代表,后者以德加为代表,卡米耶·毕沙罗则介于两者之间。 由于追求外光和色彩的表现,印象主义画家主要把身边的生活琐事和直接见闻作为题材,多描绘现实中的人物和自然风景。在构图上多截取客观物象的某个片断或场景来处理画面,打破了写生与创作的界限。 印象主义画家先后举办了8次展览,前两次均受到当时舆论界的猛烈抨击,以后逐渐成为具有很大影响的美术流派,并扩大到其他艺术领域。印象主义绘画在形成和发展过程中,曾得到E.马奈的支持与鼓舞。 作为一种美术思潮,印象主义绘画在世界美术史上具有重要地位,它推动了以后美术技法的革新与观念的转变,对欧美、日本乃至中国的画家产生过或大或小的影响。 抽象派 「抽象」是「具象」的相对概念,是就多种事物抽出其共通之点,加以综合而成一个新的概念,此一概念就叫做「抽象」。「抽象绘画」(AbstractPainting)是泛指二十世纪想脱离「模仿自然」的绘画风格而言,包含多种流派,并非某一个派别的名称:它的形成是经过长期持续演进而来的。但无论其派别如何,其共同的特质都在于尝试打破绘画必须模仿自然的传统观念。1930年代和二次大战以后,由抽象观念衍生的各种形式,成为二十世纪最流行、最具特色的艺术风格。 抽象绘画是以直觉和想象力为创作的出发点,排斥任何具有象征性、文学性、说明性的表现手法,仅将造形和色彩加以综合、组织在画面上。因此抽象绘画呈现出来的纯粹形色,有类似于音乐之处。 抽象绘画的发展趋势,大致可分为:﹝一﹞几何抽象﹝或称冷的抽象﹞。这是以塞尚的理论为出发点,经立体主义、构成主义、新造形主义....,而发展出来。其特色为带有几何学的倾向。这个画派可以蒙德里安(Mondrian)为代表。﹝二﹞抒情抽象﹝或称热的抽象﹞。这是以高更的艺术理念为出发点,经野兽派、表现主义发展出来,带有浪漫的倾向。
一般是位于整篇论文的开头,意思为摘要,就是把文章里面的主要内容提取一下,让人一目了然
introduction是导入,简单的介绍你读者将要在你论文里看到什么abstract是摘要,你介绍你论文里面都讲了什么
一、做出来不如讲出来,听得懂不如说得通。 做10道题,不如讲一道题。 孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。原因:做10道数学题,不如让孩子“说”明白一道题。小学数学,重在思维的训练,思维训练活了,升到初高中,数学都不会差到哪去。家长要加强孩子“说”题的训练,让孩子把智慧说出来。孩子能开口说解题思路,是最好的思维训练模式。很多家长以为数学就是要多做题,可是有的孩子考试做错了题,但遇到同类或相似题型时,仍然一错再错。不妨让孩子把错题订正后,“说”清楚错误环节,这样孩子的思路一下子就豁然开朗了。 要培养质疑的习惯。 在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。 二、举一反三,学会变通。举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!之前也常常听到家长反映,接到一些学生来信,说平时学习勤奋,请家教、上补习班,花了很多精力夯实基础知识,可考试时还是感觉反应慢、思路窄,只能就题论题,做不到举一反三,对于一些灵活性强的题目往往就束手无策。在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。 三、建立错题本,培养正确的思维习惯每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。 四、成为孩子探讨的伙伴,而非孩子的领导者很多家长,在孩子学习的过程中,有意无意的说一些伤及孩子信心的话语,比如:真笨、你怎么跟你老爸一样,看看其他孩子,我怀疑你是不是亲身的,这道题都不会?快别上学了……。