首页 > 学术期刊知识库 > 喷油泵毕业论文

喷油泵毕业论文

发布时间:

喷油泵毕业论文

EQ3090自卸车的总体设计注塑模具闹钟后盖设计轿车的制动系统设计拉式膜片弹簧离合器设计液压伺服系统设计双梁起重机毕业设计论文轿车机械式变速器设计垫片级进模设计外罩塑料模设计推动架的钻床夹具设计透明塑料盒热流道注射模设计数控机械设计论文汽车起重机主臂的毕业论文汽车覆盖件及塑料模具设计拉式膜片弹簧离合器矿石铲运机液压系统设计机械手夹持器毕业设计论文及装配图机械加工工艺规程毕业论文立体车库设计滑座装配设计自动导引小车(AGV)系统的设计重庆长安CM8后地板工位焊装夹具设计变速拨叉零件的机械加工工艺及工艺装备设计拨叉(CA6140车床)夹具设计油壶盖塑料成型模具设计400型水溶膜流研成型机设计推动架夹具设计基于逆向工程和快速成型的手机外型快速设计某高层行政中心建筑电气设计螺旋输送机设计卷扬机传动装置设计带式输送机毕业设计冲压模具设计catia逆向车模处理与Proe实体重建超精密数控车床关键部件的设计注塑模-圆珠笔笔盖的模具设计电机炭刷架冷冲压模具设计数控多工位钻床设计柴油机喷油泵的专用夹具设计齿辊破碎机详细设计齿辊破碎机详细设计带式二级圆锥圆柱齿轮减速器设计带式输送机的PLC控制典型零件的加工艺分析及工装夹具设计电子钟后盖注射模具设计风力发电机设计论文攻丝组合机床设计鼓式制动器毕业设计花生去壳机毕业设计活塞结构设计与工艺设计静扭试验台的设计矿井水仓清理工作的机械化冷冲模设计普通卧式车床数控改造传动剪板机设计汽车差速器及半轴设计切管机毕业设计清车机毕业设计清新剂盒盖注射模设计双螺杆压缩机的设计提升机制动系统填料箱盖夹具设计洗衣机机盖的注塑模具设计铣床的数控x-y工作台设计液压控制阀的理论研究与设计钥匙模具设计轴向柱塞泵设计组合件数控车工艺与编程五金-冲大小垫圈复合模圆锥-圆柱齿轮减速器的设计斗式提升机设计提升机制动系统设计双螺杆压缩机的设计液压起重机液压系统设计全自动洗衣机的PLC控制FX2N在立式车床控制系统中的应用万能铣床PLC控制设计镗床的PLC改造

3 柴油机电控技术的特点 柴油机电控技术与汽油机电控技术有许多相似之处,整个系 统都是由传感器、电控单元和执行器三部分组成。在电控喷射方 面柴油机与汽油机的主要差别是,汽油机的电控喷射系统只是 控制空燃比(汽油与空气的比例),柴油机的电控喷射系统则 是通过控制喷油时间来调节输出油量的大小,且柴油机喷油控制 是由发动机的转速和加速踏板位置(油门、供油拉杆位置)来决定 的。柴油机电控技术有两个明显的特点:一是柴油喷射电控执行 器复杂,二是柴油电控喷射系统的多样化。 柴油机是一种热效率比较高的动力机械 柴油机燃油喷射具有高压、高频、脉动等特点。其喷射压力 高达200MPa,为汽油机喷射压力的百倍以上。对燃油高压喷射系 统实施喷油量的电子控制,困难大得多。而且柴油喷射对喷射正 时的精度要求很高,相对于柴油机活塞上止点的角度位置远比汽 油机要求准确,这就导致了柴油喷射的电控执行器要复杂得多。 由于柴油机的喷射系统形式多样 传统的柴油机具有直列泵、分配泵、泵喷油器、单缸泵等结构完全不同的系统。实施电控技 术的执行机构比较复杂,形成了柴油喷射系统的多样化;同时柴 油机需要对油量、定时、喷油压力等多参数进行综合控制,其软 件的难度也大于汽油机。 4 电控柴油喷射系统分类 最先出现的是电控喷油泵技术,而后又发展了电控泵喷嘴技 术和高压共轨喷射技术,后两种技术是现在最主要的柴油机电控 喷射技术。其中,电控泵喷嘴技术的喷油压力非常高,可以达到 200MPa,并且泵和喷嘴装在一起,所以只需要很短的高压油引 导部分,泵喷嘴系统也可以实现很小的预喷量,其喷油特性是三 角形的,并采用了分段式预喷射,这是很符合柴油机的要求 (大众公司的TDI发动机就是使用这种技术)。但电控泵喷嘴技 术的喷油压力受柴油机转速影响,使用蓄压系统的高压共轨技 术可以解决这个问题。它的喷油压力低于泵喷嘴系统,能达到 160MPa。有些公司看中了它对任意缸数的发动机喷油压力调节 很宽泛的特点,逐步扩大其使用范围(最早使用高压共轨的轿车 是阿尔法罗密欧156和奔驰C级别车)。 第一代柴油机电控燃油喷射系统也称位置控制系统,它用 电子伺服机构代替机械调速器控制供油滑套位置以实现供油 量的调整。其特点是保留了传统的喷油泵——高压油管—— 喷油器系统,只是对齿条或滑套的运动位置由原来的机械调速器控制改为计算机控制。这类技术已发展到了可以同时控制定时和预喷射的TICS系统。 第二代柴油机电控燃油喷射系统也称时间控制系统,其特点 是供油仍维持传统的脉动式柱塞泵油方式,如博世公司的电控泵 喷嘴系统,但供油量和喷油定时的调节则由电脑控制的强力快速响应电磁阀的开闭时刻所 决定。一般情况下,电磁阀关闭时,执行喷油,电磁阀打开时,喷 油结束;喷油始点取决于电磁阀关闭时刻,喷油量则取决于电磁阀关闭时间的长短。时间控制系 统的控制自由度更大。 第三代也称为直接数控系统,它完全脱开了传统的油泵 分缸燃油供应方式,通过共轨和喷油压力/时间的综合控制, 实现各种复杂的供油回路和特性。 因柴油机的喷射系统形式多样。国外柴油机的电控系统也型 式多样,有直列泵和分配泵的可变预行程TICS系统,有基于时间 控制的泵喷嘴系统,有蓄压共轨系统和高压共轨系统等。各种技 术方案都在原有的基础上发展,但高压共轨系统是总的发展方向。 5 高压共轨电控喷射系统 共轨(Common-rail)式电控燃油喷射技术的原理 在汽车柴油机中,高速运转使柴油喷射过程的时间只有 千分之几秒。实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。由于柴油的可压缩性和高压油 管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的 柱塞供油规律有较大的差异。油管内的压力波动有时还会在 主喷射之后使高压油管内的压力再次上升,达到令喷油器的 针阀开启的压力,将已经关闭的针阀又重新打开,产生二次 喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳 氢化合物(HC)的排放量,油耗增加。此外,每次喷射循环后高压 油管内的残余压力都会发生变化,随之引起不稳定的喷射,尤 其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而 且会发生间歇性不喷射现象。为了解决柴油机这个燃油压力变化 的缺陷,现代柴油机采用了一种称为“共轨”的技术。 共轨技术是指由高压油泵、压力传感器和ECU组成的闭环 系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油 方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供 油管内的油压实现精确控制,使高压油管压力大小与发动机的转 速无关,可以大幅度减小柴油机供油压力随发动机转速的变化, 因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量, 喷油量大小取决于共轨管(公共供油管)压力和电磁阀开启时间 的长短。 共轨式电控燃油喷射技术,通过共轨直接或间接地形成恒定 的高压燃油分送到每个喷油器,并借助于集成在每个喷油器上的 高速电磁开关阀的开启与闭合,定时定量地控制喷油器喷射至柴油机燃烧室的油量,从而保证柴 油机达到最佳的燃烧比和良好的雾化,以及最佳的着火时间、足 够的着火能量和最少的污染排放。 其主要由电控单元、高压油泵、共轨管、电控喷油器以及各 种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将 燃油加压送入高压共油轨,高压共油轨中的压力由电控单元根据 共油轨压力传感器测量的共油轨压力以及需要进行调节,高压共 油轨内的燃油经过高压油管,根据柴油机的运行状态,由电控单 元从预设的MAP图中确定合适的喷油定时、喷油持续期由电液 控制的电子喷油器将燃油喷入汽缸(见图4)。 共轨式电控燃油喷射技术的特点 柴油机共轨式电控燃油喷射技术是一种全新的技术,集计算 机控制技术、现代传感检测技术以及先进的喷油器结构于一身。 它不仅能达到较高的喷射压力、实现喷射压力和喷油量的控制, 而且还能实现预喷射和分段喷射,从而优化喷油特性、减低柴 油机噪声和大大减少废气有害成分的排放量。其特点为: (1)采用先进的电子控制装置及配有高速电磁开关阀,使得 喷油过程的控制十分方便,并且可控参数多,利于柴油机燃烧过 程的全程优化。 (2)采用共轨方式供油,喷油系统压力波动小,各喷油器间相 互影响小,喷射压力控制精度较高,喷油量控制较准确。 (3)高速电磁开关阀频率高,控制灵活,使得喷油系统的喷射压力可调范围大,并且能方便地 实现预喷射等功能,为优化柴油机喷油规律、改善其性能和降低 废气排放提供了有效手段。 (4)系统结构移植方便,适应范围广,尤其是与目前的小型、 中型及重型柴油机均能很好匹配,因而市场前景广阔。 高压共轨电控燃油喷射技术的发展前景 高压共轨系统被认为是20世纪内燃机技术的3大突破之一。目前,有待研究的有: (1)高压共轨系统的恒高压密封问题。 (2)高压共轨系统中共轨压力的微小波动所造成的喷油量 不均匀问题。 (3)高压共轨系统三维控制数据的优化问题。 (4)微结构、高频响应电磁开关阀在制造过程中的关键技术问 题。 综上所述,共轨式电控燃油喷射技术有助于减少柴油机的有 害尾气排放量,并具有降低噪声、降低燃油耗、提高动力输出 等方面的综合性能。高压共轨电控燃油喷射技术的应用有利于地 球环境保护,加速促进柴油机工业、汽车工业,特别是工程机械 相关工业的向前发展。 参考文献 1. 李春明.《汽车发动机燃油喷射技术》主编 北京理工大学出版社 2. 蒋向佩.《汽车柴油机构造与使用》主编 机械工业出版社 3. 朱仙鼎.《特种发动机》主编 机械工业出版社

我校机电系机械专业的一篇论文: 【论文摘要】 机械传动式轮胎定型硫化机横梁运动形式已知有三种,即升降翻转运动,升降平移运动,直接升降运动。三种运动都是由曲柄滑块机构实现的。由于在前两种运动中横梁必须通过一拐点,因而其滑块变异为导轮,而直接升降运动,既可使用滑块,也可使用导轮。曲柄由减速机经减速齿轮获得转。曲柄的固定支点为机架,运动支点与主连杆下端活销连接,主连杆上端与横梁端轴活销连接。曲柄转动时,经由主连杆推动横梁端轴沿既定的轨迹运动。三种运动形式中,前两种运动的轨迹基本相同,但辅助运动不同,而第三种只是前两种运动的一部分。由此,在硫化机开模到终点时,横梁处于三种不同的状态。因而适用于不同类型的硫化机。 一、升降翻转型运动 据文献介绍,升降翻转运动形式分为:间接导向的升降翻转运动;直接导向的升降翻转运动;单槽杠杆导向的升降翻转运动。其中最常用也最简单的是直接导向的升降翻转运动。单槽杠杆导向的升降翻转运动在大规格B型定型硫化机如1900B,2160B等机型上曾经使用过,但已逐渐被直接导向的升降翻转运动取代。而间接导向的升降翻转运动在国内的定型硫化机上尚未见使用。本文介绍的升降翻转型运动就是直接导向的升降翻转型运动。梁端轴外的主导轮和副连杆上的副导轮,直接讨论横梁端轴的运动。 横梁的运动轨道由一竖直开式主导槽和与其相接且夹角小于90°的开式导轨组成。为保持横梁运动的平稳性并实现横梁的自转,还有一个与开式主导槽平行的闭式副导槽。开模时,横梁端轴在开式主导槽中上升,与横梁固定连接的副连杆 下 端中心轴在闭式副导槽中同步上升,此时横梁做平动。当横梁端轴离开竖直开式主导槽进入开式导轨后,横梁端轴的运动轨迹便不再与闭式副导槽平行。此时,在主连杆和副连杆的共同作用下,横梁端轴在开式主导轨上边移动边自转。在横梁运动极限位置,主连杆两活销中心连线与曲柄支点中心连线重合。实际运动中,一般不会到达极限位置。 Φ=α+β 其中α为副连杆与横梁竖直中心线间的夹角 β=arcSin 上式中,h,l是由横梁本身结构决定的,它们也决定了α的值。由此式可知,横梁的翻转角度首先取决于其自身的结构。在其结构确定之后,与硫化机的开模长度有关。开模到极限时,其翻转角度达到最大值。 直到二十世纪末,几乎所有的B型定型硫化机都使用升降翻转运动。这是由B型硫化机的特点和它的适用范围决定的。首先,B型中心机构在装胎和卸胎时,胶囊都是完全拉直的,这使得上环升得很高。其次,早期使用的硫化机的抓胎爪都是长式的,而且当时的轮胎主要是斜交胎,其生胎高度也较大。为了将生胎顺利地装入下模,中心机构上方必须有足够的空间。使用升降翻转的运动形式,在完全开模的状态下,中心机构上方是完全敞开的,使装胎,卸胎操作十分方便。再次,我们知道,轮胎硫化后,与硫化模型间的粘着力是很大的。其值不仅与轮胎和模型间的接触面积成正比,而且随着接触面积的增大,单位面积的粘着力也随着增大。这就使得大型轮胎如载重轮胎,工程轮胎等的粘着力非常之大,从而极大地增加了脱模的难度,甚至将轮胎拉伤。为了减小粘着力,目前最常用的方法是往模型上喷洒隔离剂(硅油与水的混合液)。而要进行这种操作,只有在上模翻转一定的角度之后才便于进行。 一般地说,规格在1525以上的定型硫化机应该有自动喷洒隔离剂装置。国外企业对此比较重视,国内企业似乎不太在意。 几乎所有的轮胎定型硫化机的调模机构都使用螺纹副结构。在保持良好润滑的条件下,这种结构调整方便、可靠,承载能力也较大。但螺纹副较其它配合的间隙偏大。尤其是调模机构受硫化室高温的影响,其螺纹副的间隙较常温下使用的又偏大。硫化机开模合模时,螺蚊副由竖直状态转入接近水平状态或反过来由近水平状态转入垂直状态时,其间隙的分布是不断变化的。随着硫化机不断地开模、合模,这种间隙分布的变化周而复始地进行。很显然,它不但影响运动的平穩性,也损害了螺纹副的配合精度,进而影响上下模间,上模和中心机构间的同轴度。在使用活络模时,横梁翻转后,活络模操纵缸的活塞杆压向一侧。活塞杆与活络模的上胎侧模连接,又会影响模型的精度和寿命,还会影响活塞杆与缸的配合,甚至引起缸的泄漏。 二、升降平移型运动 采用升降平移运动形式时,横梁端轴的运动轨迹与采用升降翻转运动形式基本相同。根本区别在于,它的副导槽是一个中心线与横梁端轴中心运动轨迹完全相同的封闭式导槽。因而在横梁的整个运动过程中,其端轴中心轨迹与副连杆轴中心的轨迹完全相同。横梁保持平动。图2为其机构运动简图。 不考虑装胎机构固定在横梁前面的结构,与升降翻转型运动一样,完全开模时,中心机构上方也是完全敞开的。由于横梁没有翻转,调模机构的螺纹副始终处于竖直状态。与升降翻转型运动相比,它不但提高了运动的平稳性,而且极大地提高了开合模的重复精度,更容易保证上下模型及其与中心机构间的同轴度,也改善了模型尤其是活络模型及其操纵缸的使用条件。 到二十世纪末,如同所有的机械传动式B型定型硫化机都使用升降翻转运动一样,B型以外的所有机型,如A型、AB型、C型等,则全都采用升降平移运动。这是因为A型、AB型、C型等机型一般都只用于硫化中小型轮胎,通常不需要喷洒隔离剂。尤其对于硫化中小型子午线轮胎,使用升降平移运动在一定程度上能提高轮胎的硫化质量。 根据前面的论述,大型B型硫化机由于需要喷洒隔离剂而采用升降翻转运动是合理的。而所有的B型硫化机包括硫化小胎的1030B型硫化机也使用升降翻转运动则有些让人费解。能让人接受的解释只能是为了設备的标准化、系列化,便于管理。 三、直接升降型运动 直接升降型运动实际上只是升降翻转和升降平移运动的一部分。它借鉴液压传动式轮胎定型硫化机的运动方式,横梁只在中心机构的正上方升降。很显然,直接升降型运动较前两种运动形式更简捷,也更容易实现。同时由于横梁只在一个方向做上下运动,其运动精度也得以大大提高。 在升降翻转和升降平移运动中,曲柄绕固定支点在一定的角度范围内摆动,整个传动装置做正反转运动。而直接升降型运动,曲柄旋转一周,横梁便完成一个升降周期,传动装置无须反转。 采用直接升降型运动,横梁的最大升降高度等于两倍的曲柄长度。由于设备体度的限制,曲柄不可能做的很长,因而开模的高度就非常有限。它不适用于B型硫化机,只能用于A型、AB型、C型等硫化机中硫化乘用子午胎、轿车子午胎。 直接升降的运动形式,使机械传动式轮胎定型硫化机的精度达到一个新的高度。当前,在液压传动式轮胎定型硫化机还不普及的条件下,它可以部分地代替液压硫化机用以硫化高等级小型子午胎。 综上所述,机械传动式轮胎定型硫化机三种运动形式的应用应该这样划分:硫化大型轮胎的B型硫化机(一般为1525B以上规格),使用升降翻转运动;一般的B型硫化机,使用升降平移运动;B型以外的其它类型硫化机,尤其是用于硫化子午线轮胎的,优先采用直接升降运动,不能使用的,用升降平移运动。 随着科学技术的进步,轮胎硫化技术也将不断发展。如果能取消往上模喷洒隔离剂的工序,则可以予言,升降翻转运动将从轮胎定型硫化机的运动中消失。那时,机械传动式轮胎定型硫化机将只有升降平移和直接升降两种运动形式。所有的B型硫化机都使用升降平移运动,其它类型的硫化机则两种运动形式兼而用之。若是这样,则机械传动式轮胎定型硫化机的运动精度将会得到极大的改善

