首页 > 学术期刊知识库 > 光子晶体光纤学位论文

光子晶体光纤学位论文

发布时间:

光子晶体光纤学位论文

你在哪?在北京的话,可以去国图的电子阅览室下。外地大城市也应该有类似的场所。先上中国期刊网查查你要的论文吧。

光纤通信是目前最主要的信息传输技术。迄今为止,尚未发现可以替代它的技术。即使在世界通信低谷时期,各公司在资金极其短缺、研发投入相对紧张的情况下,对光纤通信新技术的研究仍然没有停止和放松。创造出实验室4×40Gb/s无电再生传输10000km的最高记录;在现有商用网络上实现了基于40Gb/s的DWDM1200km的超长距离传输的现场技术试验。适于城域网的MSTP、CWDM技术,EOT(传送网承载以太网)、MOT(传送网承载MPLS)、ASON、EPON/GPON等技术都是这个时期的重要成果。此外1310/1550nmVCSEL器件、1310nm量子点半导体激光器、光纤、光子晶体光纤等新的器件和光纤,也从另一个角度说明了光纤通信技术在不断向前发展。 我国的光纤通信技术在政府的大力支持下也有较大的发展。国家“十五”重大科技攻关项目“40Gb/sSDH(STM-256)光纤通信设备和系统研制”已取得重大进展,实现了40Gb/s光信号在光纤上480km的传输;“八六三”项目“80×40Gb/sDWDM系统研制”也有重大进展、“具有Tb/s交换能力的ASON系统”已经实现了基本功能,并在中国移动进行了测试、“EPON光纤接入系统”已经通过“八六三”专家组验收,将进入现场试验、“光纤研制成绩喜人; “九七三”项目中的光子晶体光纤及其器件也正在进展之中……。 在实际运营的通信网络中,许多新技术的应用同样反映了光纤通信技术的发展。例如,目前以10Gb/s为基础的DWDM已逐渐成为核心网的主流,160×10Gb/sDWDM系统已经在我国多个运营商的网络中得到应用,CWDM、MSTP在城域网中广泛使用,光纤到户的试验网已经在武汉、成都等城市开展。 总的来说,光纤通信技术的进步是信息社会的需要,是经济发展的必然,是永无止境的。 以太网是以计算机局域网的面目问世的,在没有和光传输技术结合之前,只限于在局域网范围内应用。在和光传输技术结合以后,以太网技术得到迅速发展,不再限于局域网,同时扩展到城域网,甚至到广域网的应用。现在的以太网技术和原来的以太网技术相比,得到很大的发展。就拿在光接入网中的EPON来说,原来以太网的MAC技术是点到点的连接,而在EPON中却变化成了点到多点的连接。 只所以要发展光纤接入,就是人们的业务需求已经不仅仅限于传统的话音,而对高速数据、高保真音乐、互动视像等业务的需求越来越迫切。这些业务都需要较大的带宽,传统的金属线接入甚至VDSL都无法满足需求,所以转向带宽能力强的光纤接入。同时除了话音之外的这些业务用分组通信的方式来支持更有优越性,即使是话音,用分组方式也有优势。以太网技术是分组通信中应用最普遍、最简单的技术,再有光纤这种最具优势的传输媒介支持,使以太网技术可以在接入网中发挥巨大的作用。 EPON是前面提到的以太网技术和无源光网络结合的产物。作为光纤接入中极有优势的PON技术很早就出现了,它可以和多种技术相结合,如ATM、SDH等,分别产生APON、GPON等光接入方式。 APON的基本标准早在1998年就发布了,在一些国家也进行了推广。它对宽带业务的支持有QoS的保证,是有技术优势的,但其技术复杂、成本较高,加之近年ATM技术受到IP技术的挑战,其发展受到严重阻碍,以致影响到APON也在走下坡。 GPON出现较晚,它是继承了APON的技术。结合SDH发展起来的,其最初的标准于2003年发布,至今已制定了一系列的标准。GPON对电路交换型的业务的支持最有优势,又可以充分利用现有网上的SDH资源,所以它一出现就受到极大的关注。但它仍有比较复杂的劣势,使得其成本依然偏高,使其推广受到一定的影响。 EPON的发展最晚,它的标准是今年6月底才通过的。它的最大优势就是继承了以太网简单的优点,所以成本相对较低,被业界看好。但它对TDM类业务支持相对难度大些,所以EPON和GPON有得一争,孰优孰劣还将拭目以前面我已经谈到,在光纤接入网中,EPON和GPON哪个能受到青睐现在还难分难解。但总得来说,光纤到户要推广普及、大规模商用,必然经历一个渐进的过程。