首页 > 学术期刊知识库 > 灰度图像处理毕业论文

灰度图像处理毕业论文

发布时间:

灰度图像处理毕业论文

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

灰度值测量的数据也要放在论文中吗?回答是:灰度值测量的数据也要放在论文中,以确保数据全面。

毕业论文资料,学校图书馆(网上)的期刊论文数据库很多啊,都是正式的论文。论文不难写,主要是把毕业设计搞出来。

毕业论文图像处理

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理OK,帮你处理。

图像处理毕业论文送审方向写审查小组。送审是指送交有关方面审查。送指的是把东西从甲地运到乙地,审指的是审查,所以送审指的是送交有关方面审查。毕业论文送审就是将写好的毕业论文上交审核小组,等待审核。毕业论文送审方向是指对论文进行查重。毕业论文送审就是将写好的论文上交,等待审核,通常是用查重系统进行论文查重。

图形图像处理毕业论文

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

高职毕业论文致谢样本

关键词:高职毕业论文 致谢 中国论文 职称论文 致  谢

光阴似箭,五年的学习时光已经接近尾声。在校期间学习了Photoshop图形图像处理(通过高级考试)。此外,还学习了word、 Excel排版,网页制作, Flash动画,CorelDraw,3D max软件,办公自动化、Auto CAD机械制图等课程。 本次设计是利用所学知识——Photoshop图形图像处理,将它与实际相结合!此外,我也了解到了运用这个软件可以对图像进行分析,以达到所需结果的技术。同时使用业界标准的Adobe Photoshop CS软件可以更加快速地获取更好效果,也为图形和Web设计、摄影及视频提供必不可少的新功能。 在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,每一步都是在于莉老师的指导下完成的,她倾注了大量的心血。在此,谨向导师表示崇高的敬意和衷心的感谢!同时也离不开同学和朋友的帮助与鼓励。在这里请接受我诚挚的谢意! 社会在不断的进步,而我们要跟上社会的步伐而前进,要想为社会贡献自己的一份力量,就必须全面提高我们的基础知识、基本能力和基本素质, 同时专业知识要宽,只有将实际与理论相结合,那才是知识的`真谛! 最后,我以一句话结束我的论文,并以此作为未来乘风破浪的心灵脚注:时间是无情的,而人生是短暂的,所以我们要珍惜时间,珍惜今天的每分每秒,明天的成功往往取决于今天的勤奋。

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理方面了解的了。

灰度图像的边缘检测论文

这里IplImage* img=cvLoadImage("D:\\");如果不加参数,默认读取图像的原通道数。假如你载入的图像不是单通道的,if(in->nChannels != 1) return 0;这句就直接被执行然后return了,Img2自然什么都么有。 改正:把IplImage* img=cvLoadImage("D:\\");改成IplImage* img=cvLoadImage("D:\\",0);//强制转化读取的图像为灰度图 附:cvLoadImage函数使用方法cvLoadImage( filename, -1 ); //默认读取图像的原通道数cvLoadImage( filename, 0 ); //强制转化读取图像为灰度图cvLoadImage( filename, 1 ); //读取彩色图

问题: 我在提取图像边缘的时候,首先对图像进行灰度变换,之后进行二值处理,最后进行边缘检测得到边缘图像。 但是在查阅资料的过程中我经常发现很多人忽略二值化的步骤,直接进行边缘检测;还有很多人在实现某些功能的时候先进行边缘检测之后再阈值分割,让我感到非常迷惑,这篇文章旨在探求二者的关系。

首先要知道图像二值化和边缘检测的目的。

图像的阈值处理一般使得图像的像素值更单一、图像更简单。阈值可以分为全局阈值和局部阈值,可以是单阈值也可以是多阈值。 图像二值化是设置单阈值,为了将图像中感兴趣的像素分离出来作为前景像素,不感兴趣的部分作为背景像素。

最简单的二值化操作是使用以下函数:(这是全局化的阈值)

上述的二值化处理是设置一个全局阈值,让所有像素值与该阈值比较,下面还可以通过自适应阈值实现图像的二值化处理。 自适应阈值不需要确定一个固定的阈值,根据其对应的自适应方法,通过图像的局部特征自适应的设定阈值,做出二值化处理。 自适应阈值是一种局部阈值,要在图像中确定一个区域,求出该区域内的像素平均值,再与阈值比较

adaptiveMethod - 指定计算阈值的方法。   :阈值取相邻区域的平均值   :阈值取相邻区域的加权和,权重为一个高斯窗口。

thresholdType - 和上面一样 blockSize - 邻域大小(用来计算阈值的区域大小),计算图像的像素区域一般取3×3、5×5、7×7..... C - 常数,阈值等于平均值或者加权平均值减去这个常数。该参数用于微调阈值,可以为负数