高压油泵毕业论文

浅谈柴油机电控技术 摘要:介绍了柴油机电子控制技术的发展状况、控制原理和应用特点及高压共轨技术的 工作原理、研究方向、应用前景。 关键词:柴油机,电子控制,高压共轨技术 1 柴油机电子控制技术的发展状况及发展趋势 柴油机电子控制技术的发展状况 柴油机电子控制技术始于20世纪70年代,20世纪80年代 以来,英国卢卡斯公司、德国博世公司、奔驰汽车公司、美国通 用的底特律柴油机公司、康明斯公司、卡特彼勒公司、日本五十 铃汽车公司及小松制作所等都竞相开发新产品并投放市场,以满 足日益严格的排放法规要求。 由于柴油机具备高扭矩、高寿命、低油耗、低排放等特 点,柴油机成为解决汽车及工程机械能源问题最现实和最可靠的手段。因此柴油机的使用 范围越来越广,数量越来越多。同时对柴油机的动力性能、经 济性能、控制废气排放和噪声污染的要求也越来越高。依靠 传统的机械控制喷油系统已无法满足上述要求,也难以实现喷油量、喷油压力和喷射正时完全按最佳工况运转的要求。近 年来,随着计算机技术、传感器技术及信息技术的迅速发展 ,使电子产品的可靠性、成本、体积等各方面都能满足柴油机进 行电子控制的要求,并且电子控制燃油喷射很容易实现。 实际上,柴油机排气中CO和HC比汽油机少得多,NOX排放量与汽油机相近,只是排气微 粒较多,这与柴油机燃烧机理有关。柴油机是一种非均质燃烧, 可燃混合气形成时间很短,而且可燃混合气形成与燃烧过程交错 在一起。通过分析柴油机喷油规律得到:喷入燃料的雾化质量、 汽缸内气体的流动以及燃烧室形状等均直接影响燃烧过程的进展 以及有害排放物的生成。提高喷油压力和柴油雾化效果、使用预 喷射、分段喷射等可以有效的改善排放。 经过多年的研究和新技术应用,柴油机的现状已与以往大不 相同。现代先进的柴油机一般采用电控喷射、高压共轨、涡轮增压中冷等技术,在重量、噪音、烟 度等方面已取得重大突破,达到了汽油机的水平。随着国际上日 益严格的排放控制标准 (如欧洲Ⅳ、Ⅴ标准)的颁布与实施,无论是汽油机还是柴油机都面临着严 峻的挑战,解决的办法之一是采用电子控制燃油喷射的技术。现在,柴油机电子控制技术在发达国家的应用率已达到60%以上。 何谓电喷柴油机 采用电子控制燃油喷射及排放的柴油机即为电喷柴油机。 电喷柴油喷射系统由传感器、ECU(计算机)和执行机构三部分 组成。其任务是对喷油系统进行电子控制,实现对喷油量以 及喷油定时随运行工况的实时控制。采用转速、油门踏板位 置、喷油时刻、进气温度、进气压力、燃油温度、冷却水温度等 传感器,将实时检测的参数同时输入计算机(ECU),与已储存 的设定参数值或参数图谱(MAP图)进行比较,经过处理计算按 照最佳值或计算后的目标值把指令送到执行器。执行器根据 ECU指令控制喷油量(供油齿条位置或电磁阀关闭持续时间)和 喷油正时(正时控制阀开闭或电磁阀关闭始点),同时对废气再 循环阀、预热塞等执行机构进行控制,使柴油机运行状态达 到最佳。 柴油机电子控制技术的发展趋势 高的喷射压力 为满足排放法规的要求,柴油喷射压力从10MPa提高到200MPa。如此高的喷射压力可明显改善柴油和空气的混合质量,缩短着火延迟期,使燃烧更 迅速、更彻底,并且控制燃烧温度,从而降低废气排放。 独立的喷射压力控制 传统柴油机的供油系统的喷射压力与柴油机的转速负荷有 关。这种特性对于低转速、部分负荷条件下的燃油经济性和排放 不利。若供油系统具有不依赖转速和负荷的喷射压力控制能力, 就可选择最合适的喷射压力使喷射持续期、着火延迟期最佳,使 柴油 机在各种工况下的废气排放最低而经济性最优。 改善柴油机燃油经济性 用户对柴油机的燃油消耗率非常关注。高喷射压力、独立的 喷射压力控制、小喷孔、高平均喷油压力等措施都能降低燃油消 耗率,从而提高了柴油机的燃油使用经济性。 独立的燃油喷射正时控制 喷射正时直接影响到柴油机活塞上止点前喷入汽缸的油量, 决定着汽缸的峰值爆发压力和最高温度。高的汽缸压力和温度可 以改善燃油使用经济性,但导致NOX增加。而不依赖于转速和负 荷的喷射正时控制能力,是在燃油消耗率和排放之间实现最佳平 衡的关键措施。 可变的预喷射控制能力 预喷射可以降低颗粒排放,又不增加NOX排放,还可改善柴 油机冷启动性能、降低冷态工况下白烟的排放,降低噪声,改 善低速扭矩。但是预喷射量、预喷射与主喷射之间的时间间隔 在不同工况下的要求是不一样的。因此具有可变的预喷射控制能力对柴油机的性能和排放十分有利。 最小油量的控制能力 供油系统具有高喷射压力的能力与柴油机怠速所需要的 小油量控制能力发生矛盾。当供油系统具有预喷射能力后将 会使控制小油量的能力进一步降低。由于工程机械用柴油机 的工况很复杂,怠速工况经常出现,而电喷柴油机容易实现最 小油量控制。 快速断油能力 喷射结束时必须快速断油,如果不能快速断油,在低压力 下喷射的柴油就会因燃烧不充分而冒黑烟,增加HC排放。电 喷柴油机喷油器上采用的高速电磁开关阀很容易实现快速断 油。 降低驱动扭矩冲击载荷 燃油喷射系统在很高的压力下工作,既增加了驱动系统 所需要的平均扭矩,也加大了冲击载荷。燃油喷射系统对驱 动系统平稳加载和卸载的能力,是一种衡量喷射系统的标准。 而电喷柴油机技术中的高压共轨技术则大大降低了驱动扭矩 冲击载荷。 2 柴油机电子控制技术的目的及优点 目的 优化动力性、改善燃油使用经济性、控制排放,使柴油机从 怠速至额定转速范围内均能获得最佳工作状况,防止可能发生的 危险运行状况,延长零件的使用寿命。 优点 具有多功能的自动调节性能 工程机械用柴油机的运转工况是多变的,而且对油耗、排放 和可靠性等要求较高。自动控制技术应用于柴油机的调节系统正 好可以实现多功能的自动调节,从而保证柴油机动力性、燃料使 用经济性、可靠性和操作方便性等性能充分发挥。 减轻质量、缩小尺寸、提高柴油机的紧凑性 对于现代高速柴油机而言,由于驱动喷油泵的扭矩较大,要 设计一个紧凑和可靠的供油提前自动调节器很复杂,而且在柴油 机总体布置上也比较困难。采用自动控制技术解决供油提前角自 动调节问题,不仅可以容易地解决上述难题,而且提高了柴油机 的紧凑性。 部件安装连接方便,提高了维修性 采用自动控制系统,相关部件尺寸减小(特别是燃油供给系 统),安装部位免受空间位置的约束,连接简便,有利于柴油机 日常维护及修理。 扩展了故障诊断、联络等功能 采用自动控制系统,可方便地与微型计算机相连,很容易实 现柴油机性能检测与故障诊断功能,柴油机运行及检测数据的存 储与传递等问题也迎刃而解,便于科学管理和使用。 使柴油机的动力输出和负荷得到更精确的匹配 随着工程机械制造技术高速发展,为了提高自行式工程机械 的作业效能,采用了电喷柴油机,电控自动变速器等自动控制装置,使自行式工程机械在作业 时,能随着负荷的变化在一定范围内自动调整动力输出、动力传 递,柴油机的动力输出和负荷得到更精确的匹配,充分发挥工程 机械作业效能。

建议看看下面的资料网,在这里想要谁给现写一篇,可能不会有,因为z这里没人会为了这个区花费一些时间去写的,所以根据我搜集的一些网站来看,希望对你有所帮助,用心去做,不管毕业论文还是平时作业吗,我相信你都可以做好的。毕业论文以及毕业设计的,推荐一个网 这个网站的论文都是以words的形式原封不动的打包上传的,网上搜索不到的,对毕业论文的写作有很大的参考价值,希望对你有所帮助。 论文写作建议看看下面的资料网,在这里想要谁给现写一篇,可能不会有,因为z这里没人会为了这个区花费一些时间去写的,所以根据我搜集的一些网站来看,希望对你有所帮助,用心去做,不管毕业论文还是平时作业吗,我相信你都可以做好的。写作资料也很多,下面给你一些范文资料网: 如果你不是校园网的话,请在下面的网站找: 百万范文网: 分类很细 栏目很多 毕业论文网: 引文数据库: 社科类论文: 经济类论文: 论文之家: 范文网: 如果你是校园网,那就恭喜你了,期刊网里面很多资料 中国知网: 龙源数据库: 万方数据库: 优秀论文杂志 论文资料网 法律图书馆 法学论文资料库 中国总经理网论文集 职业经理人论坛 财经学位论文下载中心 公开发表论文_深圳证券交易所 中国路桥资讯网论文资料中心 论文商务中心 ' 法律帝国: 学术论文 论文统计