这是因为人们对一种事物的认识和接受是有渐进过程的,此外更重要的两个因素是网络所提供的业务和价格,这两点缺一不可,当然运营商和设备提供商正在共同努力来解决这两个问题。此外在我国,还有一个体制的问题,即电信业务与广播电视业务的经营问题,由于这个问题比较复杂和敏感,所以这里就不展开了。此外,从国际上推广的经验来看,政府的支持也是非常重要的因素。最终,FTFH的大趋势总是不可阻挡的。 光纤接入网的发展首先对接入网本身就是一种革命。传统的接入网无例外的都用金属线接入,在无线技术和光纤通信技术发展之后,无线接入和光纤接入逐步进入了接入网,但所占比例很少。光纤到户的更寥寥无几,一般在馈线段用光纤还较多,即大多城市实现了FTTC/FTTB,在分配线即户线段用的极少。光纤接入网即FTTH的发展对于现有用户有一个庞大的户线工程改造的问题,对新建建筑涉及引入光纤到楼内、室内的问题,甚至可能修改建筑规范要求。更大影响是接入网中承载的业务会变得丰富多彩,而且由于目前家庭多是几室几庭结构,用户终端设备遍及各个房间,光纤入户后,如何将信息送到所有得终端设备,是继续用光纤,还是该用金属线,或者该用无线,这是涉及家庭(或者说用户驻地网络)的问题,目前正在探讨之中。如家庭电话线网络、家庭电力线网络、家庭无线网络等都在进行研究。 此外光纤接入网发展后对城域网甚至核心网都有很大影响。实现光纤到户后,平均每户的带宽以150Mb/s计算,如果全国仅以l000万户FTTH用户来看,新增带宽为l500Tb/s.。只以平均同时使用概率10%计算,将有150Tb/s带宽的信号涌入各地的城域网,因此城域网将面临巨大的扩容压力。而且新增带宽的绝大部分属于分组数据业务,所以城域网中将主要扩建分组数据网,届时城域网中分组交换的容量将大大超过电路交换的容量。而且新增带宽中相当一部分将流入核心网,所以核心网同样面临新建和扩容的压力,同样核心网所承载信号的类型也有很大改变,将会从以电路型信号为主变为以分组信号为主。 光纤接入还要有一个逐步为人们接受的过程,同时除了业务、成本两大要素之外,技术的本身也有逐渐成熟的过程,还有工程设计、施工、测试、维护、经营、管理等一系列配套问题需要解决,还需要逐步试验,取得经验后再逐步推广。所以光纤接入网的建设不是一朝一夕的事。 光纤到户是光纤通信发展的一个新亮点。通过普及光纤到户,将全面带动光纤通信各方面技术的发展,包括光电子器件、光纤、光缆、系统设备,还有前面提到的工程设计、施工、测试、维护、经营、管理等方方面面的发展。从目前国际上光纤到户的推广对光纤通信市场的带动作用已经是非常明显的事实,已经证实了这一点。 光纤到户的基本技术问题已经得到解决,所以在国际上发展很快。当然技术是会不断进步的,现有的技术还会不断改进。例如,如何在GPON中更好地支持分组业务;在EPON中如何更好地支持电路型业务;各种技术如何进一步降低成本,提高性能,如何适应新业务的提供和升级换代等。 从一般意义来说,光纤通信是传输技术,从传输领域,目前还没有发现有哪种传输技术比光纤通信更有竞争力。按我所知道的概念,接入网也属于传输网的范畴,从这一点来看,无线接入由于其可移动性,使其具有一定的优势,但其带宽有限、移动终端的体积不可能太大,显示屏幕不会太大等局限性,使得在非移动场合,人们依然愿意使用固定终端,光纤接入自然是最终的选择。所以在核心网,光纤通信有绝对优势,在接入网,无线接入与光纤接入互补发展。 光纤通信的发展前景是非常宽广的。当前商用光纤通信系统的最大容量才达到(实际上这是系统最终容量实际使用的还不到一半),而光纤的带宽能力以目前的技术来计算至少有200~300Tb/s。可见现在才用了光纤能力的1%还弱,光纤的潜能还远远没有发挥,这还没有考虑技术进一步发展带来的更大能力。可见光纤通信尚有极大的发展余地。现在人们所谈及的全光通信实际上还是未来真正全光通信的“初级阶段”,真正实现全光信号处理的全光网将给人们带来的通信的变革是现在无法详尽描述的。

