首页 > 学术期刊知识库 > 生物数学模型论文

生物数学模型论文

发布时间:

生物数学模型论文

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立的全过程就称为。目录背景数学的意义数学建模应用准备模型假设模型建立模型求解模型分析模型检验模型应用起源进入大学在中国大学生章程(2008年)第四届数学建模资料竞赛参考书国内教材、丛书国外参考书(中译本)专业性参考书数学建模题目两项题四项题数学建模相关数学建模的意义数学建模经验和体会最新进展数学建模应当掌握的十类算法背景 数学 数学建模 数学建模的意义 数学建模 模型过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用起源 进入大学 在中国大学生 全国大学生 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书数学建模题目 两项题 四项题数学建模相关 数学建模的意义 数学建模经验和体会最新进展数学建模应当掌握的十类算法展开 编辑本段背景数学近半个多世纪以来,随着的迅速发展,数学的应用不仅在工程技术、等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代的重要组成部分。数学建模数学模型(Mathematical Model)是一种模拟,是用、数学式子、程序、图形等对实际课题的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用在科技和解决哪类实际问题,还是与其它学科相结合形成,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和在的作用可谓是。数学是研究和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从以来,随着的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在这个,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生的意识和能力已经成为的一个重要方面。编辑本段数学建模的意义数学建模数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用描述实际现象的过程。这里的实际现象既包涵具体的比如现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让家(指只懂数学不懂数学在实际中的应用的)变成,,甚至等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。模型应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立的过程,是把的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的,建立起反映实际问题的,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的,敏锐的和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学转化的主要途径,数学建模在发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为的教学改革和培养高层次的的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模和培养面向的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用及当代高新的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生的精神、形成一个生动活泼的环境和气氛,的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如、最优化、、、计算方法、、、,包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至等。

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。

好好看看类型题就可以,下面不是还有人发的

数学生态学与生物模型毕业论文

生态学的产生和发展经历了漫长的历史过程。下面是我为大家整理的生态学论文 范文 ,供大家参考。

《 教育 生态学视角的高校教师专业发展 》

[摘要]教师专业发展指教师在教育生涯中,通过终身学习,不断融入新知识,提高专业技能和从教素质的发展过程,其过程侧重自主性、持续性、动态性。但教师专业发展的传统培养模式倾向教育理论的灌输,往往与教育实践相脱节。因此突破教师发展集中在教育学领域的局限,构建符合教师专业发展的生态化培养模式成为现实的需要。

[关键词]教育生态学;教师专业发展;制约因素

教育生态学最早于20世纪60—70年代由美国劳伦斯•克雷明在其著名的《公共教育》一书中正式提出,主要指运用生态学的相关理论来研究教育领域的种种现象和成因,探讨教育构成要素,掌握教育发展规律,是一门教育学和生态学的交叉学科。我国教育学者范国睿认为教育生态学的目的是揭示教育生态系统发生、发展的规律,促进教育生态系统的健康发展。该理论的核心在于用系统观、整体观、平衡观来看问题,而高教教师专业发展也是一个兼具整体关联和动态持续的研究课题,与教育生态观彼此契合。教育生态观为高校教师专业发展的生态化培养模式提供了有力的理论支持。因此,可透过教育生态学视角分析制约高校教师专业发展的因素,并提出相应的解决对策。

一、教育生态学视角下阻碍高校教师专业发展的制约因素

(一)知识结构单一, 教学 方法 陈旧

为满足如何教的需求,高校教师的知识结构不仅仅应该包括所从事学科的专业知识,同时应具备一定的教育学和心理学知识。而现实是部分高校教师仅仅具备自己专科领域的单一知识,教育学和心理学的知识严重匮乏。职前培训也只能帮助教师掌握其皮毛,难以全面深刻理解所学知识,在具体教学情境中,无法做到将适宜的教学方法和教学内容相融合。另外,培训教材本身有一定的滞后性,教师难以做到应用最先进的教学理论去灵活指导教学实践,导致理论和实践相脱节。在职后教学过程中,由于高校过分强调科研学术研究而忽视教学,导致教师并不注重教育理论技能的探索,教学水平难以提高。教师生态主体长时间占据课堂的统治地位,过分强调知识点的讲解和考试内容的灌输,忽视学生生态主体的参与性和主动性,严重影响了课堂生态系统中的主体平衡。

(二)教师专业发展意识淡泊

高校教师专业发展的内动力就是其专业发展意识,然而,一些高校教师自我专业发展意识淡薄,主要体现在科研意识缺乏, 反思 能力不足和专业情意枯竭。科研意识缺乏表现在部分教师对科研重视不足,无法正确把握科研和教学相辅相成的关系,科研投入不足;或是受到功利化倾向的引导,为实现晋升评职的短期利益,不惜花钱制造学术垃圾。导致学术研究有数量无质量,学术乱象导致的学术腐败广为诟病。反思能力不足主要表现在反思形式单一,集中在课后反思;反思过程流于形式,基于行政化的命令要求将反思过程机械化,缺少对课堂教学真实问题的认真思索;反思方式封闭化,很多高校教师孤军作战,相互排斥和隔离。教师专业情意指教师在教学过程中所形成的情感倾向,情意越高,越能促进教师专业能力的发展。目前高校教师专业情意枯竭主要体现在:一,职业倦怠感强。由于教学任务繁重,科研压力大,工资收入水平低,发展前景迷失,很多高校教师处于职业发展的休眠期,缺乏工作积极性和事业进取心。二,职业伦理道德感差。少数教师缺少敬业爱岗精神,对于教学敷衍了事,个别的受功利主义刺激,学术上伪造数据,败坏了学术风气。

(三)师资引进和聘任制度的阻隔

导致高校教师专业发展生态失衡的外部因素是制度阻隔。高校引进教师后普遍推行名义上的聘任制,实则是“终身制”,除非教师主动退出,否则被动淘汰的几率很低。尽管有些高校仿制“非升即走”制,尝试推行“有限聘期”和“有限次晋升”制度,但大多流于形式或中途腰斩,很难有实质性的突破。而固若金汤的“终身制”所导致的直接后果就是高校教师不完善的流动机制。教师流动性呈现两种趋势:一是高校教师中高学历、高职称教师的向上流动,导致优秀人才向经济发达地区倾斜,造成高校教师资源分布不平衡。二是近年来我国高校教师的校际互访呈现下降趋势。长期不更换工作环境,调整工作内容,必然导致高校教师缺乏竞争意识和工作激情,导致教学质量的下降和教师创造力的枯萎。(四)教师评价管理体系失衡影响高校教师专业发展的另一个外部因素就是管理失衡,表现在评价体系的内在冲突:一是评价理念偏差,主要表现在工具性价值和人本主义关怀的冲突。高校教师评价体系视教师为提高教学水平和效率的工具,以严格的 规章制度 来控制和管理教师的行为,通过奖励和惩罚的方式来评价教师的好坏,漠视教师专业发展的内动力,忽略教师也是一个有情感、有尊严、有个性的自然人,扼杀教师专业发展的内在需求。二是评价标准缺乏科学性,表现在量化和质化的冲突。高校教师评价体系往往过分依赖量化指标:教学工作过分依赖数量化,简单考虑教学工作量的多少,忽视教学质量的提高,教学方法的改进,教学内容和教学技术的更新,否定教师在教学过程中投入的主动性、创造性等隐性因素,削弱了教师的工作热情。科研工作过分依赖量化标准直接导致教师“重量轻质”,一味用论文的数量来衡量教师、评判教师科研效果,忽视论文的级别,课题的实际应用价值,变相地助长了学术功利化的不正之风。三是评价方式单一。高校教师评价管理大多采取“自上而下”的考核评估方式,根据聘任合同的责任细节对教师进行业绩评定,行政化色彩浓厚。而教师对于评价过程的公开性无法质疑,无法全面把握自己的不足和优势所在,无法明确长远发展的方向。这样一种完全“他评”的考核方式,剥夺了教师的知情权,助长了教师对于评价考核体系的排斥心理。教师评价管理体系的失衡令大部分高校教师失去了专业发展的动力,造成目前教师专业发展停滞不前的困局。