我校机电系机械专业的一篇论文: 【论文摘要】 机械传动式轮胎定型硫化机横梁运动形式已知有三种,即升降翻转运动,升降平移运动,直接升降运动。三种运动都是由曲柄滑块机构实现的。由于在前两种运动中横梁必须通过一拐点,因而其滑块变异为导轮,而直接升降运动,既可使用滑块,也可使用导轮。曲柄由减速机经减速齿轮获得转。曲柄的固定支点为机架,运动支点与主连杆下端活销连接,主连杆上端与横梁端轴活销连接。曲柄转动时,经由主连杆推动横梁端轴沿既定的轨迹运动。三种运动形式中,前两种运动的轨迹基本相同,但辅助运动不同,而第三种只是前两种运动的一部分。由此,在硫化机开模到终点时,横梁处于三种不同的状态。因而适用于不同类型的硫化机。 一、升降翻转型运动 据文献介绍,升降翻转运动形式分为:间接导向的升降翻转运动;直接导向的升降翻转运动;单槽杠杆导向的升降翻转运动。其中最常用也最简单的是直接导向的升降翻转运动。单槽杠杆导向的升降翻转运动在大规格B型定型硫化机如1900B,2160B等机型上曾经使用过,但已逐渐被直接导向的升降翻转运动取代。而间接导向的升降翻转运动在国内的定型硫化机上尚未见使用。本文介绍的升降翻转型运动就是直接导向的升降翻转型运动。梁端轴外的主导轮和副连杆上的副导轮,直接讨论横梁端轴的运动。 横梁的运动轨道由一竖直开式主导槽和与其相接且夹角小于90°的开式导轨组成。为保持横梁运动的平稳性并实现横梁的自转,还有一个与开式主导槽平行的闭式副导槽。开模时,横梁端轴在开式主导槽中上升,与横梁固定连接的副连杆 下 端中心轴在闭式副导槽中同步上升,此时横梁做平动。当横梁端轴离开竖直开式主导槽进入开式导轨后,横梁端轴的运动轨迹便不再与闭式副导槽平行。此时,在主连杆和副连杆的共同作用下,横梁端轴在开式主导轨上边移动边自转。在横梁运动极限位置,主连杆两活销中心连线与曲柄支点中心连线重合。实际运动中,一般不会到达极限位置。 Φ=α+β 其中α为副连杆与横梁竖直中心线间的夹角 β=arcSin 上式中,h,l是由横梁本身结构决定的,它们也决定了α的值。由此式可知,横梁的翻转角度首先取决于其自身的结构。在其结构确定之后,与硫化机的开模长度有关。开模到极限时,其翻转角度达到最大值。 直到二十世纪末,几乎所有的B型定型硫化机都使用升降翻转运动。这是由B型硫化机的特点和它的适用范围决定的。首先,B型中心机构在装胎和卸胎时,胶囊都是完全拉直的,这使得上环升得很高。其次,早期使用的硫化机的抓胎爪都是长式的,而且当时的轮胎主要是斜交胎,其生胎高度也较大。为了将生胎顺利地装入下模,中心机构上方必须有足够的空间。使用升降翻转的运动形式,在完全开模的状态下,中心机构上方是完全敞开的,使装胎,卸胎操作十分方便。再次,我们知道,轮胎硫化后,与硫化模型间的粘着力是很大的。其值不仅与轮胎和模型间的接触面积成正比,而且随着接触面积的增大,单位面积的粘着力也随着增大。这就使得大型轮胎如载重轮胎,工程轮胎等的粘着力非常之大,从而极大地增加了脱模的难度,甚至将轮胎拉伤。为了减小粘着力,目前最常用的方法是往模型上喷洒隔离剂(硅油与水的混合液)。而要进行这种操作,只有在上模翻转一定的角度之后才便于进行。 一般地说,规格在1525以上的定型硫化机应该有自动喷洒隔离剂装置。国外企业对此比较重视,国内企业似乎不太在意。 几乎所有的轮胎定型硫化机的调模机构都使用螺纹副结构。在保持良好润滑的条件下,这种结构调整方便、可靠,承载能力也较大。但螺纹副较其它配合的间隙偏大。尤其是调模机构受硫化室高温的影响,其螺纹副的间隙较常温下使用的又偏大。硫化机开模合模时,螺蚊副由竖直状态转入接近水平状态或反过来由近水平状态转入垂直状态时,其间隙的分布是不断变化的。随着硫化机不断地开模、合模,这种间隙分布的变化周而复始地进行。很显然,它不但影响运动的平穩性,也损害了螺纹副的配合精度,进而影响上下模间,上模和中心机构间的同轴度。在使用活络模时,横梁翻转后,活络模操纵缸的活塞杆压向一侧。活塞杆与活络模的上胎侧模连接,又会影响模型的精度和寿命,还会影响活塞杆与缸的配合,甚至引起缸的泄漏。 二、升降平移型运动 采用升降平移运动形式时,横梁端轴的运动轨迹与采用升降翻转运动形式基本相同。根本区别在于,它的副导槽是一个中心线与横梁端轴中心运动轨迹完全相同的封闭式导槽。因而在横梁的整个运动过程中,其端轴中心轨迹与副连杆轴中心的轨迹完全相同。横梁保持平动。图2为其机构运动简图。 不考虑装胎机构固定在横梁前面的结构,与升降翻转型运动一样,完全开模时,中心机构上方也是完全敞开的。由于横梁没有翻转,调模机构的螺纹副始终处于竖直状态。与升降翻转型运动相比,它不但提高了运动的平稳性,而且极大地提高了开合模的重复精度,更容易保证上下模型及其与中心机构间的同轴度,也改善了模型尤其是活络模型及其操纵缸的使用条件。 到二十世纪末,如同所有的机械传动式B型定型硫化机都使用升降翻转运动一样,B型以外的所有机型,如A型、AB型、C型等,则全都采用升降平移运动。这是因为A型、AB型、C型等机型一般都只用于硫化中小型轮胎,通常不需要喷洒隔离剂。尤其对于硫化中小型子午线轮胎,使用升降平移运动在一定程度上能提高轮胎的硫化质量。 根据前面的论述,大型B型硫化机由于需要喷洒隔离剂而采用升降翻转运动是合理的。而所有的B型硫化机包括硫化小胎的1030B型硫化机也使用升降翻转运动则有些让人费解。能让人接受的解释只能是为了設备的标准化、系列化,便于管理。 三、直接升降型运动 直接升降型运动实际上只是升降翻转和升降平移运动的一部分。它借鉴液压传动式轮胎定型硫化机的运动方式,横梁只在中心机构的正上方升降。很显然,直接升降型运动较前两种运动形式更简捷,也更容易实现。同时由于横梁只在一个方向做上下运动,其运动精度也得以大大提高。 在升降翻转和升降平移运动中,曲柄绕固定支点在一定的角度范围内摆动,整个传动装置做正反转运动。而直接升降型运动,曲柄旋转一周,横梁便完成一个升降周期,传动装置无须反转。 采用直接升降型运动,横梁的最大升降高度等于两倍的曲柄长度。由于设备体度的限制,曲柄不可能做的很长,因而开模的高度就非常有限。它不适用于B型硫化机,只能用于A型、AB型、C型等硫化机中硫化乘用子午胎、轿车子午胎。 直接升降的运动形式,使机械传动式轮胎定型硫化机的精度达到一个新的高度。当前,在液压传动式轮胎定型硫化机还不普及的条件下,它可以部分地代替液压硫化机用以硫化高等级小型子午胎。 综上所述,机械传动式轮胎定型硫化机三种运动形式的应用应该这样划分:硫化大型轮胎的B型硫化机(一般为1525B以上规格),使用升降翻转运动;一般的B型硫化机,使用升降平移运动;B型以外的其它类型硫化机,尤其是用于硫化子午线轮胎的,优先采用直接升降运动,不能使用的,用升降平移运动。 随着科学技术的进步,轮胎硫化技术也将不断发展。如果能取消往上模喷洒隔离剂的工序,则可以予言,升降翻转运动将从轮胎定型硫化机的运动中消失。那时,机械传动式轮胎定型硫化机将只有升降平移和直接升降两种运动形式。所有的B型硫化机都使用升降平移运动,其它类型的硫化机则两种运动形式兼而用之。若是这样,则机械传动式轮胎定型硫化机的运动精度将会得到极大的改善

区别是船上的的啊点,车上的小点,原理都一样!一个发动机都有一个高压油泵总成(一套),除非大行的发动机的高压油泵是单体的,发动机有几个汽缸就有几个单体高压油泵.高压油泵的作用就是往每一个汽缸输送高压燃油,其实是输送到每一个汽缸的喷油器,喷油器再向汽缸内喷燃油,然后燃烧推动发动机转动!工作原理:发动机转一圈是360度,如果是4个汽缸的话,每一个汽缸间隔90度就喷油,至于高压油泵喷油顺序和角度都是根据它和发动机相连接的齿轮来决定的,齿轮的大小不同,所以转动的角度就不一样,就这样调整到需要的角度!

机油泵盖的毕业论文

机械专业粗略分为机械制造及自动化、机电一体化工程、工业工程、机电系统智能控制等四大类。那么机械专业的论文题目怎么选呢?下面我给大家带来2021机械机电类专业论文题目有哪些,希望能帮助到大家!

机电专业 毕业 论文题目

1、机电一体化与电子技术的发展研究

2、变频技术在锅炉机电一体化节能系统中应用

3、煤矿高效掘进技术现状与发展趋势研究

4、电气自动化在煤矿生产中的应用探讨

5、产品设计与腐蚀防护的程序与内容

6、机械制造中数控技术应用分析

7、智能制造中机电一体化技术的应用

8、水利水电工程的图形信息模型研究

9、矿山地面变电站智能化改造研究

10、浅析电气控制与PLC一体化教学体系的构建

11、中国机电产品出口面临的障碍及优化对策

12、我国真空包装机械未来的发展趋势

13、煤矿皮带运输变频器电气节能技术的分析

14、钢铁企业中机电一体化技术的应用和发展

15、我国机械设计制造及其自动化发展方向研究

16、机械设计制造及其自动化发展方向的研究

17、基于BIM技术的施工方案优化研究

18、电力自动化技术在电力工程中的应用

19、电气自动化技术在火力发电中的创新应用

20、农机机械设计优化方案探究

21、区域轨道交通档案信息化建设

22、环保过滤剂自动化包装系统设计

23、元动作装配单元的故障维修决策

24、关于机械设计制造及其自动化的设计原则与趋势分析

25、试析机电一体化中的接口问题

26、汽车安全技术的研究现状和展望

27、太阳能相变蓄热系统在温室加温中的应用

28、关于在机电领域自动控制技术应用的研究

29、浅析生物制药公司物流成本核算

30、锡矿高效采矿设备的故障排除与维护管理

31、铸钢用水玻璃型砂创新技术与装备

32、空客飞行模拟机引进关键环节与技术研究

33、汽车座椅保持架滚珠自动装配系统设计

34、液压挖掘机工作装置机液仿真研究

35、基于新常态视角下的辽宁高校毕业生就业工作对策研究

36、石油机电事故影响因素与技术管理要点略述

37、基于铝屏蔽的铁磁性构件缺陷脉冲涡流检测研究

38、数控加工中心的可靠性分析与增长研究

39、数控机床机械加工效率的改进 方法 研究

40、浅析熔铸设备与机电一体化

41、冶金电气自动化控制技术探析

42、中职机电专业理实一体化教学模式探究

43、高职机电一体化技术专业课程体系现状分析和改革策略

44、高速公路机电工程施工质量及控制策略研究

45、对现代汽车维修技术 措施 的若干研究

46、建筑工程机电一体化设备的安装技术及电动机调试技术分析

47、智能家居电话控制系统的设计

48、电力系统继电保护课程建设与改革

49、PLC技术在变电站电容器控制中的应用分析

50、机电一体化技术在地质勘探工程中的应用

机械类cad毕业论文题目

1、CAD技术在机械工艺设计中的应用研究

2、Auto CAD二次开发及在机械工程中的应用

3、基于特征的机械设计CAD系统研究

4、CAD在机械工程设计中的应用分析

5、机械制造中机械CAD与机械制图结合应用研究

6、浅谈CAD在机械制造业中起到的作用

7、智能CAD技术在机械制造中的应用

8、CAD/CAM技术在机械设计与制造中的应用研究

9、CAD制图技术在机械工程中的开发和应用

10、基于CAD/CAE的机械结构设计模式研究

11、基于机械制图与机械CAD应用环节协调分析

12、浅谈CAD技术在机械工程设计中的应用

13、三维CAD技术在机械设计中的应用

14、基于CAD的偏置曲柄滑块机构的设计与研究

15、应用CAD软件绘制机械零件图的创新方法

16、应用CAD图解法设计凸轮轮廓曲线的新方法

17、浅谈CAD外部参照在机械设计中的使用

18、五杆机构的CAD系统研究与开发

19、国内双圆弧齿轮CAD/CAE研究进展

20、连杆式少齿差减速机的CAD参数化设计

21、CAD实体模型直接分层软件设计

22、基于MBD的三维CAD模型信息标注研究

23、对提高CAD绘图速度的几点建议

24、Auto CAD在机械制图中的应用

25、机械传动系统方案设计CAD专家系统的研究

26、基于数值图谱法的连杆机构尺度综合CAD系统

27、浅谈Auto CAD在机械制图中的应用

28、基于CAD的液压传动技术综合性实验研究

29、圆柱凸轮CAD/CAM研究开发及在一次性卫生用品自动生产线中的应用

30、基于Creo的轴类零件CAD/CAPP集成系统开发

31、航空齿轮泵NX/CAD系统的界面实现

32、实现滚珠丝杠副AutoCAD/CAPP一体化

33、三维CAD技术在机械设计中的应用探讨

34、基于VB的弧面分度凸轮机构CAD系统设计

35、三维CAD技术对机械设计的影响管窥

36、液压系统原理图CAD开发研究

37、基于许用压力角要求的共轭凸轮计算机辅助设计系统开发

38、关于CAD技术在机械可靠性优化设计中的应用分析

39、弧面凸轮的CAD系统研究与开发

40、本体驱动的跨CAD平台开放式零件资源库构建

41、机械制图与CAD一体化探讨

42、论机械CAD技术及发展趋势

43、行星齿轮传动CAD系统开发

44、基于CAXA的盘类凸轮CAD/CAM应用

45、基于CAD技术的法兰26963工艺工装设计

46、鼓形齿联轴器参数化CAD系统开发

47、基于改进CAD技术的机械工艺设计探析

48、基于Pro/E的剪叉式液压升降台CAD系统的研究与开发

49、基于CAD/CAE集成的起重性能计算及方案优化

50、论CAD技术的发展及其对机械制图的影响

机床夹具类毕业论文题目

1、可重构车身底盘焊装夹具设计

2、随行夹具针对柔性自动加工线适应性技术

3、智能柔性可重构焊装随行夹具系统应用研究

4、组合夹具在零件加工中的应用

5、一种电机轴承卧式安装自动化生产设备

6、拨叉零件加工工艺浅析及其铣槽夹具设计

7、盾构机法兰密封圆环件圆柱面径向孔加工钻模设计

8、角度可调式线切割机床夹具设计及有限元分析

9、数控机床及工艺装备的创新

10、机床夹具制造中组合加工法的应用

11、拨叉零件加工工艺浅析及其铣槽夹具设计

12、中职机械专业 教育 中的机床夹具问题

13、快速判断夹具过定位的方法

14、夹具设计方案的分析与优化

15、机床夹具设计改进思路分析

16、机床夹具中定位与夹紧的研究

17、试论机械加工工艺装备设计研究杨兴旺

18、基于UG的机床夹具应用研究

19、机床夹具中定位与夹紧的研究

20、油泵轴加工自动生产线方案

21、浅谈机床夹具的发展趋势

22、浅析机械加工中工装夹具的定位设计

23、基于坐标系转换的工装夹具调装技术研究孔

24、零件加工中的机床夹具设计作用

25、机床夹具设计改进思路分析

26、专用机床夹具设计的方法与技巧

27、基于DVIA Composer D动画在机床夹具CAI中的应用研究

28、机床夹具的设计探讨

29、谈机械加工工艺装备设计

30、电永磁技术在金属加工中的应用

31、柔性组合夹具在汽车零部件制造中的应用研究

32、汽车扭杆力臂尾部平面铣削新型组合夹具

33、采矿装备制造中的先进焊接工装夹具应用研究

34、基于水泵机械制造工艺的设计探究

35、可调整夹持力的多功能夹具设计卜祥正

36、中小批量偏心凸轮的数控车削加工

37、光栅尺支架夹具设计的探讨

38、零件加工中的机床夹具设计作用

39、基于ANSYS的机床夹具的静动态特性分析

40、大直径圆周均布孔加工方法的研究

41、人机操作分析在底座生产线改进中的应用

42、液压阀体主阀孔车削成组夹具的设计与应用

43、法兰盘车床组合夹具设计

44、操纵杆支架Φ孔工艺及组合夹具设计

45、基于UG参数化设计的钻模设计

46、便携式高压隔离开关触头拆卸组合夹具的设计与研究

47、旋转式磁力片自动化装配系统及关键工位设计

48、机床夹具设计方法的应用

49、数控模具零件的铣夹具设计方法研究

50、一种小型叉形接头的精密加工技术

机械机电类专业论文题目有哪些相关 文章 :

★ 机械类毕业设计论文题目

★ 机械类学术论文题目

★ 最新机械电子工程论文题目

机电专业毕业论文范文

★ 机电专业技术论文(2)

★ 机械类科技论文范文(2)

机电工程毕业论文范文

★ 机械电子工程方面论文

★ 机电相关毕业设计论文范文

发动机组成有 汽缸体,汽缸盖,气缸套,活塞,活塞环及活塞销,气门及气门组件,凸轮轴,曲轴,连杆,轴瓦,飞轮及齿圈,发动机齿轮及带轮,燃油箱,滤清器,燃油泵及喷油器,机油泵,化油器,节门气体,电喷系统,涡轮增压器,散热器和中冷器,水泵,节温器,风扇及其离合器,进排气管,消声器,净化器等零部件组成。这个解释起来太麻烦了,格式的话学校有发的吧,没有我给你,采纳