论文提纲:硅基超连续谱的研究进展 1. 引言 超连续谱(Supercontinuum,SC)是指当一束高强度的短脉冲通过非线性材料时,经过一系列非线性效应与线性色散的共同作用,使得出射光中产生许多新的频率成分,从而使频谱得到极大展宽的一种现象。超连续谱光源在光子学集成回路中有着重要作用,特别是在波分复用系统中扮演着重要角色。使用展宽的激光光源,筛选出所需的波长信道,比使用独立的光源更节省能源,也更利于集成。另外,超连续谱光源在光源检测、生物医学、高精密光学频率测量等方面有着重要应用。产生超连续谱的介质需具有非常高的非线性系数以及可调的色散系数,可用于超连续谱产生的介质很多,例如,单模光纤,光子晶体光纤(Photonic CrystalFiber,PCF),硅波导,泥酸锂等。目前以光纤为介质产生超连续谱的技术已经较为成熟,实现了大范围的光谱展宽。通过大量的实验研究证实,在非线性效应强、色散可调的介质中,可在低功率、短距离上实现超连续谱的产生。例如Kumar 等人用75 cm 的SF6 保偏光纤已得到了展宽从350 nm 到2200 nm 的超连续[1];B. A. Cumberland 使用50 W 的掺Yb 光纤激光器泵浦一段20 m 长的高非线性光子晶体光纤,最终得到输出功率为29 W 的超连续谱[2]。 然而光纤中非线性效应较弱,即使使用经过特殊设计的光子晶体光纤也要有几十厘米的长度才能得到有效展宽,不利于集成化设计。 近几年,具有低损耗、低功率、小体积等特性的硅波导受到人们的广泛重视。对硅波导中各种现象机理的研究也日趋成熟。拉曼放大、四波混频、自相位调制等非线性效应已成功运用于硅波导器件中。硅的三阶非线性效应比普通光纤高许多,例如,硅的Kerr 系数比普通单模光纤大100 倍,拉曼增益系数比普通单模光纤高三个数量级。并且,硅具有高折射率,能够将光很好地限制在一个很小的范围。通过对硅波导尺寸、几何结构的合理设计,可以实现对其色散系数的可控性。硅波导所具有特殊的色散和非线性特性,使其比普通光纤更易产生超连续谱。随着CMOS 技术的发展成熟,在硅波导中产生超连续谱将有利于超连续谱的应用向集成化、小型化发展。与光纤相比,硅波导具有无可替代的优势,可望在通信领域获得全新的应用,硅材料中实现超连续谱将为全光通讯翻开崭新的一页。 2.超连续谱的产生机制 超连续谱的产生是多种非线性效应与色散共同作用的结果。脉冲光在硅波导中传播,各种非线性效应,诸如,自相位调制(Self-Phase Modulation,SPM),交叉相位调制(Cross-PhaseModulation,XPM),参量过程,拉曼散射都会起作用。当高强度的短脉冲通过非线性介质时,入射光的瞬时高光强会引起自身的相位调制,即自相位调制。自相位调制会产生新的波长,这是出射光谱展宽的重要来源。随着光谱成分的增加,交叉相位调制,参量过程以及内拉曼散射作用逐渐增强,使得频谱进一步展宽。 然而,硅是一种半导体材料,具有一些特殊的非线性性质,如双光子吸收(Two-photoabsorption ,TPA)以及由双光子吸收产生的自由载流子(Free-carrier absorption,FCA)对入射光的影响,而这种影响可以分为相位调制和吸收两部分,因此硅中超连续谱的产生机制比普通光纤更为复杂。双光子吸收是指在强激光作用下,介质分子同时吸收两个光子通过一个虚中间态跃迁到高能态的过程。双光子吸收带来大量能量损失,降低光脉冲的峰值功率,从而限制了脉冲展宽。同时,双光子吸收过程中会产生大量的自由载流子,高浓度的自由载流子对光脉冲产生相位调制作用而使其蓝移,且调制作用与自由载流子浓度成正比。而脉冲后沿会积累大量的载流子,因此脉冲后沿的出射频谱展宽蓝移。于此同时,自由载流子对脉冲后沿产生吸收,使脉冲在时域上整体前移。另外,硅中拉曼散射与光纤中也有很大不同,硅基波导中的拉曼散射增益谱很窄只有105 GHz,并且响应时间约为10 ps,若使用飞秒脉冲入射,拉曼效应可以忽略。 激光脉冲在硅波导中传播,可以用广义非线性薛定谔方程描述如下式。 其中,右边第一项描述了硅波导中的色散效应,βm 表示m 阶色散系数,第二项描述了自由载流子产生的相移以及自由载流子吸收项,σn 表示自由载流子产生的相移大小,σα 表示自由载流子吸收大小,第三项描述了非线性Kerr 效应以及双光子吸收项,n2 为Kerr 效应系数,βT 为双光子吸收系数,ā 为波导有效截面积。 在超连续谱的产生过程中,哪种效应起决定作用主要取决于初始入射脉冲的参数和介质的线性色散特性。若用皮秒脉冲入射,色散效应较弱,光脉冲主要在非线性效应,特别是自相位调制作用下发生展宽,一般范围有限。若用飞秒脉冲入射,在波导的反常色散区,波导的色散效应和自相位调制效应会相互平衡,出现孤子传播态。光谱展宽初期以自相位调制为主,之后发生高阶孤子分裂,并伴随孤子辐射,随着光谱成分的增加四波混频效应逐渐增强。 