二、教育生态学视角下高校教师专业发展的策略

(一)更新知识结构,理论与实践相结合

教育生态学强调整体观和开放观。整个教学活动被视为是一个有机联系的整体。生态主体、生态客体、生态环境之间存在着和谐共生的关系,任何一个联系的割裂开都会影响教学的整体价值。因此,高校管理层及高校教师需要用动态、平衡和关联的理念去看待教学活动。将教育生态观的整体平衡理念渗透到教学中,就需要高校教师充分考虑各教学要素之间的相互联系和有机结合。针对高校教师知识结构单一的弊端,教师需要通过教学实践主动整合人文社科知识、专业专科知识和教育心理学知识。职前教育要注重课堂实践的重要性,职后教育要注重教育知识的巩固和积累,在教学中把理论和实践相结合。坚持开放、平衡的原则,积极更新教学理念,综合运用多样化教学方法,如讨论式教学、合作式教学、自主学习等教学组织形式,鼓励学生作为课堂生态主体的参与性、能动性和体验性,努力营造和谐共生的课堂生态环境,建立平等的师生 文化 氛围,缩小学生与教师之间的距离感,在彰显课堂整体性的同时尊重学生主体的个性差异,满足学生个性化教学的需求。

(二)建立高校教师学习共同体

针对高校教师自我发展专业意识淡泊,科研动力不强、反思意识不足和专业情意枯竭等问题,最理想的解决方式就是组成高校教师学习共同体。教育生态学认为,生态个体不能脱离系统而单独存在,个体间的竞争和协作才能促进生态系统的发展,生态系统又反过来推动单个教师生态主体的成长。生态系统的整体价值并不是个体价值的简单叠加,而是大于个体价值之和,这符合生态论中共生的思想。而高校教师学习共同体恰恰能满足这一需求。教师学习共同体是指教师在共同愿景的引领下,在学校组织或是教师自发的情况下,通过对话、合作、协商、反思等一系列实践活动,共同分享信息和资源,以开放、平等、合作、互信的方式来促进个体教师专业化成长为目标所建立的一个学习组织。教师共同体打破了教师间的生态地域的限制,以教师专业发展为共同愿景,通过合作对话的方式增加交流,挖掘群体的共同资源,在讨论分享的基础上进行有效的自我反思。科研上共同分享科研最新动态,打破教师间的“花盆效应”,使教师围绕所研究的课题共同探索,唤醒教师学科专业自觉性,激发教师专业发展的愿望,推动了教师专业发展的自主性。

(三)教师聘任打破终身制,引进竞争淘汰机制

一,打破教师聘任终身制的壁垒,进一步完善高校教师流动机制。鉴于我国高校教师助教、讲师人员数量最为庞大,可以首先实施对助教、讲师推行非终身制,给予他们相对长时间的任期考察,并借此机制来遴选青年优秀教师人才。二,引进“有进有出”的竞争淘汰机制,促进教师的合理分流,推动高校教师专业发展的生态平衡。具体就是引进竞争机制,如公开招聘制、末位淘汰制、非升即降制等。在淘汰竞争机制的引导下,形成一种竞争、合作、互助互利的自然生态环境,在“物竞天择,适者生存”理念的指引下,激发高教教师的生存发展能力。正如殷世东所言,“教师专业发展中的生态竞争是教师个体专业发展的最直接动因和最有效工具。”淘汰竞争机制能够极大地增强高校教师的危机意识和竞争意识,不断提高学术科研生产力,有效地促进教师在优胜劣汰中实现互生互利,实现高校教育环境的生态平衡和教师的全面发展。

(四)完善多维评价体系

教育生态系统中制约教师专业发展的很重要的一个生态因子就是学校管理因子,将这些管理因子调试到适合教师专业发展的耐受范围内,这些因子就由限制因子变成促进因子。从教育生态学视角来完善高校教师评价管理因子可以从以下三个层面展开。

第一,建立以人为本,尊重个性和差异的评价理念。教师评价的主要目的是引导教师实现个人专业发展,而不是把教师培养成可操控的工具。学校组织管理部门所实行奖励、惩处手段虽然可以调动教师工作积极性,却是一种外部激励手段,无法促进教师长期的个人专业发展。因此构建教师评价体系首先应该坚持“以人为本”的理念,尊重教师的个体情感,尊严和生命价值,推行教师个体自我价值实现的内部激励手段。另外,针对不同高校定位不同,学科、专业类型不同的特点,摒弃一刀切的统一评价模式,尽可能制定不同学科,不同专业的多元教师评价职称体系,尊重教师个体之间的差异性。根据不同专业、学科的特点,帮助教师制定符合他们个性化需要的长期发展规划,突出其个体专业发展的层次性。

第二,教师职称评价体系应注重量化和质化的结合,对于能够量化的指标尽可能量化清楚,如教师工作量。对于科研成果不仅要结合课题或论文的级别进行量化打分,更应该注重科研或论文的实际应用价值和影响因子,在考核量的同时更注重质的提高。

第三,采用多维评价方式,推行教师自评,教师互评,学生评价和领导评价相结合的多维动态评价方式。强调多层次、多角度全面了解教师的教学质量和效果,为教师专业发展获取全面信息提供保证。同时也更增加了评价体系的真实性、公开性和科学性。教师自评处于核心地位也凸显了教师作为评价主体的重要性,因为只有教师自己最清楚教学中所付出的努力和改进,体现了教师作为生态主体的参与主动性,帮助教师通过认识自我,分析自我从而达到自我的突破。高校教师发展是一个复杂的综合过程,突破制约高校教师专业发展的瓶颈并非是一朝一夕的事情。只有充分了解造成目前高校教师发展的内因和外因,采取合理有效的 措施 使教师专业发展处于良好的生态平衡,才能为教师专业发展的持续性提供现实的保证。

参考文献:

[1]潘懋元.中国高等教育的定位、特色和质量[J].中国大学教学,2005,(12).

[2]范国睿.教育生态学[M].北京:人民教育出版社,2000,28.

[3]朱旭东,陈兰枝.构建教师教育学科体系推动教师教育事业发展———访北京师范大学教师教育研究中心主任朱旭东教授[J].教师教育论坛,2014,(2).

[4]殷世东.生态取向教师专业发展的阻隔与运作[J].教师教育研究,2014,(5).