发动机自动熄火的诊断分析发动机自动熄火的诊断分析摘要: 现代的轿车发动机大多是电子控制燃油喷射型的汽油发动机,自动熄火的原因很多,首先要分析自动熄火的症状。汽车发动机经过长期的使用后或者人为的原因导致发动机自动熄火,那是什么原因导致发动机自动熄火呢?那就要我们带着问题来探研问题的所在,从中认我们知道发动机为什么自动熄火,这样我们才可以以后避免发动机自动熄火后带给我们的麻烦,防范于未然。关键词: 发动机 自动熄火 诊断分析 检测 维修 熄火故障原因绪论在汽车技术日新月异的今天,电脑控制技术已经应用到汽车的各个系统,各种新结构、新技术的不断涌现,使汽车维修人员面临着更加大的挑战。现代汽车维修技术的特征表现为“七分诊断,三分修理” ,发动机常见故障现象、故障原因、诊断方法和思路、诊断与排除等发生了很大的改观,因此,我通过长时间的在校学习,并参考了大量的维修资料写下了该文。一 发动机的概述发动机的简介发动机机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。发动机的工作原理(配图)发动机是一种能量转换机构,它将燃料燃烧产生的热能转变成机械能。要完成这个能转换必须经过进气,把可燃混合气(或新鲜空气)引入气缸;然后将进入气缸的可燃混合气(或新鲜空气)压缩,压缩接近终点时点燃可燃混合气(或将柴油高压喷入气缸内形成可燃混合气并引燃);可燃混合气着火燃烧,膨胀推动活塞下行实现对外作功;最后排出燃烧后的废气。即进气、压缩、作功、排气四个过程。把这四个过程叫做发动机的一个工作循环,工作循环不断地重复,就实现了能量转换,使发动机能够连续运转。把完成一个工作循环,曲轴转两圈(720°),活塞上下往复运动四次,称为四行程发动机。而把完成一个工作循环,曲轴转一圈(360°),活塞上下往复运动两次,称为二行程发动机。常见发动机的结构(图)发动机的结构主要由以下的两大机构和五大系统组成。曲柄连杆机构:包括活塞、连杆、曲轴、飞轮、活塞环及活塞销等;配气机构: 包括凸轮轴、进排气门、正时齿轮、气门弹簧及气门座等部份;燃油供给系:包括汽油箱、汽油泵、汽油滤清器、燃油喷射系统、空气滤清器、进排气管及消声器等部份;冷却系:包括水泵、散热器、风扇、节温器及水管等部份;润滑系:包括机油泵、机油滤清器、机油集滤器及油道等部份;点火系:包括蓄电池、发电机、点火线圈、火花塞及高压线等部份;起动系:包括起动机及其附属装置。其中气缸盖、气缸体、进气歧管由铝合金制成,而气缸套及凸轮轴则由铸铁制成;并采用平衡轴的方式平平衡因曲柄连杆机构产生的旋转惯性力和往复惯性力,以降低发动机的振动。二 发动机的检修发动机的拆卸(步骤)拆下蓄电池的负极接线,把发动机室机盖提起到垂直位置,再卸下空气滤清器。放掉冷却液,然后拆下散热器。对装有空调的发动机,卸下空调压缩机的动皮带,然后拆下压缩机,并在不拆软管的情况下把它移到一边。松开动力泵储液罐的注液盖,然后用注射器抽净罐中的液压油,再拧上储液罐盖。拆下油门拉线,拆下液压制动助力器的固定螺栓或在进气歧管上的固定螺母,撒下安装接头用的两个密封垫圈。从缸盖后面的支架上松开真空助力器软管。拆下水泵上的散热器上软管和节温器壳上的储液罐软管。拆下水泵出水口右侧的暖风水箱软管和缸盖后面的左侧的软管。对装有液压气动悬架的车辆,从缸盖的右侧卸开液压泵。拆下燃油分配器和燃油压力调节器上的软管,然后用干净的抹布在装配螺栓处堵住油管以防燃油外泄。拆除全部影响发动机拆卸的导线和软管以及与此有关的例如冷启动阀、电磁压力调节器、空气流量传感器、节气门壳、辅助空气装置、冷却液温度传感器和缸盖温度开关、油底壳油位传感器、交流发电机、起动机和点火线圈等零部件、元器件和总成。拆下点火系统电子开关装置的两个电气连接器。然后拆下诊断插座与翼子板的固定螺栓,从插座的后面拆下电气导线连接器。拆下进气歧管上的机油滤清器导线护罩支撑与安装支架的固定螺栓。从各个连接件和电缆夹上松开导线和电缆并把拆下的导线和电缆与发动机分离开来。提升车辆并把它可靠地支承在支撑台架上。对装有发动机下托架的车辆,卸下前支撑、螺栓、后凸缘螺母和螺栓,然后拆下下托架。对于早期的车辆,松开座架并拆下发动机前减震垫。拆下凸缘螺母或螺栓,然后把排气管与歧管分离开来。松开软管夹,拆下螺母以松开发动机右侧连接件上的动力转向软管,并用干净抹布堵住软管和金属管。拆下发动机搭铁线的固定螺栓和螺母,然后取下搭铁线。拆卸下传动轴,拆下发动机支架与托架的固定螺栓。用提升装置把发动机连同变速器一起从发动机室中提。发动机的安装发动机组装程序与要求如下:(步骤)在组装发动机时要全部使用新垫和新油封,并且保证全部零件都涂有适量的机油以及在缸筒中和曲轴箱内不残留金属多余物。在安装活塞与连杆组件时,要翻转缸体使之右侧面朝上,然后把连杆伸进缸筒中,再用活塞环夹紧器夹紧活塞环并把活塞引进到缸筒中,再用木锤把或类似的硬木棒把活塞与连杆组件顶到位。用规定的力矩拧紧连杆轴承盖螺母和主轴承盖螺栓,然后用手转动曲轴以确定其转动阻力适度。对于拉伸螺栓的连杆,不要使用扭力扳手拧紧,而要用转角器拧紧,而且要确保拉伸段的直径大于、被连杆轴承盖挡住部分的直径应不小于。出于标准化上的原因,对于全部连接用螺栓相对于转角器的拧紧转角为90°+10°,也就是在以··m的扭矩拧紧后再拧转90°;请注意对于190E款型,在第三个主轴承盖处装有曲轴止推垫。此止推垫的两个凸耳放在主轴盖的凹槽中以防止其转动,在安装时应使止推垫带有槽的一面面向曲轴的止推面。分解机油泵并检查齿轮的齿隙,然后检查泵盖安装面的翘曲量,若超过规定,则用机械加工的方式使其平整,若泵盖的内表面磨损严重,则予以更换。安装上机油泵。再安装上油底壳、下曲轴箱,并按规定的力矩拧紧固定螺栓,然后把缸体的上表面转动向上,装上缸垫和缸盖,按规定顺序和力矩拧紧缸盖固定螺栓。安装上气门室盖,并按规定的力矩拧紧固定螺栓,最后把余下的全部零部件安装到发动机上。利用吊装设备把发动机装入发动机室中。2.3发动机的磨合发动机总成装配后,一般要求经过冷磨合与热试后才能投入使用,通过冷磨与热试对提高零件配合质量,保证正确的间隙(如气门间隙和准确的正时),从而提高发动机的动力性,经济性,工作可靠性和使用寿命. 发动机的冷磨合发动机的冷磨合是指以发动机或其他动力带动发动机运转磨合的过程.其功用是使相对配合的零件之间进行自然磨合.由于冷磨合后,还必须对发动机进行拆检与清洗,所以冷磨时可不安装燃油供给系统和点火系统各附件,如果已安装上,则应拆下汽油机活塞,以减小冷磨合汽缸内的压力,减小发动机零件的机械负荷. 发动机的热试将装配好的发动机,以其本身产生的动力进行运转试验的过程,热试可将发动机安装到车上后进行.热试时,发动机工作温度达到正常后,应使发动机在不同的转速下运转.此外,还应该检查有无漏水,气及油现象,检查调整气门间隙,点火正时,怠速转速等,观察电流表,冷却液温度表,机油压力表指示灯是否正常,听该发动机工作是否有异响,检查发动机汽缸是否符合规定标准,热试的时间为小时。三 发动机自动熄火的故障维修故障现象故障现象 发动机运转或汽车行驶过程中自动熄火,而再起动并没有多大困难的现象。常见故障原因进气管路真空泄漏;怠速调整不当、节气们体过脏、怠速系统控制不良等造成的怠速不稳;燃油压力不稳定,例如电动燃油泵电刷过度磨损或接触不良,或燃油泵滤网堵塞等;废气再循环阀门阻塞或底部泄漏;燃油泵电路、喷油器驱动电路等电路有接触不良等故障;燃油泵继电器、EFI继电器、点火继电器不良等;点火系工作不良。例如高压火弱,火花塞使用时间过久,点火正时不对,点火线圈接触不良或热态时存在匝路导致没有高压火花或高压火花弱,低压线路接触不良,绝缘胶损坏间歇搭铁等;节气门位置传感器不良;空气流量计或进气压力传感器有故障;冷却液温度传感器、氧传感器有故障;曲轴位置传感器有故障,如无转速信号(插头末插好、曲轴位置传感器信号线断、传感器定位螺钉松动、间隙失调、传感器损坏等);曲轴位置传感器信号齿圈断齿,会引起加速时熄火,曲轴位置传感器内电子元件温度稳定性能差,会导致信号不正常,会引发间歇性熄火故障;ECU有故障。故障诊断的一般步骤(步骤次序)先进行故障自诊断,检查有无故障码出现。如有,则按所显示的故障码查找故障原因。要特别注意会影响点火、喷油、怠速、配气相位变化的传感器和执行器(如发动机转速及曲轴位置传感器、凸轮轴位置传感器、冷却液温度传感器、节气门位置传感器、怠速控制阀等)有无故障。如发动机自动熄火发生在怠速工况,且熄火后可立即起动可按怠速不稳易熄火进行检查。采用故障模拟征兆法振动熔丝盒,各线束接头,看故障能否出现。然后进一步检查各线事业接头有无接触不良,各搭铁线有无搭救铁不良,目视检查线事业绝缘层有无损坏和间歇搭铁现象。采用故障模拟征兆法改变ECU、点火器等工作环境温度,重现故障,进而诊断故障原因。试更换点火线圈、火花塞等。在不断试车过程中,有多通道示波器同时监测发动机转速及曲轴位置传感器、空气流量计、电脑的5V参考电压等信号。如果在熄火前有喘振、加速不良的现象再慢慢熄火的话,故障可能发生在供油不畅上。可接上燃油压力表,最好能将压力表用透明胶固定于前挡风玻璃上,再试车确定。如存在熄火时油压力过低的现象,则应检查油箱、电动燃油泵、燃油滤清器、油压调节器及燃油泵控制电路。试车时接上专用诊断仪,读取故障出现前后的数据,进行对比分析,从而找出故障。按故障逐个检查排除。故障诊断的相关要点(分点讲出来)在对电控系统引出的故障诊断时,千万不要忘记先进行基本检查。例如:在试图诊断电控单元控制的燃油喷射系统故障之前,一定要确保进气管路无泄漏,配气正时、点火正时。如果存在这些不良现象,发动机的抗负荷交变能力就差,在工作状况突变的情况下可能熄火,如加速熄火、制动熄火、开空调熄火、挂档熄火等。有些汽车的间歇性故障是难于诊断的,除非是检查汽车时正好显示故障。因此,当进行诊断测试时,故障症状不出现,故障就难以诊断。解决方法是放车到维修站,由技师驾车在可能出现出问题的状态下行驶,直到故障出现。这种方法就不凑巧了,因为这样故障短时间不出现,就得无休止地驾车。还在一种方法就是故障出现就打电话给维修站,这一方法对长时间熄火无法起动很受用。一般就来这种现象只会越来越严重,如一时无法确诊,也可待故障明显后再作检查。检查不定时的怠速熄火故障时,有时换火花塞是必要的。当怀疑空气流量计不良(如空气流量计热线过脏;内部电路连接焊点脱落、接触不良等)时,可用示波器检查空气流量计信号电压波形。当怀疑进气压力传感器不良时,应先检查传感器真空胶管,看是否破裂,弯折,是否有时漏气,有时不漏气,使进气压力传感器信号时而正常,时而不正常,造成发动机收加速踏板时熄火。还应检查对喷油量影响较大的传感器。冷却液温度传感器不仅对喷油量有影响,也对修正点火提前角的信号之一,应要重视。有时某些车型的氧传感器信号电压无变化,容易造成发动机加速时熄火。如果在较高速行驶中先出现加速不良而造成的熄火,要重点检查油路;如果较高速过程中突然熄火则重点检查电路方面,高压火花是否过弱是必要检查项目之一。突然熄火、间歇熄火还应该对控制点火的主要传感器发动机转速用曲轴位置传感器进行检查。故障模拟试验方法。在故障诊断中最困难的情形是有故障,但没有明显的故障征兆。在这种情况下必须进行彻底的故障分析,然后模拟与用户车辆出现故障时相同的条件和环境,进行就车诊断。这样有助于故障处理。四 故障实例道奇车自动熄火故障故障现象一辆三星道奇乘用车,在行使了一段路程后其发动机突然自动熄火,再起动时发动机不能着火,但过了大约15min后起到发动机时又能正常起到,且怠速平稳,加速性能良好。故障分析在冷机状态下测量燃油系统压力,压力正常;在发动机自动熄火后测量燃油系统压力,该系统的压力明显低于正常值;进一步检查时发现在冷机时燃油泵输出的燃油压力正常,在热机时燃油泵输出的燃油压力偏低,因此燃油泵本身油问题。排除方法更换该燃油泵。康明斯发动机自动熄火故障Cummins康明斯发动机-自动熄火-的故障原因分析与处理方法1:燃油用完或燃油关断阀切断油路处理:检查燃油关断阀,看它是否开启。如系关闭,应予打开。检查油箱中有否燃油。如果油箱无油,则加油原因。2:燃油质量低劣处理:检查更换燃油原因。3:燃油输油管道漏气处理:检查连接件有无松动,管道有无破裂,滤清器是否未上紧等,并一一校正原因。4:内输油路或外输油路漏油处理:对所有滤清器、密封垫、管道和连接件作外油路漏油检查。用加压办法作内油路漏油检查。修理或更换原因。5:燃油泵驱动轴断裂处理:检查齿轮泵驱动轴是否断裂。重新调校或更换原因。6:节气门传动杆调整不当或磨损处理:检查磨损情况,更换并调整传动杆原因。7:怠速弹簧装配不对处理:重新装配调整原因。8:限速器离心锤装配不当处理:重新调校原因。9:燃油中有水分或蜡质处理:更换燃油,更换所有滤清器,装设燃油加热器原因。10:燃油泵校准不正确处理:重新调校燃油泵原因。11:密封垫漏气处理:进行压力检查,找出漏气的气缸,更换并修理。奔驰轿车自动熄火故障故障现象一款1996年产奔驰豪华型W140 S320轿车。该车在行驶中突然熄火,再次着车,ABS、ASR、驻车制动报警灯和制动蹄片报警灯都同时点亮,并且着车几分钟后,车辆再次熄火。故障原因及分析接车后,打开发动机舱盖,发动机及线束一切都十分整齐,看来此车保养得非常好,车主说此车从来没出现过大毛病,所以不必考虑发动机有什么问题。打开点火开关,仪表灯微亮,将点火开关旋至起动挡,起动机“哒哒”作响不运转,好像蓄电池严重亏电。用万用表测起动时电压,只有9V,利用强起动蓄电池着车后,ABS、ASR、驻车制动灯及制动蹄片报警灯都常亮不灭,取下起动蓄电池,不一会儿发动机又熄火。再次强起动,测发电机的电压为蓄电池电压,说明发电机不发电。测量发电机D+端子,有+14V电压输出,证明发电机良好。为什么发电机良好却不发电,而且发电机充电指示灯也不亮。于是拆下组合仪表,取出充电指示灯灯泡,没有烧坏,线路也没有问题。无奈之下,只有人为强行让发电机发电。这样做有一定的危险,但为了进一步验证发电机是否真是好的,只好采取此办法。方法是:取一个点火开关处火线,接在一个二极管的正极上,二极管负极接在发电机D+端子上,人为给一个激励信号;利用这种办法着车,测发电机电压果然能达到—,加油时也正常,说明发电机是好的。虽然发电机电压正常了,但4个故障灯仍然常亮不灭,利用奔驰专用电脑STAR2000专用诊断仪准备进入ABS系统,发现通信错误,根本无法进入。取下ABS电脑盒,按资料电路图,找到电脑端子的火线和地线,发现ABS电脑缺少一个常电源。从蓄电池上取一常电源接入后,ABS、ASR灯熄灭,诊断仪也能进入且无故障,但驻车制动及制动蹄片报警灯仍然亮。逐个进行检查,驻车制动制动开关正常,制动蹄片及制动油液位都正常,再次从ABS电脑端子常火入手查看电路图。此常火是从基本电脑内部输出供给,检查基本电脑上的4个10A熔丝,结果3号10A熔丝烧断,取一个10A熔丝插上后又被烧断。仔细检查,发现3号熔丝上被人接了一根线,顺线找到一个防盗报警喇叭。此喇叭是后加装的,取下此线,再接一个10A熔丝,没有再烧断,原来防盗喇叭负载电流过大,只要一工作就会烧断10A熔丝。再测ABS电脑端子电源线,恢复正常,着车观察,驻车制动报警灯及制动蹄片报警灯也不亮了,一切正常。难道不发电也是此熔丝造成的吗?于是把发电机线恢复成原车线,测量发电机发电机电压正常,至此故障全部排除。一个小小的熔丝竟然惹出这么大的麻烦,使维修走了不少弯路。基本电脑是给其他电脑模块及仪表供电的一个中转站,所有模块的电源供给都从基本电脑输出,所以基本电脑上的4个熔丝十分重要。在此提醒维修界人士,千万不要胡乱改动原车线路,给维修带来困难,此例故障就是因加装防盗器的那个修理工,没有找到常电源,(奔驰车蓄电池在行李舱)就从电脑处取一个电源,但此10A熔丝无法带动防盗器喇叭,故防盗器喇叭一工作就把10A熔丝烧了,所以提醒朋友们检修车辆一定要找到根源,才能根治故障。阳光车发动机自动熄火故障现象一辆东风日产阳光乘用车,在行驶万km时到专营店进行正常维护,但两天后出现怠速转速较低,当车速达到100km/h—120km/h的条件下紧急制动时发动机会自然熄火,而且该现象出现的频率越来越高,每天达到五次以上,根据以上故障现象得出下列分析。故障原因分析利用CONSULT-Ⅱ故障检测仪进行故障检测,检测到“CMP SEN/ CIR-B1[P0340]”,即曲轴位置传感器及其故障线路故障。清除线路代码后,重新调取故障代码,该故障代码不再出现,但仍有紧急制动时熄火的现象。检查曲轴位置传感器(位于分电器内)及其线路,未见异常。利用替换法更换了分电器总成,故障未能排除。后经进一步检查发现,该车没有冷机提速功能,在发动机温度为37℃时,其怠速转速只有450r/min,但发动机运转平稳;当发动机达到正常工作温度后,在接通前照灯、空调等负荷的情况下行驶紧急制动,才会出现熄火现象,在熄火前发动机转速先将到400r/min以下,然后再慢慢熄火,不是立即熄火。熄火后发动机可立即起动。根据以上故障特征,判断故障发生在发动机的燃油系统或进气系统上,因为如果点火系统出现了故障,导致发动机熄火,其熄火具有突然性,并且熄火后发动机不易重新起动。为找到故障的原因,又做了以下检测:1、测量燃油系统压力。在发动机熄火时,燃油系统的油压始终保持在250kpa,说明燃油系统正常;2、检测发动机的基本怠速状况。热机后拔掉节气门位置传感器(TPS)线束侧连接器,发动机怠速在788r/min左右,说明发动机基本怠速正常;3、利用检测仪测试发动机加速后迅速松开加速踏板时的转速特性曲线,发现该车发动机在怠速补偿方面不良,就重点检查怠速控制系统。利用检测仪读取乘用车的数据流,并与其正常值进行比较。通过比较发现,该车在37℃时发动机转速只有450r/min,但发动机ECU向怠速电动机却已经下达了转动54步的指令;而在正常情况下,怠速电动机只要转动15步,发动机转速就能达到513r/min。由此断定怠速电动机或其控制线路可能存在故障。利用检测仪对怠速电动机进行执行测试。正常情况下,热机后当怠速电动机达到100步时,发动机转速可达到2000r/min左右,但该车在改变怠速电动机转动的步数时,发动机转速没有改变。从而进一步确认怠速电动机或其控制线路存在故障。更换怠速电动机,该故障无法排除。拔下怠速电动机线束侧连接器,接通点火开关,检查怠速电动机线束侧连接器的电源端子,其电压正常。(注意:必须用测试灯进行测量,这样可以排除电源线路接触不良或虚接电阻过大的现象,如果用万用表检测,容易忽视这方面的故障。)经测量发现怠速电动机线束侧连接器上各端子与ECU线束侧连接器上相应端子的导通性良好,怠速电动机控制线路中没有塔铁现象;进一步检查发现,在ECU线束侧连接器上有一个端子脱出,将其重新装复到原位,用检测仪测试乘用车在加速后迅速松开加速踏板时特性曲线,发现该曲线恢复正常,对怠速电动机进行执行测试,也正常,路试过程中没有出现发动机自动熄火的现象。该故障排除。捷达王突然熄火故障原因故障原因行驶中突然慢慢熄火,再启动后发动机工作不稳,接着很快又熄火。诊断与排除发动机慢慢熄火与燃油系统有关,但经检查燃油系统工作正常。拔下中央高压线做跳火试验,发现火花很强,说明点火系统正常。再检查点火正时,发现分电器固定螺栓松动,上下活动分电器,分电器可上下窜动。将分电器固定好后,发动机能顺利启动。但发动机工作不稳定,加速时排气管放炮。从新出现的故障现象分析,该车可能是点火错乱。检查分电器盖、分火头,均无故障。检查正时皮带,松紧合适,不可能发生跳齿现象。这时想起分电器固定螺栓曾松动过,会不会发生分电器齿轮折断现象呢?由于分电器固定螺栓松动,造成分电器向上窜动,齿轮不规则折断,同时螺栓松动使分电器左右转动,造成发动机熄火。重新启动发动机时,由于分电器齿轮断齿,使点火正时错乱,发动机工作不稳,加速不良。这时,再怎么调分电器,也调不出正确的点火正时。折下分电器,结果发现分电器齿轮有不规则断齿现象。更换分电器后,故障排除。时代超人发动机自动熄火故障的诊断与排除故障现象一辆桑塔纳2000时代超人,发动后不能正常运行,运转几分钟后就自行熄火,并且熄火后短时间内无法再启动着车;停放十几分钟后又能正常启动了,但过几分钟后又自动熄火。故障如此反复,无法正常使用。故障诊断与排除接修此车后,首先试启动发动机,发动机启动成功,运转较为平稳;原地加速试验,感到发动机很闷,响应不够灵敏,加速性能较差;运转大约3min左右,发动机怠速出现不稳且抖动了几次就自行熄火了;立刻再次启动发动机,没有任何着车的迹象。接上VAG1552诊断仪,读取发动机故障码,没有故障代码。随后又对汽油压力、高压线、火花塞进行了检查,未发现异常。检查配气正时的情况,也未发现问题。经过以上几项检查,时间大约已用了十几分钟,而后再次试启动发动机,发动机居然又能正常启动运转了。趁着发动机尚能运转的时机,立刻读取了该车的数据流,也未发现明显的异常。大约3min后,发动机再次自行熄火,仍旧是当时无法立即启动着车。这个故障确实很奇怪!各项检查和数据都显示该车没有任何能造成发动机不着车的问题,那么问题究竟出在哪里呢?仔细回想一下之前的一系列检查过程,再结合加速性能较差的现象,最后把问题的焦点集中在了排气系统上。笔者让一名员工启动发动机,自己到车尾观察消声器的排气情况,发现在启动过程中,消声器处竟然一丝的尾气也未排出,由此可以断定问题的确出在排气系统上。将车辆架起,断开排气管与三元催化器的接口,再启动发动机,发动机顺利着车,怠速运转较长时间,也未出现自行熄火的现象。拆下三元催化器检查,发现三元催化器的内芯已经被严重堵塞。由此断定,这个怪病的根源就在这个堵死的三元催化器上。更换新的三元催化器后,试车,运转平稳,加速有力,故障彻底排除。当三元催化器完全堵死后,发动机运转时的废气无法正常排出;当排气侧的废气压力增大到和作功压力相近的时候,发动机就自动熄火;熄火后排气管内的压力无法马上消除,所以在熄火后立刻启动时,无法再次着车。当排气管内的废气通过三元催化器内芯上残存的微小缝隙逐渐缓慢的卸压后,又能再次启动着车,这就出现熄火后等待十几分钟又能启动的现象。通过这个故障让我们认识到,对于一个故障的诊断,要全方位地去分析和思考,不能只局限于依靠仪器诊断的数据来判断。结论: 发动机是汽车的动力装置,其作用是将燃烧产生的热能转变为机械能来驱使汽车行驶的.它是汽车的唯一动力输出源,发动机自动熄火的诊断分析是对汽车发动机维修的一种技术要求,由于发动机维修复杂、涉及面广,对我们的诊断与维修造成一定困难。因此对汽车维修人员需要更高的要求。但在我们许多的维修人员中,对发动机的理论知识、各系统的工作原理不够了解,在分析问题时考虑不全面,同时在自动熄火的诊断分析问题的过程中条理不清晰,不能对症下药,常带一种漫无目的碰运气的心理进行维修,往往花了大钱、更换了许多零件却仍不能解决问题。本文对发动机自动熄火诊断分析进行了全面的分析,优化了维修工艺的程序。更进一步提高了维修人员的维修技能。参考文献:[1] 李清明,汽车发动机故障分析详解,北京:机械工业出版社, 2007[2] 李良洪,汽车维修工,北京:化学工业出版社,2004[3] 陈文华,汽车发动机构造与维修 北京:人民交通出版社 2003[4] 陆刚,汽车发动机的养护与维修实例 北京:电子工业出版社2006[5]刘越琪,发动机电控技术,北京:机械工业出版社, 2002参考资料:

燃油泵不工作毕业论文

电喷发动机是采用电子控制装置.取代传统的机械系统(如化油器)来控制发动机的供油过程。如汽油机电喷系统就是通过各种传感器将发动机的温度、空燃比.油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置.电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态。,影响汽车的燃料经济性的因素有哪方面呢?影响的因素是多方面的,涉及到车辆本身,也涉及到驾驶者和道路状况。总体而言,主要有发动机、排放、变速器、车身外形、重量、轮胎和驾驶技术等这七个方面小。虽然道路状况对燃料经济性的影响很大,例如畅通与堵塞,市区与公路行驶都会对耗油有直接影响,但因为道路状况会随时变化,所以不列入主要影响因素范围。 1.故障原因1)空气滤清器阻塞或怠速调整不当。2)热空气阀门阻塞或点火时刻过迟。 3)EFE加热器工作不良或氧传感器失灵。4)排放系统工作差或轮胎气压不足。 5)PCV曲轴箱通风阀门阻塞或滤清器不干净。 6)冷起动喷油器阻塞或泄漏。7)燃油喷油器内部损坏或磨损严重。8)行车或驻车制动器有拖滞现象。 9)点火时间调整过迟。 10)冷却系统恒温器失灵或控制温度过低。 11)恒温空气滤清器有故障,使热空气一直进人。 12)EGR再循环阀因卡滞而常开2.故障检修1)检查轮胎气压、制动技术状况。 2)检查空气滤清器情况。 3)检查燃油、油泵、滤清器的状况。 4)检查油压、供油量、调节器情况。5)检查喷油器、发动机管路系统连接。6)检查冷却液温度传感器、进气温度传感器。7)检查空气流量传感器、节气门位置传感器。8)检查爆燃传感器、ECU的插接器。 9)检查冷却系统恒温器、恒温空气滤清器及EGR再循环阀。 更换火花塞症状:火花塞性能变差后,当您在驾车行驶时会感觉到发动机动力不足、急加速嘬车并伴随排气管发出“突、突”声,怠速时发动机抖动等现象。解决:建议您每行驶3万公里到修理厂检查火花塞,必要时更换。节气门体脏污后的症状症状:奔驰W140轿车的节气门在行驶20000公里左右时,由于空气质量原因,截流阀处会有许多污垢,当污垢积累到一定厚度时,发动机就会出现启动时不易着车,着车后怠速异常,行驶中熄火等现象,此时节气门就需要清洗了。解决:清洗后通过原厂诊断仪设定可以达到标准。免拆清洗喷油器症状:喷油嘴脏污后,发动机会出现起动困难、动力下降、加速迟缓、怠速发抖、冒黑烟、尾气超标、严重时发动机将无法起动。解决:进行免拆清洗喷油嘴,清洗的同时还可以把燃烧室和活塞顶部的积炭清洗掉。建议车辆每行驶20000公里进行一次免拆清洗。这样也可以避免进气系统积炭积存太厚。转向机漏油症状:W140底盘的轿车转向机修包损坏后,转向机外部会有许多油污,使转向助力油亏损。亏油严重的在转向时会发出很大的噪音,如不及时修理将会使助力泵亏油损坏。解决:发现转向机漏油应及时到修理厂更换转向机修包,以防转向助力系统亏油造成元件损坏。一般W140底盘的轿车行驶10万公里左右,转向机出现漏油现象的比较多。水泵损坏渗漏冷却液症状:W140轿车水泵出现渗漏冷却液现象比较普遍。水泵损坏后使冷却液泄漏,当冷却液亏损严重时,会造成冷却液温度过高损坏发动机。解决:发现水泵有渗漏冷却液现象的应及时更换水泵,以免造成更大的损失。燃油泵的故障现象症状:燃油泵是将燃油加压输送到喷油器。一般奔驰W140底盘的轿车燃油泵损坏之前会发出“吱、吱”声,当燃油泵损坏后,燃油不能喷进发动机,发动机将停止工作。解决:当燃油泵出现异响时,应及时更换燃油泵,以免爱车抛锚。制动开关损坏引发的故障症状:W140装有ASR系统的轿车,在制动开关损坏后会点亮ASR灯,有时行驶时不能加速。解决:出现ASR灯点亮时,应到修理厂用诊断仪检测。一般因制动开关引起ASR灯亮的比较多。空气流量计的故障现象症状:喷射系统为ME的轿车,其发动机所吸入的空气量是靠热膜式空气流量计来测量的。因其结构的原因空气流量计特别容易损坏。损坏后,车辆出现加速无力、冒黑烟、无法跑到最高车速、没有怠速等现象。解决:建议视行车空气状况及时清洁或更换空滤。只有经常保持进入发动机的空气含尘量少,才能使空气流量计的寿命延长。1)检查轮胎气压、制动技术状况。 2)检查空气滤清器情况。 3)检查燃油、油泵、滤清器的状况。 4)检查油压、供油量、调节器情况。 5)检查喷油器、发动机管路系统连接。 6)检查冷却液温度传感器、进气温度传感器。 7)检查空气流量传感器、节气门位置传感器。 8)检查爆燃传感器、ECU的插接器。 9)检查冷却系统恒温器、恒温空气滤清器及EGR再循环 谈电喷发动机油耗坛子里围绕着马儿的发动机及油耗争论时间够久了,显见大家非常关心这个问题,但马会乃至整个爱卡能把这个问题谈清楚的不多,现在我来试一把。目前我们大多数的人能够接触到的车无非是化油器发动机或电喷发动机,废话,这点地球人都知道!但为什么化油器要被电喷淘汰?因为电喷比化油器节能省油?放P,现在在咱国同等排量上电喷都要比化油器的费油,地球人知道吗?化油器为什么要改为电喷?环保要求。开始讲故事:一、关于发动机的概念:汽车使用的发动机称为内燃机,也就是说燃油是在一个封闭的环境中使用。而燃油的充分燃烧的绝对前提是充分的空气,但由于是封闭环境,空气是定量的(就是所谓排量啦),把定量的燃油加到定量的空气里才是合情合理的,话说起来简单,真正实现很难。由于发动机的工作原理较为复杂,普通人需要这么理解:发动机是变量动力,通过不同的活塞运动周期输出不同的动力(就是所谓的转速啦),虽然我们可以把排量定格成一个数值,但转速是变量,而且是非线性变量,而化油器是纯机械结构,供油量跟油门是线性正比关系,供油为纯人为,这就很难做到燃油的合理定量。过去新手开车,很容易淹车,就是这个原因。从另一角度讲,由于纯人为,由此产生了无穷的节油大法,它们大多切实有效,但我要在这里吼一嗓--对电喷没用!电喷技术的应用解决了燃油和空气这对矛盾,使燃油可以合理配合空气进行充分燃烧,其显著特征就是大大降低了废气排放。所以说,化油器和电喷的区别是:结构差异:供油系统。目标差异:降低排放。二、关于电喷发动机的概念:所谓电喷就是通过电子控制系统对发动机实行自动供油,彻底摆脱了人为控制的因素。我相信很多人看到这儿有掉井里的感觉,疑问那我开车踩油门时干么呢?给大家一个全新的名词“油门NO,加速踏板YES”。电喷的工作原理大致是这样:用空气流量传感器记录空气量,根据空气量确定供油量,同时排气处也设有一个废气传感器记录废气量反馈给供油系统,通过这样的完整循环保证了燃油的充分燃烧,使排放达到最低。但问题没有这么简单,车是要动的,比方说车的运动或是环境中的自然风都会引起空气流量的变化,为了不致出现车停在红灯前刮过一阵风发动机就乱转的可笑事情发生,电喷系统采用曲折进气和抽样取值的方式工作,也就是咱们马儿进气管设计成七拐八绕的由头,加速踏板改变空气流量。同样的,电喷最需要解决的也是动力输出问题,但影响动力输出的因素既多又复杂,大致有环境(气温和气流等)、路况(路面质量和高低起伏等)、车况(轮胎和载荷等)、人为(驾驶习惯和方式等)等等,电喷如何解决这些问题?通过传感器,比如最易理解的就是温度,用温度传感器就可以感知温度,借此控制电子扇和节温器调节温度。限于篇幅,我不能把所有的传感器一一列举了,可以这样说,电喷发动机较为完整的描述是机体+传感器+控制器+中央系统。就此得知,决定电喷发动机品质的因素已经从单纯的缸体容积转移到传感器、控制器、中央系统的数量和质量上来了。我悲痛,中国就是因为目前无法自行研制传感器和中央系统而给人以连发动机都不会造的表象;我气愤,厂家利欲熏心,撤多减少拆好换旧对电喷传感器、控制器、中央系统大动手脚;我无奈,广大车友对发动机知其然不知其所以然,求低价赶实惠,中套还替别人数钱。三、发动机油耗的概念:恕我多言,坛子里讨论的所谓油耗问题大多极无聊,其本质实际就像现在天热,用扇子还是用空调此等弱智。为什么这么说,因为厂家和媒体在其中偷换了概念,厂家多属故意,揣着明白装糊涂;媒体多属无知,煞有介事混饭吃。大家都知道车所谓的油耗指标是升/百公里,但该指标实际毫无意义。就像你问我饭量一样,我可以斩钉截铁地回答:四两。可你顶多把此作为请我客时菜量的参考,而不会刻意追求这个四两!为什么大家这么在乎百公里耗几个油呢?大家都认为油耗指标是判定发动机性能好与坏的重要指标,这点没错,但用升/百公里就错了!就像你问我饭量,我回答:四两。而你从中推算我的健康一样可笑。这个升/百公里欺性在哪里?在中国就是要抹煞发动机的好与坏!比如说把马的发动机放到宝来车上,发动机指标就不是(排量),而要6-7了,实际油耗就要12个以上,因为宝来的自重比马大的多!而我们就以10万元级现有车型看,没有用同种发动机的,更没有同种自重的,但把升/百公里指标嚷嚷得满天飞,取所谓经济性,自重少30公斤升/百公里指标就可以降几个百分点,可厂家不会说这30公斤是省装了门侧两根加强防撞钢梁,而愣说发动机省油!好啦,能够真实反映发动机好坏的就是输出功率和排放指标。输出功率说明了燃油利用率,排放指标标明了电喷系统质量,就此而已。这里声明一下,本人接触的是,由于时间和精力的原因对尚未明了,抱歉!关于马的发动机可以这么看一下,国内10万元级里的,惟一全球同步上市、在美国为欧4、自动巡航、发动机锁,去搜狐或新浪汽车栏读读指标。四、电喷车省油的概念:我在文前提到在咱国同等排量上电喷都要比化油器的费油,就是针对升/百公里而说的。发动机从化油器提升到电喷,是技术进步,而不是技术飞跃,电喷虽然在单位燃油上提高了使用效率,但不可避免地变相增加了发动机自身负荷,与此同时车辆的安全舒适性也在不断提高;音响、空调功率的加大,都无一例外地消耗了提升出的动力,这是客观原因,而传感器、控制器质量不高,中央系统低级都会降低动力,这是主观因素。例如温度传感器不能准确测温,节温器不能有效调控,就会使电子扇经常无谓的启动,而电子扇是功耗大户,油耗自然要高。所以,电喷能够体现出的只有环保效果。取决电喷油耗高低的最重要因素是中央系统的先进度,包括取值量和控制度,简单的比方就是286到奔4的差别,由于内容过于繁复我不在此废话,由此可以看出,电喷车省油途径是需要人尽量适应电喷特性而不是像化油器那样凭操作技巧,这里面包括行车技巧和化油器调整技巧。假如我们抛开空调、音响、载重这些合理需要和胎压车况正常与否,电喷车省油途径只有:严格按时速换档;在条件允许的情况下尽量迅速提速至经济时速并保持;少踩刹车这三条