在反常色散区,相位匹配条件很易满足,故能得到较宽的超连续谱。 3.自相位调制(SPM)诱导的频谱展宽 随着硅器件在通信系统的广泛应用,人们对硅波导中产生超连续谱作了大量工作,同时也取得了许多重大的成果。理论研究表明,对于一般的短脉冲,脉冲传播的色散长度远大于所用的波导长度,此时色散效应可以忽略,自相位调制效应起主要地位,从而导致出射频谱的展宽。 2004 年,Jalali 研究小组首次通过实验在硅波导中获得超连续谱,得到了2 倍展宽的出射光谱[3]。他们使用被动锁模光纤激光器产生脉宽为1 ps 的短脉冲,通过3 dB 带通滤波器对光谱整形后经由掺铒光纤放大器放大得到脉宽为4 ps,峰值功率为110 W(相当于光功率密度为 GW/cm2)的入射脉冲光。脊型硅波导的有效面积为5 μm2,总长度2 cm。实验结果所示。从图中可清楚地看到出射光谱的宽度大约是入射光谱宽度的2 倍。光谱展宽主要是由自相位调制效应造成的。在考虑双光子吸收效应的情况下,通过理论模拟,将入射峰值功率增加10 倍可以得到5 倍展宽的出射光谱。此实验证实了利用硅波导可以产生超连续谱,同时揭开了在较低泵光功率下产生超连续谱的新篇章。 之后,Jalali 研究小组又讨论了硅波导中自由载流子对超连续谱产生的影响[4]。众所周知,Kerr 效应、自由载流子效应均对频谱的相移有贡献。Kerr 效应使得脉冲前沿红移、后沿蓝移。而自由载流子效应使得脉冲整体蓝移。由此可知脉冲后沿得到很大的蓝移展宽。但是,脉冲后沿积累了更多的自由载流子,光脉冲衰减更为严重。他们通过理论模拟分析了自由载流子对出射光谱展宽的作用,如图2 所示,只考虑Kerr 效应带来的相移时,展宽因子大约为8,考虑自由载流子对相移的影响后,展宽因子迅速增大大约为28,最后考虑自由载流子吸收后,展宽因子下降到12。由此可知,自由载流子对频谱展宽(尤其使得频谱蓝移)有着重要作用,但其浓度的增加导致的吸收也会削弱光谱展宽。 2006 年, 等人研究了入射光波长以及峰值功率对光谱展宽的影响[5]。硅波导截面为470×226 nm、长4 mm。入射脉冲脉宽 ps、周期1 kHz、中心波长1550 nm。改变入射光功率可以看到,在功率较低时,波导工作在线性区域,出射光谱的形状和位置几乎没有变化,随着功率的增加,出射光谱的展宽随之增大。实验结果如图3 所示。实验中使用皮秒脉冲作为入射光,色散作用在脉冲传播过程中并不显著,脉冲展宽主要来自自相位调制的作用。从图中可以清楚地看到,脉冲展宽并不对称,这主要是因为在脉冲后沿比前沿积累更多的自由载流子,因此后沿的相移更大,导致脉冲展宽的不对称性。 4.孤子分裂与超连续谱的产生 从上面的实验结论可以看到,由于存在双光子吸收对脉冲功率的损耗,利用SPM 并不能得到较大的展宽。为了克服这一缺点,必须在TPA 带来大的损失前实现频谱展宽。此时,可以借鉴光纤中孤子分裂以及超连续谱产生的方法,利用高阶孤子在波导入射端的孤子分裂现象来得到频谱的展宽。 2007 年,Richard M. Osgood. Jr 等人观察到展宽350 nm 的超连续谱[6]。硅波导横截面积520×220 nm2,长 mm,入射脉冲脉宽100 fs,周期250 kHz。中心波长在1300 nm 到1600nm 之间变化,此波长范围正处于波导的反常色散区,能够得到更有效的超连续谱。实验结果如图4 所示,随着入射峰值功率的增加展宽也逐渐增加。在λ<1700 nm 时,双光子吸收对最大功率有限制作用,但仍能得到较大展宽。 此外他们还观察了超连续谱对波长的依赖性。从图5 中可以看到,中心波长越靠近零色散区(ZGVD),出射光谱展宽越大。这是由于在零色散区线性色散小,非线性作用在脉冲传播过程中占据主要地位。在短波方向有突起的平滑的峰,由于短波方向的光学损耗大,随着中心波长向短波方向移动,峰值越来越小,因此短波方向频谱展宽受到限制。三阶色散微扰导致的孤子分裂以及孤子辐射的影响,在长波方向突起的峰,随着中心波长向长波方向移动,峰值越来越大,这对超连续谱的产生有着决定性作用。 同年,Lianghong Yin 等人通过数值模拟利用入射飞秒脉冲作为高阶孤子得到展宽达400nm 的超连续谱[7]。模拟用直波导截面宽 μm,高 μm,长 cm,入射脉冲带宽50 fs、峰值功率25 W。此时,入射光脉宽远小于自由载流子寿命,而脉冲周期大于自由载流子寿命,故自由载流子吸收在超连续谱的产生过程中不起重要作用。