《 恢复生态学的理论与研究发展 》

摘要:生态是人类历史发展过程中的一个重要课题,恢复生态学是生态研究领域中的一个重要组成部分。 文章 对恢复生态学进行分析和探讨,对一些常用的术语以及当前的研究进展进行阐述。

关键词:恢复生态学;研究进展;理论研究

随着经济的快速发展,自然环境受到的影响越来越大,人口增加、工业产业化急剧发展,使生态环境的压力越来越大,而且人类在经济建设过程中,对资源进行过度利用,使很多资源都受到不同程度的损坏,一系列生态环境问题成为摆在人类面前的重要挑战,实现可持续发展,就必须加强解决各种生态环境问题,协调人类的活动和生态环境,使人类在加强经济建设的过程中也可以逐渐实现对生态的恢复和保护,促进生态环境与人类社会的全面发展。

1恢复生态学的定义和理论基础

恢复生态学的定义

恢复生态学是生态研究领域中的一个新词,主要针对生态问题产生,致力于恢复已经受到破坏的生态环境,由于这个领域涉及的学科很多,因此也叫做综合生态学。简单来讲,恢复生态学是一门有关于生态的修复的学科,指的是通过人们对生态系统的研究,从而不断对那些已经受损的生态环境进行重建和恢复的过程,使生态环境能够发挥出相应的生态功能,而且能够使自然生态环境实现可持续发展的一项科学。在这个研究领域中最关键就是恢复,对已经受到破坏的环境进行恢复,这种恢复可以分为广义上的恢复和狭义上的恢复,狭义来讲,就是一种将其恢复到初始状态的工作,广义的恢复是人类社会需求意义上,要依据生态工程的相关技术,对于一些被损坏的自然系统进行重建。由此可见,恢复生态学在加强生态系统的建设以及优化管理和生物多样性的保护上具有重要的意义。

恢复生态学理论基础

恢复生态学相对应的是已经受到破坏的生态环境,生态的破坏可以理解为生态系统的结构发生变化、功能出现退化、生态自然的关系出现紊乱。所以这个恢复的过程就是要将自然还原到一个协调的关系上。由于自然条件的复杂性以及人类社会对自然资源利用的取向影响,生态恢复并不能做到将被破坏的环境恢复到最原始的状态,只能在现有的基础上进行尽量恢复和还原,使生态自然系统能够维持一定的生态功能。生态恢复是在生态环境受损之后必须要进行的一项活动,通过各种物理、生物、化学等手段,对生态系统的发展方向以及演变的过程进行控制,从而实现重建的过程。

2恢复生态学的发展

国外关于恢复生态学的研究发展概况

人类开始对恢复生态学进行研究已有多年的历史,有学者认为生态恢复只是恢复中的第1步,一个生态系统想要保持整体性和稳定性,就需要进行全局思考。从20世纪50~60年代开始,欧洲以及北美的很多国家都开始注意自己国家内的环境问题,也开始有一些研究,利用一些工程和生物措施对水土流失等环境问题进行整治,从20世纪开始,就已经有很多国家在加强生态修复,比如欧美的一些发达国家在加强对水体以及热带雨林的恢复,日本加强对一些退化植被的恢复。关于生态恢复的研究一直都没有停止,20世纪70年代中期,在美国召开的“受损生态系统的恢复”国际研讨会,就生态系统受损的问题进行深入的研究和探讨,而且同期还出版相应的书籍,科学家从不同的角度对生态恢复问题进行探讨。1984年又召开恢复生态学研讨会,对恢复生态学理论以及实践的统一性进行分析和探讨,并且提出恢复生态学在经济发展以及自然环境保护过程中的作用,生态恢复的首要功能是完成生态环境的恢复,使生态环境能够维持原来的平衡,其次,也能够促进经济社会的发展,因为人们的经济活动与生态环境分不开,经济社会的发展离不开生态环境的支持。1985年,美国成立“恢复地球”组织,使生态恢复工作实现组织化和系统化。1996年,在瑞士召开第一届世界恢复生态学大会,会议强调恢复生态学在生态学领域中的地位,使恢复生态学的研究更进一步。但是每个地区的侧重点不相同,比如欧洲更倾向于对矿地的恢复,北美更倾向于对水体以及林地进行恢复,我国更强调农业资源综合利用。

国内关于恢复生态学的研究概况

我国的生态环境在经济社会的发展过程中受到的损坏也十分严重,加强生态恢复学的研究,也是我国生态环境恢复和保护过程中的一个重要内容。我国在发展过程中也意识到生态恢复的重要意义,因此开始生态恢复已经有较长的历史时间。比较典型的是内蒙古锡林郭勒盟草原在过大牧压下退化后封育恢复退化的过程,这个研究从退化的草原群落的基本特征、恢复的动力等为基础建立退化的数学模型,并且借助该模型对草原恢复的策略进行探讨,从而使当地的草原生态系统得到有效的保护。在我国西南部,也有学者对贵州省茂兰喀斯特退化群落进行恢复,从退化的生态环境着手,对具体的生态环境进行研究和分析,并且结合生态恢复学的理论,使恢复生态学的研究工作得到有效的进展。包维楷等对眠江上游大沟流域人为干扰体类型、干扰强度、频度、时空格局等研究的基础上,对生态系统的群落结构以及物种的组成进行分析和探讨,并且对人为影响进行分析,还有的学者对土壤结构、土壤动物、土壤微生物等进行研究,提出常绿阔叶林生态系统恢复力,对我国的森林生态系统的恢复有很大的帮助。我国的地域十分广阔,森林资源也比较丰富、森林植被的恢复工作是恢复生态学研究的一个重要内容,对植被恢复的理论与实践研究也比较多,而且也都取得很大的进步。比如对黄土高原植被恢复的探讨、矿山废弃的植被恢复与重建、沙漠植被的恢复工作进行探讨等,使我国的多种类型的生态环境系统都得到有效的恢复,而且在恢复工作不断进行的过程中,还出现很多研究文献,这对后代的生态恢复以及生态保护都有很大帮助。自然生态系统自身有一定的修复能力,但对于受损比较严重的生态系统,加强人为修复是一个重要途径,对此,我国也积极加强各种修复技术的研究,利用人为的生态工程可加速生态系统恢复,尤其被极度破坏的生态环境,更需要利用人工修复技术。

3结语

综上所述,生态环境与人类的发展息息相关,在人类加强经济建设的过程中,对自然生态环境的破坏也越来越严重,生态恢复是维持自然界和谐发展的一个重要过程。恢复生态学主要针对生态环境的恢复,这个研究领域涉及的内容比较广泛,国内外关于这个领域的研究正在不断增多,对于生态系统的可持续发展有重大意义。

参考文献

1蒲扬.恢复生态学的理论与研究进展[J].生物技术世界,2015(12)

2高彦华,汪宏清,刘琪璟.生态恢复评价研究进展[J].江西科学,2003(13)

3黄传响,亢新刚,崔秋华.恢复生态学研究与应用浅析[J].河北林果研究,2009(5)

有关生态学论文范文推荐:

1. 浅谈生态环境保护论文范文

2. 有关生态环境论文范文

3. 生态文明教育建设毕业论文范文

4. 生态环境保护论文范文

5. 生态旅游论文范文

6. 生态文明建设思考毕业论文范文

本人是南京林业大学生态学的学生,我用我平时的经验可以回答一下这个问题。

生态学专业要求学生具备生态学专业扎实和宽厚的理论基础知识、系统的研究方向专门知识和坚实的实验技能,熟悉所从事研究方面的科学理论和技术的最新发展和动向;具备独立申请、主持科研项目和独立解决科研问题的能力;熟练掌握计算操作技术与先进的生态学实验技能。