电控发动机与化油器式发动机最大的不同在燃油供给系。电控发动机的燃油供给系取消了化油器,却增加了不少电子自动控制装置。其中包括许多传感器,执行元件和ECU。电控发动机不仅要完成化油器所要完成的任务,而且要完成化油器难以完成的任务。例如,使可燃混合气的空燃比浓度能控制在所需要的范围内。化油器式发动机油路和电路划分的非常清楚,互相影响不大。而电控发动机燃油供给系统增加了电子控制部分,这就使得油路和电路相互联系,它不仅影响发动机燃油系的工作,而且还影响发动机的正常运行。由于电控发动机电子控制装置的增加,这就使发动机的整个结构(包括电控系)更为复杂。快速导航结构组成 工作原理 待测参数 优点基本思想在初期,是以电子技术替代机械控制技术实现系统的功能,并对其功能进行扩展,使性能得到大幅度提高;发展到一定程度后,电子技术可以促使系统原理发生本质变化,从而可以突破局限,使发动机性能得以大幅度提高。电控发动机结构组成电子控制单元电控单元(ECU)是发动机电子控制系统的核心。它完成发动机各种参数的采集和喷油量、喷油定时的控制,决定整个电控系统的功能。传感器传感器(Sensor)将发动机工况与环境的信息通过各种信号即时、真实的传递到ECU。换句话说,ECU所了解到的只是一个由诸多信号所构成的发动机。所以,传感器信息的准确性、再现性与即时性就直接决定控制的好坏。执行器电控系统要完成的各种控制功能,是靠各种执行器来实现的。在控制过程中,执行器将ECU传来的控制信号转换成某种机械运动或电器的运动,从而引起发动机运行参数的改变,完成控制功能。工作原理以发动机转速和负荷作为反映发动机实际工况的基本信号,参照由试验得出的发动机各工况相对应的喷油量和喷油定时脉谱图来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时或点火定时,然后通过执行器进行控制输出。

捷达发动机电控系统故障检修方法(1)在现代汽车维修中,电控系统故障诊断的工作量越来越大,对于一些汽车维修初级入门者,由于诊断步骤不正确容易走弯路,且耗费了很多时间。笔者认为诊断步骤正确是诊断工作成功高效的保证,有了这个保证,对于疑难故障就会轻而易举地解决。以下是笔者的实践体会,供同仁参考。故障诊断步骤(1)初步观察打开发动机舱盖,观察发动机部件是否完整,真空管有无脱落,电线插接器有无松脱,是否存在漏油、漏液、漏气及漏电现象,发动机怠速运转是否平稳,排气管是否冒黑烟或有汽油味等异常现象。(2)读码-清码-运行-再读码连接故障诊断仪查询故障码,要对读出的永久性和偶发性故障码进行记录,然后清除故障码。起动发动机,待冷却液温度达到80 ℃以上,发动机高速运转几秒钟,创造故障再现条件,再次查询故障码并做记录。%26lt;汽车维修者之家%26gt;(3)分析故障码使用维修手册查阅故障码产生的原因、影响及排除方法,对偶发性故障码也不能忽视。如果未存储故障码,要考虑控制单元不能监视的元件,如桑塔纳时代超人轿车的点火线圈存在故障也不会有故障码显示,应采用其他方法判断是否存在故障。(4)阅读数据流发动机要满足阅读数据流的条件,对于数据流中超出正常值的数据,应参照维修手册列出的故障原因进行分析。数据流可以提供发动机运转状态的实时数据,能否正确全面地分析数据流体现着诊断者的技术水平。(5)检查测量根据故障现象、故障码内容及数据流中的相关数值确定测量项目,可以使用万用表、二极管测试笔、废气分析仪、燃油压力表、真空表、气缸压力表、示波器、模拟信号发生器及喷油器检测清洗仪等仪器进行必要的测量,选择仪器的原则是能快速、准确地判断故障。(6)排除故障根据以上工作记录并参照维修手册或相关资料,对故障进行分析,得出诊断结论和修理方案,如清洗节气门、气门和进气道,调整或更换元件,剥开线束查找故障点,以及清洁接地线等。(7)竣工检验再次使用故障诊断仪、废气分析仪等设备进行检测,确认故障是否排除。对于发动机行驶熄火、加速闯车及动力不足的故障必须进行路试,待故障完全排除后方能竣工交车。如果故障仍未排除或未全部排除,根据需要再重复以上的诊断步骤。 %26lt;汽车维修者之家%26gt;只要具有坚强的自信心、正确的诊断步骤、认真的检查测量及缜密的分析思路,任何故障都不会难住诊断者。故障1 急加速发动机熄火车型:捷达ATi故障现象:急加速时发动机熄火,出故障后用故障诊断仪V.A.G1551清除故障码就能正常行驶,故障有时一个月出现1次,有时一天出现2次。检查:连接故障诊断仪V.A.G1551进行检测,设备提示发动机负荷信号错误。维修手册提示故障原因是节气门体、进气压力传感器(图1)或控制单元有故障,经检测节气门体、进气压力传感器和连接线路均正常。之后用示波器分别观察了节气门电位计G69和输入自动变速器控制单元的节气门电位计信号的波形,2个信号波形差异过大,输入自动变速器控制单元的波形几乎是一条直线。图 1 进气压力传感器分析:自动变速器控制单元主要根据节气门电位计信号和车速信号进行升挡和降挡,如果节气门电位计信号失准,将会使得换挡时机不准确,甚至出现加速熄火的现象。上面检测说明发动机控制单元输出的节气门电位计信号有错误,而问题是由发动机控制单元造成的。故障排除:更换发动机控制单元(图2)后,故障排除。图 2 发动机控制单元本文主题词:电控 发动机 检修 方法 维修捷达发动机电控系统故障检修方法(2)故障2 下雨后发动机不能起动车型:捷达GiF故障现象:发动机不能起动,用户陈述此故障是在一场雨后发生。检查:使用故障诊断仪V.A.G1551检测,设备不能进入发动机控制系统。怀疑发动机控制单元出现问题,准备拆下发动机控制单元进行检查。当拆开风挡玻璃下方的流水板后,发现流水槽内存有积水。将阻塞泄水孔(图3)的杂物取出后,积水随之流出。图 3 泄水孔被堵塞分析:发动机控制单元安装在流水槽左侧,由于导水槽的泄水孔被树叶等杂物阻塞,当下雨或洗车时,若水不能及时排出,便会浸湿控制单元。因此在车辆维护中一定要检查流水槽左右两侧的泄水孔,并取出相应的杂物。故障排除:将发动机控制单元插头断开并用压缩空气吹干后,设备仍然不能进入发动机控制系统,由此判定发动机控制单元已经损坏。在更换新的控制单元后,查询数据流完全正常,该车竣工出厂。故障3 稳态加速工况法检测NO超标车型:捷达AT故障现象:该车在利用稳态加速工况法检测废气排放不合格,其中CO和HC正常,NOx超标。检查:清洗喷油器、燃烧室积炭,更换火花塞,均未见效。分析:查看该车发动机控制单元的零件号为L06A 906 018 EL,感觉有点问题。经查阅资料,发现发动机控制单元虽然零件号相同,但有4种尾缀:G、EL、EK及GE。尾缀G表示系统装备三元催化器但版本较低,是过渡型;EL表示系统无三元催化装置;EK表示系统装备三元催化装置,不带防盗;GE表示系统装备三元催化装置,带防盗。经检查,该车装备了三元催化装置,另外,虽然装有防盗控制单元,但无发动机控制单元防盗功能,所以应安装尾缀为EK的发动机控制单元。%26lt;汽车维修者之家%26gt;故障排除:在将原尾缀为EL的控制单元更换成EK的控制单元(图4)后,经检测,废气排放合格。图 4 正确尾缀的控制单元故障4 发动机不能起动车型:捷达GiX故障现象:起动车辆时,起动机转速正常,发动机不能起动,曾去过路边修理部,建议用户更换发动机线束。检查:连接故障诊断仪V.A.G1552进入发动机控制系统,设备显示发动机电控单元不能通讯。在车辆起动时,检查火花塞无高压火产生。分析:根据上述两项检查结果,可以判定发动机控制单元未工作。一般发动机控制单元不工作的原因有2个:一是控制单元未通电,二是控制单元损坏。捷达GiX轿车装备的是西门子公司的SIMOS 3PW发动机管理系统,发动机控制单元为121针脚,1、2号脚为接地线,61号脚为点火开关火线,62号脚为常火线。拔下发动机控制单元插头,对插头线束端进行测量,1、2号脚接地电阻为零,61号脚在打开点火开关的情况下对地电压为12 V,62号脚对地电压为零。经分析线路图,得知连接控制单元62号脚的是一根红色电线,截面积为0.35 mm2,该线另一端连接到继电器盒G2插头的第9脚(G2是白颜色9脚插头)。测量该导线,导线中间无断路故障,测量继电器盒G2插头的第9脚电压为12 V,而测量控制单元的62号脚无电压。上述测量结果没有道理,但仔细一想应该这样解释:测G2插头第9脚时表笔从插头第9脚背面使劲插入,这样可以把第9脚插头按实,表笔拿开后第9脚又断路了,所以测量控制单元62脚无电压。故障排除:拆下继电器盒,发现继电器盒G2插头的第9脚缩进仅露出一点,插入插头使得此针接触不上。更换继电器盒将所有插头连接好后,连接V.A.G1552顺利与发动机控制单元通讯,清除故障码后,起动发动机一切正常。故障5 发动机起动困难车型:捷达GTX故障现象:发动机不能起动。检查:连接故障诊断仪V.A.G1551检测发动机控制系统无故障码。起动发动机时发现电动燃油泵不工作,且无高压火。后来又发现发动机控制单元有时不能通讯,故决定检查发动机控制单元的电源线和接地线,其他接地点都良好,但发现控制单元旁边的搭铁点接线柱(图5)上有一层油漆。图 5 控制单元的接地点分析:该车曾因出事故而做过钣金和喷漆修理,当时对这个接地点的油漆没有清除,修复后的一段时间没有出现故障,时间久后此处接地不良,最终导致车辆不能起动。故障排除:打磨紧固后进行测试,每次起动一次成功。 %26lt;汽车维修者之家%26gt;本文主题词:电控 发动机 检修 方法 维修捷达发动机电控系统故障检修方法(2)故障2 下雨后发动机不能起动车型:捷达GiF故障现象:发动机不能起动,用户陈述此故障是在一场雨后发生。检查:使用故障诊断仪V.A.G1551检测,设备不能进入发动机控制系统。怀疑发动机控制单元出现问题,准备拆下发动机控制单元进行检查。当拆开风挡玻璃下方的流水板后,发现流水槽内存有积水。将阻塞泄水孔(图3)的杂物取出后,积水随之流出。图 3 泄水孔被堵塞分析:发动机控制单元安装在流水槽左侧,由于导水槽的泄水孔被树叶等杂物阻塞,当下雨或洗车时,若水不能及时排出,便会浸湿控制单元。因此在车辆维护中一定要检查流水槽左右两侧的泄水孔,并取出相应的杂物。故障排除:将发动机控制单元插头断开并用压缩空气吹干后,设备仍然不能进入发动机控制系统,由此判定发动机控制单元已经损坏。在更换新的控制单元后,查询数据流完全正常,该车竣工出厂。故障3 稳态加速工况法检测NO超标车型:捷达AT故障现象:该车在利用稳态加速工况法检测废气排放不合格,其中CO和HC正常,NOx超标。检查:清洗喷油器、燃烧室积炭,更换火花塞,均未见效。分析:查看该车发动机控制单元的零件号为L06A 906 018 EL,感觉有点问题。经查阅资料,发现发动机控制单元虽然零件号相同,但有4种尾缀:G、EL、EK及GE。尾缀G表示系统装备三元催化器但版本较低,是过渡型;EL表示系统无三元催化装置;EK表示系统装备三元催化装置,不带防盗;GE表示系统装备三元催化装置,带防盗。经检查,该车装备了三元催化装置,另外,虽然装有防盗控制单元,但无发动机控制单元防盗功能,所以应安装尾缀为EK的发动机控制单元。%26lt;汽车维修者之家%26gt;故障排除:在将原尾缀为EL的控制单元更换成EK的控制单元(图4)后,经检测,废气排放合格。图 4 正确尾缀的控制单元故障4 发动机不能起动车型:捷达GiX故障现象:起动车辆时,起动机转速正常,发动机不能起动,曾去过路边修理部,建议用户更换发动机线束。检查:连接故障诊断仪V.A.G1552进入发动机控制系统,设备显示发动机电控单元不能通讯。在车辆起动时,检查火花塞无高压火产生。分析:根据上述两项检查结果,可以判定发动机控制单元未工作。一般发动机控制单元不工作的原因有2个:一是控制单元未通电,二是控制单元损坏。捷达GiX轿车装备的是西门子公司的SIMOS 3PW发动机管理系统,发动机控制单元为121针脚,1、2号脚为接地线,61号脚为点火开关火线,62号脚为常火线。拔下发动机控制单元插头,对插头线束端进行测量,1、2号脚接地电阻为零,61号脚在打开点火开关的情况下对地电压为12 V,62号脚对地电压为零。经分析线路图,得知连接控制单元62号脚的是一根红色电线,截面积为0.35 mm2,该线另一端连接到继电器盒G2插头的第9脚(G2是白颜色9脚插头)。测量该导线,导线中间无断路故障,测量继电器盒G2插头的第9脚电压为12 V,而测量控制单元的62号脚无电压。上述测量结果没有道理,但仔细一想应该这样解释:测G2插头第9脚时表笔从插头第9脚背面使劲插入,这样可以把第9脚插头按实,表笔拿开后第9脚又断路了,所以测量控制单元62脚无电压。故障排除:拆下继电器盒,发现继电器盒G2插头的第9脚缩进仅露出一点,插入插头使得此针接触不上。更换继电器盒将所有插头连接好后,连接V.A.G1552顺利与发动机控制单元通讯,清除故障码后,起动发动机一切正常。故障5 发动机起动困难车型:捷达GTX故障现象:发动机不能起动。检查:连接故障诊断仪V.A.G1551检测发动机控制系统无故障码。起动发动机时发现电动燃油泵不工作,且无高压火。后来又发现发动机控制单元有时不能通讯,故决定检查发动机控制单元的电源线和接地线,其他接地点都良好,但发现控制单元旁边的搭铁点接线柱(图5)上有一层油漆。图 5 控制单元的接地点分析:该车曾因出事故而做过钣金和喷漆修理,当时对这个接地点的油漆没有清除,修复后的一段时间没有出现故障,时间久后此处接地不良,最终导致车辆不能起动。故障排除:打磨紧固后进行测试,每次起动一次成功。 %26lt;汽车维修者之家%26gt;本文主题词:电控 发动机 检修 方法 维修