同时从理论上得出双光子吸收只对输入的最大功率有衔制作用,而不影响超连续谱的产生。并且由于Si 的晶格结构,使得受激拉曼散射依赖于硅波导的结构以及入射光的偏振特性,故合理选择硅波导的结构以及入射光的偏振特性,可以忽略受激拉曼散射的.影响。模拟中使用N=3 的三阶孤子脉冲,在三阶色散的微扰下分裂成为低阶孤子并伴有色散波,此时出射脉冲得到较大展宽,结果如图6 所示。这是自硅波导超连续谱研究以来在硅波导中能产生的最宽的光谱。 5.硅基超连续谱的应用 随着波分复用技术的广泛应用,为了寻找更好的光源,掀起对超连续谱光源的研究热潮。 硅波导中产生超连续谱将使全光网络向小型化发展,前景诱人,将硅基波导中产生的超连续谱应用到实际,将为全光网络翻开崭新的一页。 波分复用技术是光通信系统的一大优势,要实现能够高速传递信号的片上光通讯系统,波分复用技术是必不可少的,而超连续谱这是一种有效的解决方案。2007 年,Jalali 研究小组成功实现超连续谱的硅基集成化并将展示了其在波分复用系统中的应用潜力[8]。实验中,他们将微盘共振器与硅波导共同集成在一个三维芯片上,使用未集成在芯片上的脉宽为3 ps的激光脉冲作为入射光,脉冲沿着硅波导传播,利用自相位调制效应得到展宽的光谱,然后以微盘共振器作为光滤波器将超连续谱中不同的光谱成分有硅波导中分别导出,从而实现多个波长信道。实验中硅波导与微盘共振器的集成和工作原理如图7 所示。该装置得到的最远信道离入射脉冲中心波长 nm,使硅基超连续谱应用于片上集成的波分复用技术成为可能。 另外,硅基超连续谱还可以在拉曼泵浦方面产生应用。硅波导中的高拉曼增益系数使拉曼散射成为在硅波导中实现激光振荡和放大的有效途径,然而,硅的拉曼增益带宽非常窄,限制了拉曼放大的带宽,从而制约了其在实际应用中的范围。随着硅波导中超连续谱的研究逐渐深入,利用超连续谱的产生机制,在硅波导中产生超连续谱的同时实现拉曼散射效应,由此来增大拉曼增益带宽成为一种可能的解决方法。2008 年,Jalali 研究小组成功实现这一构想,获得展宽的拉曼增益谱[9]。实验中使用中心波长1550 nm 的皮秒脉冲作为泵浦光源,激光脉冲在硅波导中受到Kerr 效应和自由载流子效应的共同作用而发生展宽,从而使拉曼增益谱获得扩展。实验在中心波长为1638 nm 处获得了宽度超过10 nm 的拉曼增益谱。为了观察入射脉宽对拉曼增益展宽的影响,实验中使用两个脉宽不同的入射脉冲,分别为3 ps、42 ps,得到的拉曼增益谱如图8 所示,对于3 ps 的入射脉冲,拉曼展宽频谱起伏不定,并且由于自由载流子的作用频谱明显蓝移。对于42 ps 的入射脉冲,拉曼展宽频谱同样蓝移,但频谱变化相对平滑。另外,在入射功率较大时,能过得到较大的拉曼展宽。实验证明,通过改变脉冲的性质,例如,脉冲功率、脉宽、脉冲 啁 啾,可以实现对增益范围和形状的调节,从而应用于实现集成化的光信号传输以及可调硅基激光器的研制。 6.结论 硅在电子器件的发展过程中起着举足轻重的作用,目前大部分的器件使用硅作为芯片材料,在硅波导中产生超连续谱将有利于硅基光子器件的实现,并向集成化、小型化发展。目前,实验中能得到的硅基超连续谱宽度仅为400 nm,在实际应用的波分复用系统中,还存在各种各样的损耗,使得展宽大大减小,因此还需进一步的研究,合理设计硅波导的色散特性,减小有效面积增大非线性强度,从而进一步增大展宽,使得硅基超连续谱更加实用化。 ;

一、FTTH 随着Internet宽带应用的日益发展和普及,宽带接入技术不断推陈出新,人们对接入带宽需求也不断提高,宽带接入技术发展也日新月异,市场竞争也日趋白热化。市场的迅速变化,催生光纤到家(FTTH)接入技术的发展和应用,我们认为FTTH正向我们走来。1.FTTH能提供超高带宽 众所周知,当前宽带接入技术如ADSL、基于5类线的LAN接入和cable modem 等都只能提供低于10M的接入带宽,而利用光纤为传输媒介的FTTH接入网从理论上可以为用户提供无限的带宽,就目前成熟的FTTH技术可以轻而易举为用户提供0至1G范围内的任意带宽。2.有低成本、技术成熟的FTTH解决方案 由于市场需要的驱动,FTTH技术近年取得了长足进步,基于以太网的点对点网络拓扑结构的光接入网技术以其技术成熟、成本低等优势,已在FTTH中得到了广泛的应用,特别是在北美、日本和韩国。