生态学是研究生物体与其周围环境(包括非生物环境和生物环境)相互关系的科学。目前已经发展为“研究生物与其环境之间的相互关系的科学”,有自己的研究对象、任务和方法的比较完整和独立的学科。

主干课程有普通生态学,农业生态学,生态工程与设计,生态管理工程,土壤、植物营养与环境分析,田间实验设计和生物统计,资源环境与信息技术,景观生态规划与设计,绿色食品与有机食品,保护生物学,污染生态学,普通生物学,生物化学,微生物学,植物生理学,城市生态学,项目投资与评估等。

毕业生应获得以下几方面的知识和能力:

1.掌握数学、物理、化学等方面的基本理论和基本知识;

2.掌握现代生态学的基本理论、基本知识、基本实验技能和生态工程设计的基本方法;

3.了解相近专业的一般原理和知识;

4.熟悉国家环境保护、自然资源合理利用、可持续发展、知识产权等有关政策和法规;

5.了解生态学的理论前沿、应用前景和最新发展动态;

6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。

黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则°——°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 这里有一篇关于数学建模的论文,你也可以下载看一下:

你好,请给我一个文章,关于数学建模,我这边至少有20篇文章,发给你,希望对你有帮助

数学模型论文lingo

2006年全国大学生数学建模竞赛c题优秀论文 易拉罐形状和尺寸的最优设计 摘要:本文主要考虑当容积一定时,如何设计易拉罐的形状和尺寸,使得所用材料最省。首先对易拉罐进行测量,对问题二、问题三、问题四建立数学模型,并利用LINGO软件结合所测的数据进行计算,得出最优易拉罐模型的设计。 模型一,对正圆柱体形状的易拉罐,当容积一定时,以材料体积最小为目标,建立材料体积的函数关系式,并通过求二元函数条件极值得知,当圆柱高为直径两倍时,最经济,并用容积为360 ml进行验算,算得 , 与市场上净含量为355ml的测得的数据基本接近。 模型二,对上面部分为正圆台、下面部分为正圆柱的易拉罐同样在容积量一定时,考虑所用材料最省,建立优化模型,并通过LINGO软件仍用容积为360 ml进行验算,算得 ,,, ,高之和约为直径的两倍。 模型三,考虑到罐底承受的压力,根据力学上横梁支点的受力与拱桥设计的原理,设计底部支架(环形)与一定弧度的拱面,同时利用黄金分割,将直径与高之比设为,建立容积量一定时材料最省的优化模型,再将有关数据代入计算,得到结论,现行易拉罐的设计从某种意义上不乏是最优设计。 关键词:优化模型 易拉罐 非线性规划 正圆柱 正圆台