燃油泵的毕业论文怎么写

我校机电系机械专业的一篇论文: 【论文摘要】 机械传动式轮胎定型硫化机横梁运动形式已知有三种,即升降翻转运动,升降平移运动,直接升降运动。三种运动都是由曲柄滑块机构实现的。由于在前两种运动中横梁必须通过一拐点,因而其滑块变异为导轮,而直接升降运动,既可使用滑块,也可使用导轮。曲柄由减速机经减速齿轮获得转。曲柄的固定支点为机架,运动支点与主连杆下端活销连接,主连杆上端与横梁端轴活销连接。曲柄转动时,经由主连杆推动横梁端轴沿既定的轨迹运动。三种运动形式中,前两种运动的轨迹基本相同,但辅助运动不同,而第三种只是前两种运动的一部分。由此,在硫化机开模到终点时,横梁处于三种不同的状态。因而适用于不同类型的硫化机。 一、升降翻转型运动 据文献介绍,升降翻转运动形式分为:间接导向的升降翻转运动;直接导向的升降翻转运动;单槽杠杆导向的升降翻转运动。其中最常用也最简单的是直接导向的升降翻转运动。单槽杠杆导向的升降翻转运动在大规格B型定型硫化机如1900B,2160B等机型上曾经使用过,但已逐渐被直接导向的升降翻转运动取代。而间接导向的升降翻转运动在国内的定型硫化机上尚未见使用。本文介绍的升降翻转型运动就是直接导向的升降翻转型运动。梁端轴外的主导轮和副连杆上的副导轮,直接讨论横梁端轴的运动。 横梁的运动轨道由一竖直开式主导槽和与其相接且夹角小于90°的开式导轨组成。为保持横梁运动的平稳性并实现横梁的自转,还有一个与开式主导槽平行的闭式副导槽。开模时,横梁端轴在开式主导槽中上升,与横梁固定连接的副连杆 下 端中心轴在闭式副导槽中同步上升,此时横梁做平动。当横梁端轴离开竖直开式主导槽进入开式导轨后,横梁端轴的运动轨迹便不再与闭式副导槽平行。此时,在主连杆和副连杆的共同作用下,横梁端轴在开式主导轨上边移动边自转。在横梁运动极限位置,主连杆两活销中心连线与曲柄支点中心连线重合。实际运动中,一般不会到达极限位置。 Φ=α+β 其中α为副连杆与横梁竖直中心线间的夹角 β=arcSin 上式中,h,l是由横梁本身结构决定的,它们也决定了α的值。由此式可知,横梁的翻转角度首先取决于其自身的结构。在其结构确定之后,与硫化机的开模长度有关。开模到极限时,其翻转角度达到最大值。 直到二十世纪末,几乎所有的B型定型硫化机都使用升降翻转运动。这是由B型硫化机的特点和它的适用范围决定的。首先,B型中心机构在装胎和卸胎时,胶囊都是完全拉直的,这使得上环升得很高。其次,早期使用的硫化机的抓胎爪都是长式的,而且当时的轮胎主要是斜交胎,其生胎高度也较大。为了将生胎顺利地装入下模,中心机构上方必须有足够的空间。使用升降翻转的运动形式,在完全开模的状态下,中心机构上方是完全敞开的,使装胎,卸胎操作十分方便。再次,我们知道,轮胎硫化后,与硫化模型间的粘着力是很大的。其值不仅与轮胎和模型间的接触面积成正比,而且随着接触面积的增大,单位面积的粘着力也随着增大。这就使得大型轮胎如载重轮胎,工程轮胎等的粘着力非常之大,从而极大地增加了脱模的难度,甚至将轮胎拉伤。为了减小粘着力,目前最常用的方法是往模型上喷洒隔离剂(硅油与水的混合液)。而要进行这种操作,只有在上模翻转一定的角度之后才便于进行。 一般地说,规格在1525以上的定型硫化机应该有自动喷洒隔离剂装置。国外企业对此比较重视,国内企业似乎不太在意。 几乎所有的轮胎定型硫化机的调模机构都使用螺纹副结构。在保持良好润滑的条件下,这种结构调整方便、可靠,承载能力也较大。但螺纹副较其它配合的间隙偏大。尤其是调模机构受硫化室高温的影响,其螺纹副的间隙较常温下使用的又偏大。硫化机开模合模时,螺蚊副由竖直状态转入接近水平状态或反过来由近水平状态转入垂直状态时,其间隙的分布是不断变化的。随着硫化机不断地开模、合模,这种间隙分布的变化周而复始地进行。很显然,它不但影响运动的平穩性,也损害了螺纹副的配合精度,进而影响上下模间,上模和中心机构间的同轴度。在使用活络模时,横梁翻转后,活络模操纵缸的活塞杆压向一侧。活塞杆与活络模的上胎侧模连接,又会影响模型的精度和寿命,还会影响活塞杆与缸的配合,甚至引起缸的泄漏。 二、升降平移型运动 采用升降平移运动形式时,横梁端轴的运动轨迹与采用升降翻转运动形式基本相同。根本区别在于,它的副导槽是一个中心线与横梁端轴中心运动轨迹完全相同的封闭式导槽。因而在横梁的整个运动过程中,其端轴中心轨迹与副连杆轴中心的轨迹完全相同。横梁保持平动。图2为其机构运动简图。 不考虑装胎机构固定在横梁前面的结构,与升降翻转型运动一样,完全开模时,中心机构上方也是完全敞开的。由于横梁没有翻转,调模机构的螺纹副始终处于竖直状态。与升降翻转型运动相比,它不但提高了运动的平稳性,而且极大地提高了开合模的重复精度,更容易保证上下模型及其与中心机构间的同轴度,也改善了模型尤其是活络模型及其操纵缸的使用条件。 到二十世纪末,如同所有的机械传动式B型定型硫化机都使用升降翻转运动一样,B型以外的所有机型,如A型、AB型、C型等,则全都采用升降平移运动。这是因为A型、AB型、C型等机型一般都只用于硫化中小型轮胎,通常不需要喷洒隔离剂。尤其对于硫化中小型子午线轮胎,使用升降平移运动在一定程度上能提高轮胎的硫化质量。 根据前面的论述,大型B型硫化机由于需要喷洒隔离剂而采用升降翻转运动是合理的。而所有的B型硫化机包括硫化小胎的1030B型硫化机也使用升降翻转运动则有些让人费解。能让人接受的解释只能是为了設备的标准化、系列化,便于管理。 三、直接升降型运动 直接升降型运动实际上只是升降翻转和升降平移运动的一部分。它借鉴液压传动式轮胎定型硫化机的运动方式,横梁只在中心机构的正上方升降。很显然,直接升降型运动较前两种运动形式更简捷,也更容易实现。同时由于横梁只在一个方向做上下运动,其运动精度也得以大大提高。 在升降翻转和升降平移运动中,曲柄绕固定支点在一定的角度范围内摆动,整个传动装置做正反转运动。而直接升降型运动,曲柄旋转一周,横梁便完成一个升降周期,传动装置无须反转。 采用直接升降型运动,横梁的最大升降高度等于两倍的曲柄长度。由于设备体度的限制,曲柄不可能做的很长,因而开模的高度就非常有限。它不适用于B型硫化机,只能用于A型、AB型、C型等硫化机中硫化乘用子午胎、轿车子午胎。 直接升降的运动形式,使机械传动式轮胎定型硫化机的精度达到一个新的高度。当前,在液压传动式轮胎定型硫化机还不普及的条件下,它可以部分地代替液压硫化机用以硫化高等级小型子午胎。 综上所述,机械传动式轮胎定型硫化机三种运动形式的应用应该这样划分:硫化大型轮胎的B型硫化机(一般为1525B以上规格),使用升降翻转运动;一般的B型硫化机,使用升降平移运动;B型以外的其它类型硫化机,尤其是用于硫化子午线轮胎的,优先采用直接升降运动,不能使用的,用升降平移运动。 随着科学技术的进步,轮胎硫化技术也将不断发展。如果能取消往上模喷洒隔离剂的工序,则可以予言,升降翻转运动将从轮胎定型硫化机的运动中消失。那时,机械传动式轮胎定型硫化机将只有升降平移和直接升降两种运动形式。所有的B型硫化机都使用升降平移运动,其它类型的硫化机则两种运动形式兼而用之。若是这样,则机械传动式轮胎定型硫化机的运动精度将会得到极大的改善

3 柴油机电控技术的特点 柴油机电控技术与汽油机电控技术有许多相似之处,整个系 统都是由传感器、电控单元和执行器三部分组成。在电控喷射方 面柴油机与汽油机的主要差别是,汽油机的电控喷射系统只是 控制空燃比(汽油与空气的比例),柴油机的电控喷射系统则 是通过控制喷油时间来调节输出油量的大小,且柴油机喷油控制 是由发动机的转速和加速踏板位置(油门、供油拉杆位置)来决定 的。柴油机电控技术有两个明显的特点:一是柴油喷射电控执行 器复杂,二是柴油电控喷射系统的多样化。 柴油机是一种热效率比较高的动力机械 柴油机燃油喷射具有高压、高频、脉动等特点。其喷射压力 高达200MPa,为汽油机喷射压力的百倍以上。对燃油高压喷射系 统实施喷油量的电子控制,困难大得多。而且柴油喷射对喷射正 时的精度要求很高,相对于柴油机活塞上止点的角度位置远比汽 油机要求准确,这就导致了柴油喷射的电控执行器要复杂得多。 由于柴油机的喷射系统形式多样 传统的柴油机具有直列泵、分配泵、泵喷油器、单缸泵等结构完全不同的系统。实施电控技 术的执行机构比较复杂,形成了柴油喷射系统的多样化;同时柴 油机需要对油量、定时、喷油压力等多参数进行综合控制,其软 件的难度也大于汽油机。 4 电控柴油喷射系统分类 最先出现的是电控喷油泵技术,而后又发展了电控泵喷嘴技 术和高压共轨喷射技术,后两种技术是现在最主要的柴油机电控 喷射技术。其中,电控泵喷嘴技术的喷油压力非常高,可以达到 200MPa,并且泵和喷嘴装在一起,所以只需要很短的高压油引 导部分,泵喷嘴系统也可以实现很小的预喷量,其喷油特性是三 角形的,并采用了分段式预喷射,这是很符合柴油机的要求 (大众公司的TDI发动机就是使用这种技术)。但电控泵喷嘴技 术的喷油压力受柴油机转速影响,使用蓄压系统的高压共轨技 术可以解决这个问题。它的喷油压力低于泵喷嘴系统,能达到 160MPa。有些公司看中了它对任意缸数的发动机喷油压力调节 很宽泛的特点,逐步扩大其使用范围(最早使用高压共轨的轿车 是阿尔法罗密欧156和奔驰C级别车)。 第一代柴油机电控燃油喷射系统也称位置控制系统,它用 电子伺服机构代替机械调速器控制供油滑套位置以实现供油 量的调整。其特点是保留了传统的喷油泵——高压油管—— 喷油器系统,只是对齿条或滑套的运动位置由原来的机械调速器控制改为计算机控制。这类技术已发展到了可以同时控制定时和预喷射的TICS系统。 第二代柴油机电控燃油喷射系统也称时间控制系统,其特点 是供油仍维持传统的脉动式柱塞泵油方式,如博世公司的电控泵 喷嘴系统,但供油量和喷油定时的调节则由电脑控制的强力快速响应电磁阀的开闭时刻所 决定。一般情况下,电磁阀关闭时,执行喷油,电磁阀打开时,喷 油结束;喷油始点取决于电磁阀关闭时刻,喷油量则取决于电磁阀关闭时间的长短。时间控制系 统的控制自由度更大。 第三代也称为直接数控系统,它完全脱开了传统的油泵 分缸燃油供应方式,通过共轨和喷油压力/时间的综合控制, 实现各种复杂的供油回路和特性。 因柴油机的喷射系统形式多样。国外柴油机的电控系统也型 式多样,有直列泵和分配泵的可变预行程TICS系统,有基于时间 控制的泵喷嘴系统,有蓄压共轨系统和高压共轨系统等。各种技 术方案都在原有的基础上发展,但高压共轨系统是总的发展方向。 5 高压共轨电控喷射系统 共轨(Common-rail)式电控燃油喷射技术的原理 在汽车柴油机中,高速运转使柴油喷射过程的时间只有 千分之几秒。实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。由于柴油的可压缩性和高压油 管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的 柱塞供油规律有较大的差异。油管内的压力波动有时还会在 主喷射之后使高压油管内的压力再次上升,达到令喷油器的 针阀开启的压力,将已经关闭的针阀又重新打开,产生二次 喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳 氢化合物(HC)的排放量,油耗增加。此外,每次喷射循环后高压 油管内的残余压力都会发生变化,随之引起不稳定的喷射,尤 其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而 且会发生间歇性不喷射现象。为了解决柴油机这个燃油压力变化 的缺陷,现代柴油机采用了一种称为“共轨”的技术。 共轨技术是指由高压油泵、压力传感器和ECU组成的闭环 系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油 方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供 油管内的油压实现精确控制,使高压油管压力大小与发动机的转 速无关,可以大幅度减小柴油机供油压力随发动机转速的变化, 因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量, 喷油量大小取决于共轨管(公共供油管)压力和电磁阀开启时间 的长短。 共轨式电控燃油喷射技术,通过共轨直接或间接地形成恒定 的高压燃油分送到每个喷油器,并借助于集成在每个喷油器上的 高速电磁开关阀的开启与闭合,定时定量地控制喷油器喷射至柴油机燃烧室的油量,从而保证柴 油机达到最佳的燃烧比和良好的雾化,以及最佳的着火时间、足 够的着火能量和最少的污染排放。 其主要由电控单元、高压油泵、共轨管、电控喷油器以及各 种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将 燃油加压送入高压共油轨,高压共油轨中的压力由电控单元根据 共油轨压力传感器测量的共油轨压力以及需要进行调节,高压共 油轨内的燃油经过高压油管,根据柴油机的运行状态,由电控单 元从预设的MAP图中确定合适的喷油定时、喷油持续期由电液 控制的电子喷油器将燃油喷入汽缸(见图4)。 共轨式电控燃油喷射技术的特点 柴油机共轨式电控燃油喷射技术是一种全新的技术,集计算 机控制技术、现代传感检测技术以及先进的喷油器结构于一身。 它不仅能达到较高的喷射压力、实现喷射压力和喷油量的控制, 而且还能实现预喷射和分段喷射,从而优化喷油特性、减低柴 油机噪声和大大减少废气有害成分的排放量。其特点为: (1)采用先进的电子控制装置及配有高速电磁开关阀,使得 喷油过程的控制十分方便,并且可控参数多,利于柴油机燃烧过 程的全程优化。 (2)采用共轨方式供油,喷油系统压力波动小,各喷油器间相 互影响小,喷射压力控制精度较高,喷油量控制较准确。 (3)高速电磁开关阀频率高,控制灵活,使得喷油系统的喷射压力可调范围大,并且能方便地 实现预喷射等功能,为优化柴油机喷油规律、改善其性能和降低 废气排放提供了有效手段。 (4)系统结构移植方便,适应范围广,尤其是与目前的小型、 中型及重型柴油机均能很好匹配,因而市场前景广阔。 高压共轨电控燃油喷射技术的发展前景 高压共轨系统被认为是20世纪内燃机技术的3大突破之一。目前,有待研究的有: (1)高压共轨系统的恒高压密封问题。 (2)高压共轨系统中共轨压力的微小波动所造成的喷油量 不均匀问题。 (3)高压共轨系统三维控制数据的优化问题。 (4)微结构、高频响应电磁开关阀在制造过程中的关键技术问 题。 综上所述,共轨式电控燃油喷射技术有助于减少柴油机的有 害尾气排放量,并具有降低噪声、降低燃油耗、提高动力输出 等方面的综合性能。高压共轨电控燃油喷射技术的应用有利于地 球环境保护,加速促进柴油机工业、汽车工业,特别是工程机械 相关工业的向前发展。 参考文献 1. 李春明.《汽车发动机燃油喷射技术》主编 北京理工大学出版社 2. 蒋向佩.《汽车柴油机构造与使用》主编 机械工业出版社 3. 朱仙鼎.《特种发动机》主编 机械工业出版社