还有一种非常多人提及的方法——Otsu’s 二值化,这种方法下次再记录。

要对图像进行边缘检测,首先对图像进行灰度变换,使图像只包含一个通道的信息,然后比较各相邻像素间的亮度差别,亮度产生突变的地方就是边缘像素,将这些边缘像素点连接到一起就形成了边缘图像。 那么首先要知道如何检测出边缘: 边缘有方向和幅值两个要素,通常对图像相邻域像素求取梯度来描述和检测边缘。 为何要求梯度? 图像梯度是对多个方向分别求偏导得到的导数组。比如下图是亮度在x方向上变化,在y方向上没有变化,所以此时只需对x求偏导,该处关于y的偏导为0。

同样图像的亮度在y轴变化时,x方向的偏导为0。

我们知道,当一个函数在某处变化大的时候,它的导数在该处得到极值。

可以看到,图像由亮变暗时函数陡然下降,导数得到极小值,由暗变亮时函数又陡然上升,导数得到极大值,接下来只要找到导数的峰值就行。

这里主要了解Canny边缘检测算法。 Canny算子首先对图像进行平滑滤波,滤除图像的噪声以减少噪声对图像边缘检测的干扰。 下面这两篇文章对Canny算子的介绍非常清晰,在此附上链接以供学习。 在进行边缘检测之前至少要将图像灰度化,因为梯度运算并不能反映色彩的变化差异,所以转换成只有一种颜色通道的灰度图像能够更好地进行边缘检测。

深入了解过图像二值化和边缘检测之后,我认为既可以直接使用灰度图像进行边缘检测,也可以二值化之后再进行边缘检测,二值化的目的是进一步简化灰度图像,使图像中的信息更加纯粹,边缘亮度变化更加明显。如果阈值选的较好还可以滤除不需要的弱边缘,使边缘处理后的图像轮廓更加清晰。

还有一种方法是先进行边缘检测,再二值化,这种情况一般适用于: 想得到二值化图像,但由于原图出现光照不均、前景和背景灰度差别很小等情况,我们不能直接得到完整的目标,这时就可以利用边缘检测对光线变化的不敏感性,先对图像作边缘检测,检测出我们想要进一步研究的目标轮廓,然后再根据只有边缘的图像,求出原图像所有边缘点的像素平均值,将该值作为阈值对原图像进行二值处理,就能很好得获得目标区域,并且目标区域的连通性也很好。

笔者刚刚开始学习图像处理与计算机视觉,可能会出现许多错误,欢迎各位提出改进意见!

摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处理硬件平台,DSP/BIOS为实时操作系统,利用CCS开发环境来构建应用程序;并通过摄像头提取视频序列,实现对边缘检测Sobel算子改进[1]。 关键词 DM642;Sobel算子;程序优化;图像边缘检测 1 引言 边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。图像边缘检测一直是图像处理中的热点和难点。 近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。随着DSP芯片处理技术的发展,尤其是在图像处理方面的提高如TMS320C6000系列,为实现高效的、实时的边缘检测提供了可能性[5]。在经典的边缘检测算法中,Sobel边缘检测算法因其计算量小、实现简单、处理速度快,并且所得的边缘光滑、连续等优点而得到广泛的应用。本文针对Sobel算法的性能,并借助于TMS320DM642处理芯片[3],对该边缘检测算法进行了改进和对程序的优化,满足实时性需求。2 Sobel边缘检测算法的改进 经典的Sobel图像边缘检测算法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个是检测垂直边缘,一个是检测水平边缘。算法的基本原理:由于图像边缘附近的亮度变化较大,所以可以把那些在邻域内,灰度变化超过某个适当阈值TH的像素点当作边缘点。Sobel算法的优点是计算简单,速度快。但由于只采用了两个方向模板,只能检测水平方向和垂直方向的边缘,因此,这种算法对于纹理较复杂的图像,其边缘检测效果欠佳;同时,经典Sobel算法认为,凡灰度新值大于或等于阈值的像素点都是边缘点。这种判定依据是欠合理的,会造成边缘点的误判,因为多噪声点的灰度新值也很大。 图像加权中值滤波 由于图像中的边缘和噪声在频域中均表现为高频成分,所以在边缘检测之前有必要先对图像进行一次滤波处理,减少噪声对边缘检测的影响。中值滤波是一种非线性信号的处理方法[2],在图像处理中,常用来保护边缘信息;保证滤波的效果。加权中值滤波,首先对每个窗口进行排序,取适当的比例,进行曲线拟合,拟合后的曲线斜率表征了此窗口的图像特征,再根据图像各部分特性适当的选择权重进行加权。 增加方向模板 除了水平和垂直两方向外,图像的边缘还有其它的方向,如135o和45o等,为了增加算子在某一像素点检测边缘的精度,可将方向模板由2个增加为8个即再在经典的方向模板的基础上增加6个方向模板,如图1所示。 边缘的定位及噪声的去除 通常物体的边缘是连续而光滑的,且边缘具有方向和幅度两个特征,而噪声是随机的。沿任一边缘点走向总能找到另一个边缘点,且这两个边缘点之间的灰度差和方向差相近。而噪声却不同,在一般情况下,沿任一噪声点很难找到与其灰度值和方差相似的噪声点[4]。基于这一思想,可以将噪声点和边缘点区分开来。对于一幅数字图像f(x,y),利用上述的8个方向模板Sobel算子对图像中的每个像素计算,取得其中的最大值作为该点的新值,而该最大值对应的模板所表示的方向为该像素点的方向。若|f(x,y)-f(x+i,y+j)|>TH2,对于任意i=0,1,-1;j=0,1,-1均成立,则可判断点(x,y)为噪声点。图2给出了图像边缘检测系统改进算法的软件流程图。图1 边缘检测8个方向模板图2 系统结构图3 基于TMS320DM642的图像处理的设计及算法优化 TMS320DM642功能模块及图像处理系统的硬件结构 DSP以高速数字信号处理为目标进行芯片设计,采用改进的哈佛结构(程序总线和数据总线分开)、内部具有硬件乘法器、应用流水线技术、具有良好的并行性和专门用于数字信号处理的指令及超长指令字结构(VLIW)等特点;能完成运算量大的实时数字图像处理工作。 TMS320DM642是TI公式最近推出的功能比较强大的TMS320C6x系列之一,是目前定点DSP领域里性能较高的一款[6]。其主频是600MHz,8个并行运算单元、专用硬件逻辑、片内存储器和片内外设电路等硬件,处理能力可达4800MIPS。DM642基于C64x内核,并在其基础上增加了很多外围设备和接口,因而在实际工程中的应用更为广泛和简便。本系统使用50 MHz晶体震荡器作为DSP的外部时钟输入,经过内部锁相环12倍频后产生600 MHz的工作频率。DM642采用了2级缓存结构(L1和L2),大幅度提高了程序的运行性能。片内64位的EMIF(External Memory Interface)接口可以与SDRAM、Flash等存储器件无缝连接,极大地方便了大量数据的搬移。更重要的是,作为一款专用视频处理芯片,DM642包括了3个专用的视频端口(VP0~VP2),用于接收和处理视频,提高了整个系统的性能。此外,DM642自带的EMAC口以及从EMIF 口扩展出来的ATA口,还为处理完成后产生的海量数据提供了存储通道。本系统是采用瑞泰公司开发的基于TI TMS320DM642 DSP芯片的评估开发板——ICETEK DM642 PCI。在ICETEK DM642 PCI评估板中将硬件平台分为五个部分,分别是视频采集、数据存储、图像处理、结果显示和电源管理。视频采集部分采用模拟PAL制摄像头,配合高精度视频A/D转换器得到数字图像。