数学建模论文题 目 生活中的数学建模问题学 院 专业班级 学生姓名 成 绩 年 月 日摘要 钢铁、煤炭、水电等生活物资从若干供应点运送到一些需求点,怎样安排输送 方案使利润最大?各种类型的货物装箱,由于受体积、重量等的限制,如何相互搭配装载,使获利最高?若干项任务分给一些候选人来完成,因为每个人的专长不同,他们完成任务的效益就不一样,如何分派使获得的总效益最大?本文将通过以下的例子讨论用数学建模解决这些问题的方法。关键词:获利最多,0-1变量一. 自来水输送问题问题 某市有甲、乙、丙、丁四个居民区,自来水由A,B,C三个水库供应。四个区每天必须得到保证的基本生活用水量分别为80,50,10,20千吨,但由于水源紧张,三个水库每天 只能分别供应60,70,40千吨自来水。由于地理位置的差别,自来水公司从各水库向各区送水所需付出的引水管理费用不同(见下表),其他管理费用都是400元每千吨。根据公司规定,各区用户按照统一标准950元每千吨收费。此外,四个区都向公司申请了额外用水量,分别为10,20,30,50千吨。该公司应如何分配供水量,才能获利更多?引水管理费(元每千吨) 甲 乙 丙 丁A 160 130 220 170B 140 130 190 150C 190 200 230 ----问题分析 分配供水两就是安排从三个水库向四个区供水的方案,目标是获利最多,而从题目给出的数据看,A,B,C三个水可的供水量170千吨,不够四个区的基本生活用水量与额外用水量之和270千吨,因而总能全部卖出并获利,于是自来水公司每天的总收入是950*(60+70+40)=161500元,与送水方案无关。同样,公司每天的其他管理费为400*(60+70+40)=68000元也与送水方案无关。所以要是利润最大,只须是引水管理费最小即可。另外,送水方案自然要受三个水可的供水量和四个取得需求量的限制。模型建立决策变量为A、B、C、三个水库(i=1,2,3)分别向甲、乙、丙、丁四个小区(j=1,2,3,4)的供水量。设水库i向j的日供水量为xij。由于C水库鱼定去之间没有输水管道,即X34=0,因此只有11个决策变量。由上分析,问题的目标可以从获利最多转化为引水管理费最少,于是有min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件有两类:一类是水库的供应量限制,另一类是各区的需求量限制。由于供水量总能卖出并获利,水库的供应量限制可以表示为x11+x12+x13+x14=60;x21+x22+x23+x24=70;x31+x32+x33=40;考虑到歌曲的基本用水量月外用水量,需求量限制可以表示为 80<=x21+x11+x31;50<=x12+x22+x32;10<=x13+x23+x33;20<=x14+x24;x21+x11+x31<=90;x12+x22+x32<=70;x13+x23+x33<=40;x14+x24<=70;模型求解将以上式子,输入LINGO求解,得到如下输出:Optimal solution found at step: 10 Objective value: Value Reduced CostX11 送水方案为:A水库向乙区供水60千吨,B水库甲区、丁区分别供水50,20千吨,C水库向甲、丙分别供水30,10千吨。引水管理费为25800元,利润为161500-68000-25800=67700元。二. 货机装运问题 某架火机油三个货舱:前舱、中舱、后舱。三个货舱所能装载的货物最大量的体积都有限,如下表所示,并且,为了保持飞机的平衡,三个货舱中世纪装在货物的重量必须与其最大容许重量成比例。 前舱 中舱 后舱 重量限制(吨) 15 26 12 体积限制(立方米) 8000 9000 6000 现有四类货物供该伙计本次飞行装运,其有关信息如下表所示,最后一列之装运后所获得的利润。应如何安排装运,使货机本次飞行获利最大? 重量(吨) 空间 利润(元每千吨) 货物1 20 480 3500 货物2 18 650 4000 货物3 35 600 3500 货物4 15 390 3000模型假设 问题中没有对货物装运提出其他要求,我们可以作如下假设:(1) 每种货物可以分割到任意小;(2) 每种货物可以在一个或多个货舱中任意分布;(3) 多种货物可以混装,并保证不留空隙。模型建立决策变量:用Xij表示第i种货物装入第j个货舱的重量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。决策目标是最大化利润,即max=3500*(x11+x12+x13)+4000*(x21+x22+x23)+3500*(x31+x32+x33)+3000*(x41+x42+x43);约束条件包括以下4个方面: (1)供装载的四种货物的总重量约束,即x11+x12+x13<=20;x21+x22+x23<=18;x31+x32+x33<=35;x41+x42+x43<=15; (2)三个货舱的重量限制,即x11+x21+x31+x41<=15;x12+x22+x32+x42<=26;x13+x23+x33+x43<=12;(3)三个货舱的空间限制,即480*x11+650*x21+600*x31+390*x41<=8000;480*x12+650*x22+600*x32+390*x42<=9000;480*x13+650*x23+600*x33+390*x43<=6000; (4)三个货舱装入重量的平衡约束,即(x11+x21+x31+x41)/15=(x12+x22+x32+x42)/26;(x12+x22+x32+x42)/26=(x13+x23+x33+x43)/12; 模型求解将以上模型输入LINGO求解,可以得到:Optimal solution found at step: 10 Objective value: Variable Value Reduced Cost X11 X12 X13 X21 X22 X23 X31 X32 X33 X41 X42 X43 实际上,不妨将所得最优解四舍五入,结果为货物1装入前舱1吨、装入中舱7吨、装入后舱2吨;货物2装入前舱12吨、后舱6吨;货物3装入后舱2吨;货物4装入中舱15吨。最大利润为155340元。三. 混合泳接力队的选拔问题 某班准备从5名游泳队员中选择4人组成接力队,参加学校的4*100m混合泳接力比赛。5名队员4中用字的百米平均成绩如下表所示,问应如何让选拔队员组成接力队? 甲 乙 丙 丁 戊蝶泳 1`06 57``2 1`18 1`10 1`07 仰泳 1`15 1`06 1`07 1`14 1`11 蛙泳 1`27 1`06 1`24 1`09 1`23 自由泳 58``6 53`` 59``4 57``2 1`02问题分析 从5名队员中选出4人组成接力队,没人一种泳姿,且4人的用字各不相同,是接力队的成绩最好。容易想到的一个办法是穷举法,组成接力对的方案共有5!=120中,一一计算并作比较,即可找出最优方案。显然这不是解决这类问题的好办法,随着问题规模的变大,穷举法的计算量将是无法接受的。可以用0-1变量表示以讴歌队员是非入选接力队,从而建立这个问题的0-1规划模型,借助县城的数学软件求解。模型的建立与求解设甲乙丙丁戊分别为队员i=1,2,3,4,5;即蝶泳、仰泳、蛙泳、自由泳分别为泳姿j=1,2,3,4.记队员i的第j中用字的百米最好成绩为Cij(s),既有Cij I=1 I=2 I=3 I=4 I=5 J=1 66 78 70 67 J=2 75 66 67 74 71 J=3 87 66 84 69 83 J=4 58 53 59 62 引入0-1变量Xij,若选择队员i参加泳姿j的比赛,记Xij-=1,否则记Xij=0.根据组成接力队的要求,Xij应该满足两个约束条件:第一, 没人最多只能入选4中用字之一,记对于i=1,2,3,4,5,应有∑Xij《=1;第二, 每种泳姿必须有一人而且只能有1人入选,记对于甲,2,3,4,应有∑Xij=1;当队员i入选泳姿j是,CijXij表示他的成绩,否则CijXij=0。于是接力队的成绩可表示为∑∑CijXij,这就是该题的目标函数。将题目所给的数据带入这一模型,并输入LINGO:min=66*x11+75*x12+87*x13+*x14+*x21+66*x22+66*x23+53*x24+78*x31+67*x32+84*x33+*x34+70*x41+74*x42+69*x43+*x44+67*x51+71*x52+83*x53+62*x54;SUBJECT TOx11+x12+x13+x14<=1;x21+x22+x23+x24<=1;x31+x32+x33+x34<=1;x41+x42+x43+x44<=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x42+x52=1;x13+x23+x33+x43+X53=1;x14+x24+x34+x44+X54=1;@bin(X11);@bin(X12);@bin(X13);@bin(X14);@bin(X21);@bin(X22);@bin(X23);@bin(X24);@bin(X31);@bin(X32);@bin(X33);@bin(X34);@bin(X41);@bin(X42);@bin(X43);@bin(X44);@bin(X51);@bin(X52);@bin(X53);@bin(X54); 得到如下结果 Optimal solution found at step: 12 Objective value: Branch count: 0 Variable Value Reduced Cost X11 X12 X13 X21 X22 X23 X24 X31 X32 X33 X34 X41 X42 X43 X44 X51 X52 X53 X54 即当派选甲乙丙丁4人组陈和积累对,分别参加自由泳、蝶泳、仰泳、蛙泳的比赛。参考文献数学模型(第三版) 姜启源著 高等教育出版社

数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关,数学建模是培养学生运用数学工具解决实际问题的最好表现。下文是我为大家搜集整理的关于2017年全国大学生数学建模竞赛优秀论文的内容,欢迎大家阅读参考!

浅析数学建模课程改革及其 教学 方法

论文关键词:数学课程;数学建模;课程设置;课程改革

论文摘要:数学建模教学和竞赛的开展,是培养学生创新能力的重要途径。对数学建模竞赛中出现的问题进行分析,找出问题产生的根源与必修课和专业课设置不合理有关,应对高校数学课程的设置、教学方式等进行改革,并提出具体改革建议。

1. 前言

数学建模,从宏观上讲是人们借助数学改造自然、征服自然的过程,从微观上讲是把数学作为一种工具并应用它解决实际问题的教学活动方式。数学建模 教育 本身是一种素质教育,数学建模的教学与竞赛是实施素质教育的有效途径,它既增强了学生的数学应用意识,又提高了学生运用数学知识和计算机技术分析和解决问题的能力。因而加强数学建模教育,培养学生的数学应用意识与能力已成为我国高校数学建模课程改革的重要目标之一。虽然目前我国许多高校在数学建模方面取得了一些成绩,但大学生们在竞赛中也暴露出了许多问题,引发出对传统的课程设置和教学方法的思考。

2. 数学建模的现状和所存在问题与原因分析

建模竞赛的现状

根据竞赛时间(九月中下旬),我国大部分高校每年一般在七月中旬便开始组织学生的报名培训工作。培训内容分为两个部分:首先集中讲解一些基础知识,主要包括常微分方程、概率与数理统计、运筹学、数学实验、建模基础等课程;然后进行建模的模拟训练,以往届国内外普通组和大专组的部分竞赛题为选题,让学生自愿结组,在规定时间内完成,并自愿为同学讲解各自的解题思路和方法。

参赛学生首先要参加培训,他们一般是先关注校园网上的通知,再到各院系自愿报名而组成,经培训后选拔出参赛队员。事实上,一般参赛的学生并没有选拔的过程,基本上是学生在培训阶段就自动减员,所剩人数就是参赛人数。几年来,参加培训、竞赛的学生构成基本类似。报名学生数量不多,而且他们大多是来看看是怎么回事,听了一、两次课就不见踪影或自动退出。

数学建模课程的教学内容是以问题为中心,块状编排;开设数学建模课程的时间较短,缺乏应有的教学 经验 来借鉴,大多数教师都是采用模型的机械讲解。至于问题的形成背景,建模过程中可能用到的多种数学思想和方法很少顾及,更谈不上让学生在课堂进行讨论、交流与合作,使得学生难以掌握数学建模的思想和方法。