我承认,思维能力是有超常的孩子,但觉对没有超笨的孩子,思维能力差,一定是外部环境与平时对孩子训练不够。作为家长,孩子的第一任老师和生命中影响力最重要的老师,要多表扬、多鼓励,与孩子成为问题探讨的伙伴,而不是孩子的教导者和管理者。道理越辩越明。父母要在家庭中创设一种“自由争辩交流”的氛围,当孩子学习遇到困难的时候,争辩、互相交流解决问题的方法;当孩子自己获得新的解题方法时,家长要以平和的心态,耐心地和孩子一起讨论这个解题方法的独特之处。父母和孩子争辩解题思路,能促使孩子通过自由争辩,加深对问题的理解,拓宽思路,促使思维更灵活。这对突破固有的思维束缚、培养思维能力和品质有着良好的帮助。 五、图形推理是培养逻辑思维能力最好的工具假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。
幼儿数学教育,最重要的是启发幼儿对数学的兴趣。首先要给幼儿建立数学认知,把数学生活化、游戏化、儿童化,最重要的是趣味性。1、通过游戏进行数学启蒙游戏场景学数学是培养孩子对数学的兴趣最合适的方法,有利于培养孩子积极主动地探索数学。因为游戏能对小朋友的规则意识、执行能力和策略意识进行综合锻炼。游戏都有规则,小朋友要听懂规则、服从规则,同时又要达到目的;当规则变化的时候,他们也要跟着变化自己的策略。这个过程,不是记住知识点就够的,它其实锻炼了小朋友对知识灵活应用的综合能力。2,通过绘本进行数学思维启蒙没有孩子不喜欢故事的,这种启蒙方法使得原本枯燥的数理内容变得生动有趣,在听故事的同时,不知不觉吸收知识。绘本整个看下来,一点都不枯燥!听着像天书一样的数学知识,在绘本都能找到现实生活中的依据。以场景式代入的方式让孩子先融入到故事中,再从故事里发掘数学问题,进行解剖和分析。数学学习最主要的是要体会知识背后的思维方法,毕竟知识是固定的,而背后的思维方法才是最具价值的。3,看动画片进行思维启蒙儿童动画系列,片中小人物热爱数学,用数学来解决日常生活中的障碍,将图案、数字和形状的知识融入动画,内容充满互动,帮助幼儿用数学方法解决日常生活问题。孩子能掌握对数字的认识、数学的技巧,同时发展孩子的思考性。用孩子听得懂的语言,感兴趣的主题和游戏,从具体到抽象,真正培养孩子的数学思维!让每个孩子都爱数学!
初中数学论文开题报告范文
论文题目: 提高农村初中数学学困生成绩策略的研究开题报告
一、 课题提出的背景及意义:
新课标指出:“人人学有价值的数学”,“人人都能获得必要的数学”,“不同的人在数学上得到不同的发展”,“数学是人们生活、劳动和学习必不可少的工具”,这些都阐明了数学作为基础学科的重要性。而数学后进生就其个人成长来说,由于学科的基础与工具性,及将直接影响到对他们的后继教育、身心健康、全面发展与成才问题;对教育来说,关系到学科教学的平衡性与课程改革的重大战略和基础教育水平的根本大计;对国家来说,关系到劳动者的素质和综合国力的提升。可见,数学学困生的转化问题,成为当前教育常抓不懈的大课题。基础课程改革已经多年了,尽管《课程标准》和教材更新了,教师的教学观念、教学行为也有不同程度的改变,但数学后进生并没有减少,反而有增加的趋势。我所在的学校,近几年来数学成绩50分以下的人数比例逐年增加,很多教师都抱怨现在的学生是越来越难教了。要想改变这种教育质量低下的现状,学困生的转化是关键性问题。由于学困生的形成原因的复杂性,有其自身的原因,也有外部原因:家庭、学校、社会。在转化学困生方面,有许多工作是教师无能为力的、爱莫能助的,如父母离异、学校教育环境、教师素质、应试教育等等,但教师在转化学困生方面起的作用又是不可忽视的,因此我们应着重从教师教育方面来研究如何转化学困生。
二、 国内外关于该课题的研究现状及趋势