基于DSP的视频采集要求对视频信号具备采集,实时显示、对图像的处理和分析能力。视频A/D采样电路—SAA7115与视频端口0或1相连,实现视频的实时采集功能。视频D/A电路—SAA7105与视频口2相连,视频输出信号支持RGB、HD合成视频、PAL/NTSC复合视频和S端子视频信号。通过I2C总线对SAA7105的内部寄存器编程实现不同输出。 整个系统过程由三个部分组成:图像采集—边缘处理—输出显示,如图2所示。摄像头采集的视频信号经视频编码器SAA7115数字化,DM642通过I2C总线对SAA7115进行参数配置。在SAA7115内部进行一系列的处理和变换后形成的数字视频数据流,输入到核心处理单元DM642。经过DSP处理后的数字视频再经过SAA7105视频编码器进行D/A转换后在显示器上显示最终处理结果。 图像处理的软件设计和算法优化的实现 由于在改进Sobel边缘检测算子性能的同时,也相对增加了计算量,尤其是方向模板的增加,每个像素点均由原来的2次卷积运算增加为8次卷积运算,其实时性大大减弱。为了改进上述的不足,在深入研究处理系统和算法后,针对TMS320DM642的硬件结构特点,研究适合在TMS320DM642中高效运行的Sobel改进算法,满足实时处理的要求。整个程序的编写和调试按照C6000软件开发流程进行,流程分为:产生C代码、优化C代码和编写线性汇编程序3个阶段。使用的工具是TI的集成开发环境CCS。在CCS下,可对软件进行编辑、编译、调试、代码性能测试等工作。在使用C6000编译器开发和优化C代码时[7-8],对C代码中低效率和需要反复调用的函数需用线性汇编重新编写,再用汇编优化器优化。整个系统的控制以及数字图像处理是用C程序实现,大部分软件设计采用C程序实现,这无疑提高了程序的可读性和可移植性,而汇编程序主要是实现DM642的各部分初始化。其边缘检测优化算法在DM642中的实现步骤具体如下: S1:根据DM642的硬件结构要求和控制寄存器设置,初始化系统并编写实现边缘检测算法的C程序。 S2:借助CCS开发环境的优化工具如Profiler等产生.OUT文件。 S3:根据产生的附件文件如.MAP文件,分析优化结果及源程序结构,进一步改进源程序和优化方法。 S4:使用CCS中调试、链接、运行等工具,再生成.OUT可执行文件。 S5:运行程序,如果满足要求则停止;否则重复步骤S2~S4直至满足使用要求。4 实验结果 本文以Lena图像为例根据上述的硬件环境和算法实现的原理和方法,图4~图6分别给出了在该系统下采集的视频Lena图像及使用边缘检测算子和改进后处理的结果。由实验结果可以看出,在该系统下能实时完成视频图像的处理,并且给出的边缘检测算子能较好的消除噪声的影响,边缘轮廓清晰。该算法不仅能抑制图像中大部分噪声和虚假边缘,还保证了较高的边缘点位精度。图4 Lena原始图像 图5 传统Sobel算子 图6 改进Sobel算子5 总结 本文实现了在TMS320DM642评估板上用改进的Sobel算子对实时图像进行边缘检测,无延迟地得到边缘图像。边缘检测效果较好,既提高了图像检测的精度又满足了实时性的要求。从检测结果看,利用该改进后的算子在边缘精确定位、边缘提取都达到了很好的效果,且抗噪声能力强,并为目标跟踪、无接触式检测、自动驾驶、视频监控等领域的应用提供了坚实的基础。参考文献[1] 王磊等. 基于Sobel理论的边缘提取改善方法[J].中国图像图形学报,[2] 陈宏席. 基于保持平滑滤波的Sobel算子边缘检测.兰州交通大学学报,2006,25(1):86—90[3] 熊伟. 基于TMS320DM642的多路视频采集处理板卡硬件设计与实现[ M]. 国外电子元器件,2006[4] 朱立.一种具有抗噪声干扰的图像边缘提取算法的研究[J].电子技术应用.2004,25(1)[5] 刘松涛,周晓东.基于TMS320C6201的实时图像处理系统[J].计算机工程,2005(7):17—23[6] TI TMS320DM642 video/imaging fixed-point digital signal processor data manual,2003[7] TMS320C6x Optimizing C Compiler User’s Guide’ TEXAS INSTRUMENTS”,2002[8] TMS320C32x Optimizing C/C++ Compiler User's Guide,Texas Instruments Incorporated,2001

matlab图像处理毕业论文

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

我有一篇写着玩的,前几天送给一个小朋友发表了,但继续做下去应该会有一些有意思的结果,如果你有兴趣可以发站内信件给我。

利用matlab及其图像处理工具箱进行数字图像处理 毕业论文,我还可以给!

毕业论文资料,学校图书馆(网上)的期刊论文数据库很多啊,都是正式的论文。论文不难写,主要是把毕业设计搞出来。

  • 索引序列
  • 灰度图像处理毕业论文
  • 毕业论文图像处理
  • 图形图像处理毕业论文
  • 灰度图像的边缘检测论文
  • matlab图像处理毕业论文
  • 返回顶部