所存在的问题及原因分析

由以上可以看出,我国大部分高校在建模的工作中存在着一定的问题。第一,没有把数学建模工作纳入日常的教学工作中,临时抱佛脚,突击应对,学生对数学建模兴趣不浓,积极性不高。第二,参加培训竞赛的学生专业比较单一,数学建模活动没有全面展开,这虽然与宣传的力度有关,更主要是缺少必要的教学环节。第三,高年级学生参赛的较少,获奖的比例却较大。特别是大四年级的学生,由于他们面临 毕业 ,就业压力、 考研 压力很大,尽管他们有较深厚的数学基础,却无心顾及竞赛;低年级学生参加培训竞赛的人数较多,积极性很高,但却不出成绩。这表明数学建模与知识的掌握、积累密切相关,是理论与实际应用相结合、知识整合与释放相结合的过程,低年级课程设置不合理,一些相关课程开设太晚。第四,不少人认为应该把课程的重点放在具有复杂背景的实际问题的解决上,持这种观点的人主要是忽视了数学教育专业的特点和培养目标。我们认为,数学教育专业数学建模课程重点应放在树立信念、培养意识和能力上。

另外,数学建模课程开设及教材使用也存在诸多不足之处。据了解,绝大部分高校数学教育专业教学建模课程照搬理工类专业数学建模教材,这些教材主要存在以下问题:第一,教材主要涵盖大量难度较大的现成的数学模型,而这些模型应用了大量的非数学领域的知识和方法,要理解这些问题,对于数学教育专业的学生来说缺乏应有的基础,学习起来只能依靠模仿和机械记忆;第二,教材主要是采用以问题为主线的块状编排体系,重点是问题的罗列,过分突出问题解决。照搬这类教材给数学教育专业数学建模教学带来了较大的负面影响,学生接受难,教师驾驭难。更重要的是难以落实数学教育专业数学建模课程应使学生树立“数学具有广泛应用性”的信念,培养学生数学应用的意识和能力,使学生掌握一套数学建模方法等目标,难以适应高等学校数学教育改革的需要。

综上所述,我们认为,解决数学教育专业开设数学建模课程工作中所出现的问题是课程建设与改革的重中之重,建构符合数学教育专业实际和特色的教材以及形成一套与数学教育专业特点相适应的、科学的教学方法是当务之急。

3. 以数学建模活动为载体开展数学建模教学的途径与方法

目前,开展数学建模教学的途径与方法很多,其中比较常用且很奏效的途径和方法就是以数学建模活动为载体开展数学建模教学,其途径和方法可以描述如下:

精心设计教学案例,开展案例教学法

所谓案例教学法就是在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模示例,介绍建模的思想方法。课堂上的活动一部分是老师讲授,另一部分是让学生进行课堂讨论,即由学生发言,提出对问题的理解和所建立的数学模型的认识,并提出新的数学模型,对其求解、分析、讨论,进行比较检验。实施案例教学要把握好以下环节:

(1)教学案例的选取。要使案例教学达到最佳效果,最重要的就是选好教学案例。选取案例时应该遵循以下的原则:①代表性。案例避免涉及过多的专业知识,又要考虑到科学的发展,学科之间的联系,同时可以拓宽学生的知识面。②原始性。来自广播电视、报刊的信息,政府机关、企事业单位的 报告 、计划、统计资料等等,都是数学建模问题原始资料的重要来源;也可以引导学生亲自到一线调查研究,注意积累课题资料。③趣味性。在具体选取案例时,应该选择既有趣味性又能充分体现数学建模思想的案例,如人口问题、七桥问题、人狼羊过河问题、三级火箭发射卫星问题、森林灭火问题等等。从培养兴趣入手,让学生逐步体会到建模的思想方法和建模的重要性。④创新性。编制建模例题时,必须考虑培养学生的创新精神和创造能力。为此,应注重一题多模或多题一模、统计图表等例题的编拟,密切关注现代科学技术的发展,使学生创新和高新技术密切结合,融入当代科学发展的主流。

(2)案例的课堂教学。教师在讲授具体的建模案例时,应注重两个方面。第一个方面要从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,如何通过合理的假设和简化分析建立优化的数学模型。还要强调如何用求解结果去解释实际现象,检验模型。这种方法既突出了教学的重点,又给学生留下了进一步思考的空间。例如讲授传染病模型时,不同的假设会导致建立不同的模型,只有从实际出发,不断地修正才能使之成为一个成功的模型。除此,还可以给学生提供一些改进的方向,让学生自己课外独立探索和钻研。另外一个方面是教师的讲授必须和学生的讨论相结合。在教师先讲清楚案例的背景、关键的因素、所运用的数学工具等情况下,运用怎样的数学知识和数学思想、建立怎样的数学模型可以让学生各抒己见,进行讨论式教学。这样一方面可以避免教师的“满堂灌”,另一方面可以活跃课堂气氛,提高学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的。

把好课后建模实践训练关,巩固和深化课堂教学

为了巩固和深化课堂教学的内容,使学生进一步地提高建模能力,建模实践训练也是数学建模教学的重要环节。主要有以下的形式:一是布置课后训练题。第一种类型的训练题可以是用课堂上讲过的数学建模方法建模或者是对课上某个问题做进一步的讨论,这是为了达到巩固课堂教学的目的。

另一种类型是为了达到深化课堂教学的目的,在学完有关数学知识单元后,布置该单元知识的训练题,在特定的时间内,让学生在数学建模实验室进行建模强化训练。对每次的训练题要完整地完成,从提出问题、分析问题、建立模型、求解模型到模型的分析、检验、推广的全过程,并在规定时间内完成一篇思路清晰、条理有序的数学论文。通过此过程的强化训练,使学生的认模、建模、用模的能力得到充分地锻炼和提高。每次训练题做完后第一个环节就是教师对训练论文认真批阅审定,对论文中出现的问题及时提出指正意见;第二个环节是组织全班成员对训练论文进行专题讨论,让同学们讲述论文构思、建模思想与方法。通过整体交流,让大家互 相学 习、取长补短,达到共同提高的目的。二是系统讲授数学软件,并让学生上机实习。随着计算机技术的发展,一些高性能的、应用性强的数学软件应运而生,如Matlab、Mathematica、Mapple、SAS、Lindo、Lingo等。有了这些数学软件的出现,教材中复杂的数据计算和处理不再是难题。教师在系统讲授这些数学软件的具体使用技能后,让学生亲自上机操作,掌握这些软件在实际数学运算的应用。例如,如何利用软件进行求导、求积分、求极限等运算;如何利用软件解方程、方程组,解线性规划;如何利用数学软件研究函数变化规律,画出曲线、曲面的图形等等。

不断提高数学教师自身的水平来促进数学建模教学

在数学建模教学中,教师是关键。教师水平的高低直接决定着数学建模教学能否达到预期的培养学生能力的目的。讲授数学建模教学的教师不仅要求具备较高的专业水平,还必须具备丰富的实践经验和很强的解决实际问题的能力。因此,为了提高教师的水平,一方面可以多派教师走出去进行专业培训学习和学术交流,比如多参加各种学术会议、到名校去做访问学者等等。另一方面可以多请着名的专家教授走进来做建模学术报告,使师生增长知识,拓宽视野,了解科学发展前沿的新趋势、新动态。另外,数学教师还必须更新教育理念,不断积累和更新专业知识,其中包括较宽广的人文和科学素养。数学教师只有不断创新,努力提高自身素质,才能适应新的形势,符合时代发展的要求。

总之,数学建模内容具有实用价值,数学建模课程授课可以生动有趣,数学建模可能有知识创新的产品和成果。特别是促进相关数学课程的教学,应该在学生学习了相关课程后或者学习相关课程中开设数学建模,至少应该在现有教学内容中安排一定的数学实验。

参考文献:

[1]李大潜.中国大学生数学建模竞赛[M].北京:高等教育出版社,1998.