基于以太网的FTTH解决方案沿用了成熟的以太网技术,在技术层面上,它具有能轻易提供100M或1G的带宽、与现有计算机网络无缝链接等优势;在运营维护层面上,具有网络结构简单、建设和运营维护成本低的优势;而在应用和业务层面上,具有支持目前Internet所有宽带应用的能力,支持数据、话音和视频广播的多种业务能力。 除了成熟的基于以太网的点对点的FTTH技术外,近年还发展基于以太网的一点对多点网络拓扑结构的无源光网络(Passive Optical Network—PON)的宽带接入技术。但由于其标准尚未统一,尚未有大规模应用,其设备成本也仍然偏高。但业内人士一致认为,基于以太网的PON宽带接入技术也是一种较理想FTTH技术,随着其技术标准的颁布和器件价格的大幅下降,它将与基于以太网的点对点网络拓扑结构的FTTH接入技术互为补充,在FTTH中得到了广泛的应用。截止2003年6月美国已有FTTH用户98万,日本有46万户,并预计在今后几年,美国和日本FTTH用户将以每年超过200%的增长速度增加。3.运营商的竞争需要FTTH 从中国电信独家垄断国内电信市场被打破之日起,国内电信业的竞争便日趋激烈,特别是对Internet宽带接入市场的竞争更是显得白热化。参与宽带接入市场竞争企业几乎包括了目前所有电信运营商。其中,传统电信运营商有中国电信、中国联通等,新兴电信运营有中国网通、铁通等,驻地网运营商有长城宽带、聚友网络等。表是中国主要宽带接入技术发展现状与前景。从表中可看出,由于其技术上和组网上的缺陷,基于5类线的LAN接入技术很难再有大规模的发展;由于我国CATV网络发展不均衡、行业垄断明显和住宅区住户密集的市场特征,Cable Modem宽带接入技术始终没有很好发展,预计在将来其发展也将继续受到限制;VDSL是比ADSL更高带宽的接入技术,但由于其技术不甚成熟、接入距离短等缺陷,至今没有在国内应用,但近期内可能会开始使用;而ADSL是目前我国最普及、发展最好的宽带接入技术,尽管ADSL存在带宽受限、出线率低等缺点,但其仍将以技术成熟、网络建设成本低等优点,在未来将进一步得到发展。无论ADSL或VDSL,都将使拥有接入电话线资源的中国电信在未来宽带接入市场一统天下。显而易见。为了打破中国电信ADSL对宽带接入市场的垄断,其他运营商只有选择技术新、更具竞争力的接入手段与其竞争,那就是FTTH!4.房地产开发商的竞争需要FTTH 目前国内房地产市场竞争非常激烈,房地产开发商往往通过在小区或大楼采用最先进的宽带接入技术,别出心裁包装商品房,如几年前使用综合布线大楼、智能化小区,后来使用所谓宽频社区、宽带上网等概念进行炒作。可以预见,随着光纤到家的全光接入网技术的成熟和市场的逐步形成,宽带接入技术的主要用户之一房地产开发商将会积极从现有宽带接入技术的过渡方案,转移到全光接入网最终解决方案,进行房地产市场全新概念的下一轮炒作。5.为用户提供多业务需要FTTH 如今是通信技术飞速发展和信息爆炸的年代,人们已在享受多种通信技术和信息来源,人们自然需要能支撑多种通信业务的宽带通信接入技术,能满足这一需求的无疑是以光纤为传输媒介的FTTH宽带接入技术。如前所述,光纤宽带接入技术是接入网的最终和全业务解决方案,它突破了目前宽带通信瓶颈,在接入网同时实现计算机互联网、电话网和有线电视网的三网合一,提供数据、话音和视频多种业务。6.廉价的光缆推动FTTH 最近几年,由于光纤拉制工艺日趋完善,光缆价格一降再降,目前室外光缆每芯每公里已低于400元人民币,已经低于铜缆、五类线的价格。廉价光缆无疑为实现低成本的FTTH宽带接入提供更大可能。 综上所述,在接入网大规模铺设光缆和提供光纤宽带接入的时机已成熟!而且从宽带接入技术和市场发展趋势看,谁今天铺设FTTH的光缆,谁就拥有通信的未来。二、EPON和GPON前景比较 EPON和GPON具有各自的技术定位,不存在严格的优劣之分;但目前看来EPON的技术成熟度和商用化程度已经远远超过GPON。 的确,从FTTx在我国以及整个亚太地区的发展情况来看,EPON已成为实现FTTx的主流选择。 EPON发展态势喜人 在我国,EPON在商用化和实际性能方面均已有着不凡的表现。 在商用化方面,EPON正在向全国范围扩展。据记者了解,在结束了北京、上海、湖北、广东四地两万户的采用EPON的FTTH试点工程之后,中国电信认为EPON技术商用化趋于成熟,并于2006年底开放新的EPON试点方案,允许各个省市在总部备案后进行试点工程。 