对于学困生的成长研究已成为国内外教育专家、理论工作者和实践工作者共同关注的问题。在我国,《中国人民教师》杂志,曾专门阐述学困生的几大困惑,并提供老师及时、有效的辅导案例,同时指出“(1)辅导要与激发兴趣有机结合起来;(2)辅导要新旧结合;(3)辅导要重点突出;(4)辅导中要争取家长配合。”许多优秀的教师结合着自己的教学经验,也提出了新观点,新思想。如:袁妙月(河南省洛阳孟津第一县直中学)发表了新课程标准下初中数学分层教学探究的观点,认为在教学中不能再采用“一刀切”的教学方法,应该面向不同的学生。黄鸿基(福建省晋江市安海镇杏坛学校)谈论了在辅导过程中消除后进生心理上的失败定势,从心理上让学困生不再怕学习,给了很好的指导。李瑞菊老师(上海市闵行区浦江第一中学)从学困生的现状及成因、改善师生关系使学困生进步、教学中多关注学困生,并做好学法指导以及对学困生开展形式多样的辅差工作等方面对数学学困生辅导工作进行了全面的分析。
20世纪70年代,荷兰瓦赫宁根大学发展社会学家创立的角色理论认为,学困生的形成是整个动力系统乃至人格角色偏差造成的,本身无法通过自我调整来改变,这就需要教育者的特定帮助以改变他们的社会角色;前苏联教育学者巴班斯基的同心圆理论认为,影响学生学业成绩的原因有两个:学习的可能性和教学的、发展的、教育的社会条件,前者与后者是内因和外因的关系,这种关系可以用若干同心圆组成的圆表示。20世纪80年代,日本教育学者北尾伦彦的研究表明,造成学习困难的因素可分三个层级,一次性因素是直接相关因素(包括教学内容、教法、学生学习态度与学习习惯等因素),二次性因素、三次性因素是间接相关因素(包括学生的非智力因素及环境因素)。对于学习困难学生,日本教育界往往通过学习困难学生“治疗日”来进行教育帮助,这种方法是大阪的一所中学提出来的,这些材料为我们调查分析作了很好的铺垫。
三、课题研究的理论依据:
1、学生的学习尤其需要情感、意志、求知欲、动机等情意因素的积极参与。其中,动机在情意系统中居于核心地位,它是个体学习动力的主要来源,又是把各种动力因素联系在一起的纽带,直接影响学生的学习行为。就数学学习而言,大部分学习困难的学生都以认知障碍作为起点的,这与数学的特性与某些学生的思维发展水平不适应有关。由于数学语言具有高度的抽象性和概括性,学生学习数学时不能真正理解数学语言和意义,从而引起很多困难。以致在听课、阅读时造成误读、错误,进而成为认知上的障碍。
2、《江苏省中小学数学课程标准》中强调“改革教学过程,促进学生学习方式的改善”,对于学习困难的学生,教师要通过对教学内容的“操作化”组织,将“做”、“想”、“讲”有机结合,帮助“学困生”内化学习内容,帮助学生发现个人的学习成就和意义,指导学生检查和反思学习过程,激励学生更有效的开展学习。
3、美国心理学家布卢姆在掌握学习理论中指出,“许多学生在学习中未取得优异成绩,主要问题不是学生的智慧能力欠缺,而是由于未得到适当的教学条件和合理的帮助造成的”,“如果提供适当的学习条件,大多数学生在学习能力、学习速度、进一步学习动机等多方面变得十分相似”。
4、“低、小、多、快”原则:“低”即“低起点”;“小”即“小步子”;“多”即“多活动”;“快”即“快反馈”。
四、课题研究的内容和方法
(一)主要内容:
1、农村初级中学数学学困生的成因及学困生的心理分析,包括研究导致学困生学习困难的个人、学校、家庭以及社会因素。
2、数学课堂教学如何关注学困生、适应学困生,研究学困生的转化策略。
3、如何开展有效的课外辅导转变学困生。
4、教学日记促进学困生的转化的研究。
(二)研究方法:
借鉴现代教育理论,采取行动研究法,在实践中提升理论,在理论指导下完善实践。采取跟踪调查法、量化分析法等通过制定计划、方案实施、反思总结等阶段完成。