[2]安淑华.中国数学教育改革的几点思考[J].数学教育学报,2004.

[3]黄泰安.数学教师的数学观和数学教育观[J].数学教育学报,2004.

[4]王茂之.数学建模培训课程体系设计探讨[J].数学教育学报,2005.

论数学建模思想教学

1在线性代数教学中融入数学建模思想的意义

激发学生的学习兴趣,培养学生的创新能力

教育的本质是让学生在掌握知识的同时可以学以致用。但是目前的线性代数教学重理论轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不仅可以激发学生学习线性代数的兴趣,而且可以调动学生使用线性代数的知识解决实际问题的积极性,使学生认识到线性代数的真正价值,从而改变线性代数无用的观念,同时还可以培养学生的创新能力。

提高线性代数课程的吸引力,增加学生的受益面

数学建模是培养学生运用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这可以大大改善线性代数课堂乏味沉闷的现状,从而提高线性代数课程的吸引力。由数学建模的教学现状可以看到学生的受益面很小,然而任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。

促进线性代数任课教师的自我提升

要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不仅要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的能力,这就迫使线性代数任课教师要不断学习新知识和新技术,促进自身知识的不断更新,进而达到提高教学和科研能力的效果。

2在线性代数教学中融入数学建模

思想的途径虽然线性代数课程本身的内容多,课时不够,但我们将数学建模的思想融入线性代数课程中,并不是用“数学建模”课的内容抢占线性代数课程的课时,在此,笔者仅从下面2个方面着手将建模的思想逐步渗透到线性代数的教学中。

在线性代数的概念中融入数学建模的思想

从广义上说,线性代数教材中的行列式、矩阵、矩阵乘法、向量、线性方程组等复杂抽象的概念都来源于实际。因此在讲授这些概念时可以恰当选取一些生动的实例来吸引学生的注意力,同时将概念模型自然地建立起来,使学生充分感受到实际问题向数学的转化。例如矩阵是线性代数中的一个重要概念,在引入矩阵的概念时,可以从一个简单的投入产出问题出发,将这个问题中的数据用矩形表来表示,这种简化思想即是建模抽象化思想的很好体现,而这样的矩形表就称为矩阵。

在线性代数的课外作业中融入数学建模的思想

课外作业是对课堂教学内容的消化和巩固,然而目前线性代数的教材以及相关参考书中的习题都没有涉及到线性代数中定义、定理在实际中的应用问题,为了弥补这一点,我们可以在习题中补充一些线性代数建模问题,具体的做法如下。1)在学完1~2个单元后,针对所学的内容开展1次大型作业,学生可以3人一组通过合作的方式来完成该作业(即完成1篇小论文)。学生在完成作业的过程中,不仅可以加强和巩固线性代数的课堂教学内容,还可以提高自学能力和论文写作能力以及培养他们的团队合作精神。同时通过完成大型作业可以使学生尽早地接触科研方法,这与目前鼓励大学生进行科研创新的宗旨是一致的。2)在所有学生的大型作业完成之后,可以组织学生讲解完成作业的思路以及遇到的问题,而教师则针对不同的 文章 做出相应的点评并指出改进的方向。这种学生讲教师听的换位教学模式不仅可以督促学生更好地完成作业,还可以提高学生的语言表达能力以及促进师生的关系,从而大大提高了教学效果。

3在线性代数教学中融入数学建模

思想的案例案例1:投入产出问题[4]。某地有一座煤矿,一个发电厂和一条铁路。经成本核算,每生产价值1元钱的煤需消耗元的电;为了把这1元钱的煤运出去需花费元的运费;每生产1元的电需元的煤作燃料;为了运行电厂的辅助设备需消耗元的电,还需要花费元的运费;作为铁路局,每提供1元运费的运输需消耗元的煤,辅助设备要消耗元的电。现该煤矿接到外地6万元煤的订货,电厂有10万元电的外地需求,问:煤矿和电厂各生产多少才能满足需求?模型假设:假设不考虑价格变动等其他因素。

4结束语

在线性代数教学中融入数学建模思想,培养学生的建模能力,是符合当代人才培养要求的,是可行的。同时也要认识到数学类主干课程的原有体系是经过多年历史积累和考验的产物,若没有充分的根据不宜轻易彻底变动[6]。因此数学建模思想的融入要采用渐进的方式,尽量与已有的教学内容进行有机的结合。实践证明,通过在线性代数教学中融入数学建模思想,不仅激发了学生的学习兴趣,培养了学生的创新能力,还可以促进教师进行自我提升。但如何在线性代数教学中很好地融入数学建模思想目前还处于探索阶段,仍需要广大数学教师的共同努力。