同时,EPON设备厂商也在迅速跟进中国市场EPON商用化的进程。PMC-Sierra公司在不久前香港举行的第十届ITU世界电信展上,推出了据称是第一款的端到端EPON芯片方案,并且率先针对中国电信集团新的数据加密与解密算法、服务程序质量以及分类协议标准进行的设计,非常适合于在中国市场的大规模部署。 而在实际性能方面,EPON通过附加一些增强特性,已经能越来越好地满足更多技术需求。记者在与北邮光通信中心和光网络研究室了解到,传统认为EPON弱在支持TDM业务,但目前EPON设备商采用各种TDMoverEthernet的专利技术和在普通以太网上使用各种PWE3设备,一般都能满足不同环境下的TDM业务传输需求;通过在设备方面附加增强特性,EPON在QoS和OAM方面已经能很好与GPON标准中定义的大部分功能相媲美。 可以说,EPON技术本身的易部署性和对以太网的继承性,决定了它强大的生命力。EPON继承了以太网“简单即是美”的优良传统,尽量在技术标准的框架内作小的改动来增加功能,EPON和其技术联盟可以说是一直处于相互推动的良性发展。有专家指出,美欧地区采用从APON/BPON到GPON,是符合他们自身技术演进道路的,而能在亚太地区实现FTTx规模化的,是符合亚太市场需要的EPON。 可以预见,在包交换网络成为主流的今天,继承了以太网技术的EPON将在FTTx领域发挥巨大的作用。 GPON受困成本瓶颈 相较于EPON如火如荼的发展态势,GPON却一直受制于自身的技术复杂性带来的高成本。成本是与技术产品的商业化密切相关,而PON系统里核心芯片和光收发模块的成本在很大程度上决定了整个PON系统的成本。 在芯片方面,许巍告诉记者,目前还没有一款真正意义上的GPON商业芯片问世,大都是测试芯片。GPON芯片需要全新设计封装格式,“技术门槛”较高,芯片成本下降难;而且现有的GPON产品,大部分是针对北美市场的需求,对中国市场没有做过深入调查,还没有真正符合中国市场需求GPON产品面世。GPON芯片成本已经与EPON芯片成本拉开了很大差距。 光模块成本问题更是一个瓶颈问题。烽火通信的市场部总监高鹏告诉记者,GPON对于光模块设备技术指标的高要求,也将成为其设备商降低成本的瓶颈问题,而且“不是单纯的上量就能解决的”。 从来自光模块厂商的数据得知,GPON光模块中对于ONU发射机的功率和OLT接收机的灵敏度要求很高,只能采用DFB发射机和APD接收机,而它们的成本几乎是EPON模块中所使用的传统FP发射机和PIN接收机的6倍。 另外,GPON的光模块要满足很好的突发同步指标,对模块中的驱动和前后放大芯片要求很高,还要满足3类ODN的功率预算。以上这些因素,共同构成了GPON光模块成本降低过程中一道难以逾越的屏障。 GPON或将成为备用选择 EPON技术的成熟度和可行性,业界已经毋庸置疑,但并不能就此认为GPON在市场上已没有立足之地。不考虑成本因素的情况下,GPON在下行线路速率、线路效率、安全性、支持业务类型、网管能力等很多方面都有明显的理论优势。很多分析家认为,如果我国IPTV前景进一步明朗,市场对接入网下行带宽、多业务承载的需求会进一步扩大,等届时将对GPON起到很大的拉动作用,引导GPON产业联盟的成熟和设备成本的下降。 目前国内很多通信设备制造商对EPON和GPON的态度是重点介入EPON,但同时对GPON做另一手准备的态度。对此,许巍表示说,GPON对运营商多种业务,特别是语音业务的优良承载性,将始终是它的优势。他谈到,EPON的技术成熟程度和其广泛的商用化,决定了EPON成为当前FTTx领域内的主导技术,但大多数厂商并不打算放弃做GPON产品,他们在做FTTx产品和解决方案时,更多考虑EPON光接入网系统的可升级性,比如长光的EPON产品能够通过仅仅更换一块板型器件等简单的方式,平滑地过渡到GPON系统。 运营商方面,尽管早已对EPON的成熟度做出了明确的认可,但对GPON采取的也是不排斥的态度。7月上旬至8月下旬,中国电信集团公司在上海进行了国内首次GPON设备功能验证测试,参加测试的厂商有华为、 阿尔卡特、西门子等通信设备提供商,大部分测试设备都获得了比较让人满意的性能指标。当然,这些设备都还只是处于测试阶段,离规模化生产的商用标准还有很大差离。