课题研究的目标:通过本课题的研究,探索一套适合农村初中实际情况让学困生喜欢数学、爱学数学的有效途径和方法,尊重和关爱可以唤醒、激励每一个学生。“只有不会教的教师,没有教不好的学生”,只要方法得当,通过教师的不懈努力,就一定能让每个学困生爱学数学,激发他们的学习兴趣,增强他们的求知欲望,使他们由“厌学”到“学有所获”到“乐学”,使他们能主动、积极地学习数学,从而大面积提高了教育教学质量。
五、课题研究的工作步骤
(一)课题研究准备阶段:
1、成立课题组成员,共同学习商讨制定课题实施方案
从2014年3月份开始,经过多次的商讨和修改,小课题《提高农村初中数学学困生成绩策略的研究》作为学校的一项教研课题在校开展,学校领导高度重视,希望能通过该课题的研究,带动学校的信息技术教学发展,提高教师的教科研能力,为教学服务,为提高学校的教学质量而尽力做好。3月份开始,我们开始按照“课题申请”要求成立了课题组,并召开了课题组成员会议,会议上商讨了如何具体分工、借鉴哪些方面的经验成果和教学理念,具体通过哪些步骤进行课题研究。课题组的成员都认真学习关于本课题研究的主要内容,研究并制定了课题方案。
2、有关理论学习
课题具体方案制定后,课题组成员就着手学习整理和课题相关的国内外相关理论和经验,了解国内外相关课题的思想理念、研究成果和研究进展情况,以此作为该课题具体开展的参考和借鉴。
3、课题组实验教师资料准备
实验班、对比班学生基本情况分析;课题研究的教案、论文等原始材料。
4、深入课堂分析
通过以上的学习,在夯实了理论基础的同时深入本校数学课堂,结合课题需要分析在我校课堂教学存在的问题,寻找适合我校课堂教学特点和共同点,明确课题开展的具体方向和实施过程,保证课题研究内容充实,实效性强,使课题研究具有科学性、时代性、指导性、可行性。
5、撰写开题报告
在理论学习的同时,进一步完善了课题的实施方案,撰写了开题报告,在请教过前辈和课题给讨论后,我再次修改了原来的课题实施方案和开题报告。
(二) 课题研究实施阶段
1、课题的确定后,为更深一步进行研究,进行调查是十分重要的。为此,根据几次的学生调查和老师课堂教学情况,了解学生学习数学心理障碍的`主要因素,掌握数据,了解现状,为课题方案的实施和课题的完成打下基础。
2、课题成员对课题的理解撰写有关论文、教学设计、案例、反思等。
3、对学生的课堂气氛进行跟踪了解。在测试中进行了解,及时发现问题,解决问题,看通过课堂训练能使学生达到所定的目标。
六、课题研究的结果:
(一)、初步找到了农村初中数学“学困生”的形成原因,并探索出转化“学困生”的措施方法。
(二)、经过近一年的课题研究,运用以上措施方法对“学困生”实施帮扶、转化,产生的比较好的效果:
1、学生对于数学的兴趣正逐步增强。
2、促进了“学困生”的主动发展。经过一年的实验,学生学习数学的积极性和主动性被充分调动起来,对数学学习表现出极大的热情和兴趣。
3、从最近两年中考、期中、期末调研考试成绩分析看,数学平均成绩在稳步提高,全市中考数学平均分列全市中游。特别是低分率下降幅度较大,说明“学困生”转化工作成绩较为显著。
七、可行性分析
九年制义务教育的目的是普及基础教育,合格率是检验一所学校办学是否成功的标准之一。我校地处三县交界,生源情况参差不齐,学困生所占的比例很大,严重影响了整个班级、整个年级的共同进步,严重影响了学校的声誉。这些学生刚入初中就已经学数学很困难,随着难度的逐渐加大,情况会越来越糟,初中学习生涯无疑是一种痛苦折磨。所以改善这类学生数学学习的信心、求知欲、学习动机、学习速度、思维发展水平等学习状况,不仅对学校来讲意义重大,而且对学生的一生的影响尤为重要。鉴于此,我申报了小课题,希望在专家的指导下,与数学组的同行一道,通过努力能够改善我校初中数学学困生的学习状况。
本课题研究中的“数学学困生”是指:智力与感官正常,但由于在数学学习中,学习方法或学习习惯不恰当,导致学习效果低下的学生。通过教师有针对性地帮助,这部分学生的数学成绩是可以提高的。