数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。问题重述 2。问题分析3。模型假设与约定4。符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。3。要有自己的特色,闪光点。如何撰写数学建模论文 当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。 首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。 下面就论文的各部分应当注意的地方具体地来做一些分析。 (一)  问题提出和假设的合理性 在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。 对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面: (1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。 (2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。 (3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。 (二)  模型的建立 在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。 有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。 在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。 (四)  模型的讨论 对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。 通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。 除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。 语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。 最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。参加数学建模竞赛的十大秘诀1 诚信是最重要的 数学建模竞赛是考查学生研究能力和实践能力的一场综合性比赛,有很多方面的知识和能力可以考查,但其中我觉得最重要的是诚信。我感到中国在这方面的教育还远远不够,我知道有很多同学写论文并不是实事求是地去做,而是编造数据、修改结论,明明自己没法编程实现却硬说自己做出来了,还编了一些数据。这些行为也许能够过评委,也许可以因“此”而获奖,但是这对他们将来是很不利的,希望能够引起足够的注意。2 团队合作是能否获奖的关键 在三天的比赛中,团队交流所占用的时间可能会超过一半。在一个小组中,出现意见不一是非常正常的,如果一个队意见完全一致,我想他们肯定不会拿奖。出现分歧的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,这似乎是个贬义词,但我的意思是说不要总认为自己的观点是正确的,多听听别人的观点,在两者之间谋求共同点。如果三个人都是自傲类型的人,也许每个人都非常强,但一旦合作,分歧就无法解决,做出来的就是一团糟,也就是说“三个诸葛亮顶不上一个臭皮匠”。我奉劝这样的话最好别组成一队了。合作在竞赛前就应当培养,比如一块儿做模拟题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法,然后几天后大家一块交流,这些都是可以磨合团队之间的关系的。通常在比赛时,三个人的分工是明确的,一个是领军人物,主要是构建整个问题的框架并提出有创意的idea,自然其他部分比如论文写比如程序设计比如计算他也能参加,应该算是一名全能型的人物;第二个是算手,顾名思义,主司计算方面的问题,比如编程计算一个微积分或者手工计算一条最优路径等。优秀的团队算手一般会精通(是精通不是入门)一个软件的应用,比如C比如MATLAB比如LINGO;最后一个是写手,主要工作在于论文的写作和润色上。好的论文要让人一眼就明了其中的意思,所以写手的工作还是需要一定的技巧的。当然,最重要的还是三个队员之间的讨论和交流,同心协力,在整个比赛过程中形成一种良好的交流氛围。3 时间和体力的问题 竞赛中时间分配也很重要,分配不好可能完不成论文,所以开始时要大致做一下安排。不必分的太细,比如第一天做第一小题,第二天做第二小题,这样反而会有压力,一切顺其自然。开始阶段不忙写作,可以将一些小组讨论的要点记录下来,不要太工整,随便写一下,到第三天再开始写论文也不迟的。也不要到第三天晚上才开始。另外要说的就是体力要跟上,三天一般睡眠只有不到10 个小时,所以没有体力是不行的,建议是赛前熬夜编程几次,既训练了自己的建模能力,也达到了训练体力的目的,赛前锻炼身体我觉得没什么用处,多熬夜就行了,但比赛前一天可不许熬。4 重视摘要 摘要是论文的门面,摘要写的不好评委后面就不会去看了,自然只能给个成功参赛奖。摘要首先不要写废话,也不要照抄题目的一些话,直奔主题,要写明自己怎样分析问题,用什么方法解决问题,最重要的是结论是什么要说清楚,在中国的竞赛中结论如果正确一般得奖是必然的,如果不正确的话评委可能会继续往下看,也可能会扔在一边,但不写结论的话就一定不会得奖了,这一点不比美国竞赛,所以要认真写。摘要至少需要琢磨两个小时,不要轻视了它的重要性。很有必要多看看优秀论文的摘要是如何写的,并要作为赛前准备的内容之一。5 论文写作要正规 论文一定要大致按照摘要、问题重述、模型假设、符号说明、问题分析、(建立、分析、求解模型)、模型检验、参考文献、附录等等的方式来写。一篇论文结构上如果失败的话,比赛也一定不会成功,一般初评会先淘汰一些结构失败的文章,如果论文没有好的结构,内容再好也没有用。论文前面的结构一般都不会变,后面可以按照实际情况来安排,省略的部分可以有结果说明、灵敏度分析、其他模型、模型扩展、优缺点分析等等,多看些优秀论文就知道还有哪些形式了。附录可以贴一些算法流程图或比较大的结果或图表等等。6 分析问题要认真 一般竞赛题目自己肯定没有见过,而且我发现近些年来的赛题都不是书上哪个模型可以直接套成功的,很多根本就没有固定的模型可以参考,所以分析问题不是一个去找书本的过程,依赖书本就意味着自己的思想被束缚起来。可以完全按照自己的分析去完成,平时练习的时候学习的是一种方法,通过以前学到的方法来解决,不是套用书本来解决,没有模型套怎么办,只有靠自己去实际分析。我估计在前面说的五点也许会有三分之一的队可以做到,而且可以做的很好,但是这一点上就需要真本事了,平时多努力,比赛发挥正常,这一点做好是没有问题的。7 编程求解是重要手段 美国竞赛时,美国学生中的论文很多是编程数据的说明,比如99 年A 题行星撞地球那题,他们也能够模拟出撞击后果,这对我们来说简直是不可思议的。美国学生实践能力较强,而中国学生擅长理论分析,所以我把编程放在了分析的后面是有中国特色的。数学建模竞赛特别强调计算机编程解决实际问题的能力,最近几年尤其强调,编程方面的能力不是一朝一夕可以练成的,需要长期刻苦的训练,常用的工具有MATLAB、Mathematica、C/C++ 等等,一个人只需要会一门语言就行了,但需要精通它。比如要画柱状图该怎么做,要用Floyd 算法怎么办,赛前不准备是没有办法在比赛中很好运用的,因此每个常用的算法都自己去编程实现一下。8 模型的假设与模型的建立 评委看完摘要后紧接着就是看模型假设了,有一个万能的方法就是可以抄题目中可以作为假设的几句话,这样会给人留下好的印象,毕竟说明你审题了。但不能全抄,要加上自己的一些假设。一般假设用文字描述就行了,最好不要太具体了,一些重要参数不要被定死只能取某些值,否则会让人感觉论文的局限性较强。模型的建立是根据你对问题分析而来的,提出的数学符号和建立模型最好要比较接近,在同一页最好,以便评委可以对照符号来看,数学公式要严谨,推导要严密,这些都反映了参赛者的数学素质和能力,即使你推导不对,别人看到你的阵势也首先会误以为你是对的。那么多的试卷,评委不可能顺着你的公式一直推下去,但你要写得显得有数学修养才行。9 图文表并貌可以增色 我听说一个不确切的信息是评委老师喜欢用MATLAB 编程的论文,不知道有没有这回事,但这说明了老师需要看一个具有图或表在其中的论文,一篇如果像政治书那样写的论文估计没有人会对它感兴趣的,尤其是科技论文。MATLAB 编程之所以受到青睐是因为MATLAB 提供的图形处理能力很强大。图表的说明性特别强,如果结论有很多数据的话,最好做成图表的形式加以说明,会令你的论文更有说服力,也更容易受到评委的好评。10 其他 其他内容还是有很多的,说也说不完,挑几个重要的讲。比如不要上网讨论,网上的人水平参差不齐,你不知道谁是对的,而且很多人想得奖,不会告诉你正确的,反而你说相反的,有时真理往往掌握在少数人手里。还有就是论文写作中灵敏度分析不要写太多,大致说明一下就可以了,不要喧宾夺主。最后想到的就是要使用数学公式编辑器来写论文,不要用什么上下标来表示,论文字体用小四,分标题用四号黑体等等。

大学数学模型论文

【正文】部分的开头:问题重述。

1、问题背景(借助参考文献、相关资料)。

2、对问题进行整理。

(问题一,….;问题二,…;问题三,…)。

两部分:问题背景;问题的题目。

要有条理,不要过于分散,注意逻辑。

不可直接复制粘贴!查重率高会失去参赛资格!

用自己的语言在原有所给赛题基础上重新描述,简洁明了。

写数学建模论文注意事项:

1、评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。

2、答卷是竞赛活动的成绩结晶的书面形式。

3、写好答卷的训练,是科技写作的一种基本训练。

4、要重视的问题:摘要。包括:模型的数学归类(在数学上属于什么类型);建模的思想(思路);算法思想(求解思路);建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验??)。

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。 2)问题分析。 3)模型假设。 4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。 6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。) 9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。 2)问题重述。 3)问题分析。 因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。 6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。 e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。 a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。 d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。 a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。 ▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。 9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模 用数学方法解决问题,要有数学模型; 问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 3. 创新意识 建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

下载一片获奖论文,之后的所有基本就都解决了吧!!

生物数学建模论文合集模板

无忧在线有很多数学建模论文,你去搜一下就行

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

  • 索引序列
  • 生物数学模型论文
  • 数学生态学与生物模型毕业论文
  • 数学模型论文lingo
  • 大学数学模型论文
  • 生物数学建模论文合集模板
  • 返回顶部