怠速不稳是发动机维修中遇到最多的故障。如果诊断思路不正确会延长修理时间、降低工作效率,甚至使车主等待不及而转到另一家汽修厂。本文是笔者在长期实践中对此故障的摸索和总结,供同行参考。一、怠速不稳的分类1. 如何观察怠速不稳①观察发动机缸体抖动程度,也可以观看机油尺把晃动的程度,平稳的油尺把很清晰,抖动的油尺把看起来是双的;②从发动机转速表或读数据块观察,转速以怠速期望值为中心抖动,或在期望值一侧剧烈抖动,程序中的怠速期望值包括标准怠速值、负荷(打开灯光,自动变速器挂上挡等)怠速值、空调怠速值、暖车怠速值;③原地启动发动机,坐在座椅上感觉车身剧烈抖动。2. 按出现规律分类①冷车(冷却液温度低于50℃)有节奏的不稳;②热车(冷却液温度高于50℃)有节奏的不稳;③无规律的剧烈抖动一、两下。3、按抖动程度分类①正常,以怠速期望值±10r/min抖动;②一般不稳,以怠速期望值±20r/min抖动;③严重不稳,超过怠速期望值±20r/min抖动;④在怠速期望值的一侧剧烈抖动。4. 按原因关联分类①直接原因,指机械零件脏污、磨损、安装不正确等,导致个别汽缸功率的变化,从而造成各汽缸功率不平衡,致使发动机出现怠速不稳;②间接原因,指发动机电控系统不正常,导致混合气燃烧不良,造成各汽缸功率难以平衡,使发动机出现怠速不稳。5. 按故障系统分类①进气系统;②燃油系统;③点火系统;④发动机机械系统。6. 怠速抖动机理汽缸内气体作用力的变化(一个汽缸气体作用力变化或几个汽缸气体作用力变化),引起各汽缸功率不平衡,导致各活塞在做功行程时的水平方向分力不一致,出现对发动机横向摇倒的力矩不平衡,从而产生发动机抖动。也可以说,凡是引起发动机汽缸内气体作用力变化的故障都有可能导致发动机怠速抖动。二、怠速不稳的原因1. 进气系统(1)进气歧管或各种阀泄漏当不该进入的空气、汽油蒸汽、燃烧废气进入到进气歧管,造成混合气过浓或过稀,使发动机燃烧不正常。当漏气位置只影响个别汽缸时,发动机会出现较剧烈的抖动,对冷车怠速影响更大。常见原因有:进气总管卡子松动或胶管破裂;进气歧管衬垫漏气;进气歧管破损或其它机件将进气歧管磨出孔洞;喷油器O型密封圈漏气;真空管插头脱落、破裂;曲轴箱强制通风(PCV)阀开度大;活性炭罐阀常开;废气再循环(EGR)阀关闭不严等。(2)节气门和进气道积垢过多节气门和周围进气道的积炭、污垢过多,空气通道截面积发生变化,使得控制单元无法精确控制怠速进气量,造成混合气过浓或过稀,使燃烧不正常。常见原因有:节气门有油污或积炭;节气门周围的进气道有油污、积炭;怠速步进电机、占空比电磁阀、旋转电磁阀有油污、积炭。(3)怠速空气执行元件故障怠速空气执行元件故障导致怠速空气控制不准确。常见原因有:节气门电机损坏或发卡;怠速步进电机、占空比电磁阀、旋转电磁阀损坏或发卡。(4)进气量失准控制单元接收错误信号而发出错误的指令,引起发动机怠速进气量控制失准,使发动机燃烧不正常,属于怠速不稳的间接原因。常见原因有:空气流量计或其线路故障;进气压力传感器或其线路故障;发动机控制单元插头因进水接触不良或电脑内部故障。2. 燃油系统(1)喷油器故障喷油器的喷油量不均、雾状不好,造成各汽缸发出的功率不平衡。常见原因有:喷油器堵塞、密封不良、喷出的燃油成线状等。(2)燃油压力故障油压过低,从喷油器喷出的燃油雾化状态不良或者喷出的燃油成线状,严重时只喷出油滴,喷油量减少使混合气过稀;油压过高,实际喷油量增加,使混合气过浓。常见原因有:燃油滤清器堵塞;燃油泵滤网堵塞;燃油泵的泵油能力不足;燃油泵安全阀弹簧弹力过小;进油管变形;燃油压力调节器有故障;回油管压瘪堵塞。(3)喷油量失准各传感器或线路故障,导致控制单元发出错误指令,使喷油量不正确,造成混合气过浓或过稀,属于怠速不稳的间接原因。具体原因有:空气流量计(或进气歧管压力传感器)故障;节气门位置传感器故障;节气门怠速开关故障;冷却液温度传感器故障;进气温度传感器故障;氧传感器失效;以上传感器的线路有断路、短路、接地故障;发动机控制单元插头因进水接触不良或电脑内部故障。3. 点火系统(1)点火模块与点火线圈近些年各车型多将点火模块与点火线圈制成一体,点火模块或点火线圈有故障主要表现为高压火花弱或火花塞不点火。常见原因有:点火触发信号缺失;点火模块有故障;点火模块供电或接地线的连接松动、接触不良;初级线圈或次级线圈有故障等。(2)火花塞与高压线火花塞、高压线故障导致火花能量下降或失火。常见原因有:火花塞间隙不正确;火花塞电极烧蚀或损坏;火花塞电极有积炭;火花塞磁绝缘体有裂纹;高压线电阻过大;高压线绝缘外皮或插头漏电;分火头电极烧蚀或绝缘不良。(3)点火提前角失准由于传感器及线路故障属于引起怠速不稳的间接原因,控制单元发出错误指令,使点火提前角不正确,或造成点火提前角大范围波动。常见原因有:空气流量计或进气压力信号故障;霍尔传感器故障;冷却液温度传感器故障;进气温度传感器故障;爆震传感器故障;以上传感器的线路有断路、短路、接地故障;发动机控制单元因进水引起插头接触不良或内部电路损坏。(4)其它原因三元净化催化器堵塞引起怠速不稳,这种故障在高速行驶时最易发现。自动变速器、空调、转向助力器有故障会增加怠速负荷,引起怠速不稳。发动机控制单元与空调、自动变速器控制单元之间的怠速提升信号中断,在安装CAN-BUS的车辆存在总线系统故障。随着新技术、新结构的增加,引起怠速不稳的因素会更多,诊断者必须全面考虑问题。4. 机械结构(1)配气机构配气机构故障导致个别汽缸的功率下降过多,从而使各汽缸功率不平衡。常见原因有:正时皮带安装位置错误,使各缸气门的开闭时间发生变化,导致配气相位失准,各汽缸燃烧不正常。气门工作面与气门座圈积炭过多,气门密封不严,使各汽缸压缩压力不一致。凸轮轴的凸轮磨损,各缸凸轮的磨损不一致导致各汽缸进入空气量不一致。气门相关件有故障,如气门推杆磨损或弯曲,摇臂磨损,气门卡住或漏气,气门弹簧折断等。我曾遇到2例因气门弹簧折断而出现间断性怠速抖动,使用各种仪器检测都不能确定原因,拆卸气门弹簧后才发现故障原因。另外,装有液压挺杆的发动机,在通往汽缸盖的机油道上安装一个泄压阀,当压力高于300kPa,打开该阀。如果该阀堵塞,由于压力过高会使液压挺杆伸长过多,导致气门关闭不严。进气门背部存在大量积炭,使冷车时吸附刚喷入的燃油,而不能进入汽缸,由于混合气过稀导致冷车快怠速不稳。(2)发动机体、活塞连杆机构这些故障都会使个别汽缸功率下降过多,从而使各汽缸功率不平衡。常见原因有:汽缸衬垫烧蚀或损坏,造成单缸漏气或两缸之间漏气;活塞环端隙过大、对口或断裂,活塞环失去弹性;活塞环槽内积炭过多;活塞与汽缸磨损,汽缸圆度、圆柱度超差;因汽缸进水后导致的连杆弯曲,改变压缩比;燃烧室积炭会改变压缩比,积炭严重导致怠速不稳。(3)其它原因曲轴、飞轮、曲轴皮带轮等转动部件动平衡不合格,发动机支脚垫断裂损坏,发动机底护板因变形与油底壳相撞击等,这些原因只会造成发动机振动而不影响转速。三、怠速不稳的诊断方法进气系统、燃油系统、点火系统、发动机机械故障均会导致发动机怠速不稳现象,因此诊断产生发动机怠速不稳现象的原因是一项涉及面较广、难度较大的工作,轻易换件的方法是不可取的。怠速不稳故障的原因有百般变化,应根据检测结果、理论分析、维修经验做出正确判断,所以说诊断工作是有规律可循的。1. 询问车主接车后应向车主了解:①最早出现怠速不稳的时间;②怠速不稳时的发动机温度;③该车行驶里程;④车主经常驾驶的道路和习惯;⑤该车保养情况;⑥该车维修历史;⑦该车是否加装设备。通过以上了解可对怠速不稳有初步判断,缩短检查时间,避免在检修时做无用功。2. 外观检查打开发动机罩检查:观察发动机运转情况,抖动程度,同时观察发动机转速表指针的摆动幅度,是否偏离怠速期望值;观察是正常怠速抖动,还是负荷怠速抖动(打开空调、灯光、挂入挡位、打方向盘等);发动机外部件是否有异常;真空管有无脱落、破损;电线插接器有无松脱;是否存在漏油、漏水、漏气、漏电的四漏现象;排气管是否“突、突”(说明燃烧不好)、冒黑烟、有生汽油味等不正常现象;节气门拉线是否调整合适。3. 查询分析故障码读码(永久性、偶发性故障码都要记录)——清码——运行(此时要再现故障发生的条件)——再读码。阅读维修手册中的故障码列表,查阅故障码发生的原因、影响、排除方法。对偶发性故障码不能忽视,往往怠速不稳时刻正是偶发故障码出现之时。经过分析确定下一步检修工作。如果没有故障码存储,要考虑控制单元不监视的元件可能存在故障,例如桑塔纳2000时代超人的控制单元不能对点火系统、燃油泵进行监控,对这两个部件应采用测量方法检查。4. 阅读分析数据块数据块可以提供发动机运转中的实时数据,能否正确分析数据块代表诊断者的技术水平,对那些不正确的数据要分析其原因。对于怠速不稳,要读发动机转速、节气门开度、发动机工况、怠速空气流量学习值、怠速空气调节值、怠速λ学习值、怠速λ调节、吸入空气量、点火提前角、λ传感器信号电压、冷却液温度、进气温度等数据。数据实时值、学习值和调整值以实际值或百分率表示,工况以文字表示。5. 检测根据故障现象、故障码内容、数据块数值确定检测内容。根据检测对象选择万用表、二极管测试笔、尾气检测仪、燃油压力表、真空表、汽缸压力表、示波器、模拟信号发生器、喷油器检测清洗仪等,选择哪一种仪器应视具体情况来定,出发点是能迅速、准确判断故障。尾气检测和波形分析很重要,也可以用断缸法迅速找到输出功率小的汽缸,使用真空表可以分析影响真空度的具体原因。检测的原则是从电到机、从简到繁。可以按电控系统、点火系统、进气系统、燃油系统、发动机机械部分的顺序进行。6. 故障排除诊断者根据上述检查结果和维修手册中的故障排除指南,制定适合本车的排除方法。排除方法一般有:清洗节气门与进气道、清洗检查喷油嘴、更换电气元件、检查线束的故障点、清洁接地点、修理发动机机械结构等工作。7. 检验交车故障排除后必须用诊断仪、尾气分析仪再检测一遍,确认故障完全排除后方能交给车主。在3天内必须电话跟踪一次,目的是:①对用户车辆的维修质量负责,提示用户使用车辆的注意事项;②将该车的最终情况记录在维修笔记中,不断积累维修经验。

你好,已经发送给你4封邮件,都是汽车专业相关的论文,由于你没有具体告诉我关于汽车的什么主题,我自己帮你找了三个主题,每个主题十来篇文章,你可以选择,请查收,希望对你有帮助!以后还需要检索论文的话可以再向我或者其他举手之劳队员提问哦,举手之劳助人为乐!——百度知道 举手之劳团队 队长:晓斌11蓝猫

  • 索引序列
  • 喷油泵毕业论文
  • 高压油泵毕业论文
  • 机油泵盖的毕业论文
  • 燃油泵不工作毕业论文
  • 燃油泵的毕业论文怎么写
  • 返回顶部