EPON的优点主要表现在: (1)相对成本低,维护简单,容易扩展,易于升级。EPON结构在传输途中不需电源,没有电子部件,因此容易铺设,基本不用维护,长期运营成本和管理成本的节省很大;EPON系统对局端资源占用很少,模块化程度高,系统初期投入低,扩展容易,投资回报率高;EPON系统是面向未来的技术,大多数EPON系统都是一个多业务平台,对于向全IP网络过渡是一个很好的选择。 (2)提供非常高的带宽。EPON目前可以提供上下行对称的1.25Gb/s的带宽,并且随着以太技术的发展可以升级到10Gb/s。 (3)服务范围大。EPON作为一种点到多点网络,以一种扇出的结构来节省CO的资源,服务大量用户。 (4)带宽分配灵活,服务有保证。对带宽的分配和保证都有一套完整的体系。 专家分析,EPON和GPON并非水火不容,很可能同时生存。对于带宽、多业务和安全性要求较高的大宗接入客户,以GPON实现的FTTx自然更有市场。目前看来,EPON已经成为国内FTTx领域的主流,而随着成本下降,GPON今后或将成为部分EPON市场的补充和升级选择。

光子晶体研究论文

如果是写论文的话,外文参考文献翻译没有必要,我想老师也不会要求的。要不然读者查找你列出的的外文文献的时候还要把你翻译的中文译成英文,这不是多此一举么?而且你看一般出版的书籍,如果有外文参考资料的话也是英文的,没有翻译。

文献好像不要翻译吧

迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使信息处理技术的全光子化和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。光子晶体近期在国际上的应用进一步深化,具体表现在:1. 与纳米技术相结合,用于制造微米级的激光,硅基激光;2. 与量子点结合,使得原子和光子的相互作用影响材料的性质,从而达到减小光速、减小吸收等作用3. 光子晶体光纤应用随着社会的发展,显赫一时的半导体器件已经不能满足信息技术发展的需要,必须寻找信息传输速率更高,效率更高的新材料。普遍认为,光子技术将续写电子技术的辉煌,光子晶体将成为未来所依赖的新材料。4. 狄拉克锥在光子晶体中的实现 光子晶体的理论研究始于上世纪80年代末期。虽然1987年Yablonovitch和John就提出了光子晶体的概念,但直到1989 年,Yablonovitch和Gmitter首次在实验上证实三维光子能带结构的存在,物理界才开始大举投入这方面的理论研究。由于光子晶体有类似电子晶体的结构,人们通常采用分析电子晶体的方法结构电磁理论来分析光子晶体的特性,并取得了和试验一致的结果。主要的方法有:平面波展开法(planewaveexpansionmethod简称:PWM)、传输矩阵法(transfermatrixmethod简称:TMN)、有限差分时域法(finitedifferencetimedomain简称:FDTD)和散射矩阵法(scatteringmatrixmethod简称:SMM)等。平面波展开法是比较常用的一种方法,它的基本思想是:将电磁场以平面波的形式展开,可以将麦克斯韦方程组化成一个本征方程,求解该方程的本征值便得到传播光子的本征频率。这种方法的不足之处是当光子晶体结构复杂或处理有缺陷的体系时,可能因为计算能力的限制而不能计算或者难以准确计算。而且如果介电常数不是常数而是随频率变化,就没有一个确定的本征方程形式,这种情况下根本无法求解。传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输矩阵形式,同样变成本征值求解问题。传输矩阵表示一层(面)格点的场强与紧邻的另一层(面)格点场强的关系,它假设在构成的空间中在同一个格点层(面)上有相同的态和相同的频率,这样可以利用麦克斯韦方程组将场从一个位置外推到整个晶体空间。这种方法对介电常数随频率变化我金属系统特别有效,而且由于传输矩阵小,矩阵元少,运算量小,同时在计算传输光谱时也是十分方便的。但是用该方法求解电磁场的分布较为麻烦,效率不是很高,因此对于光子晶体物理特性的理解没有太大的帮助。有限差分时域法是电磁场数值计算的经典方法之一。在这里将一个单位原跑划分成许多网状小格,列出网上每个结点的有限差分议程,利用布里渊区边界的周斯条件,同样将麦克斯韦方程组化成矩阵形式的特征方程,这个矩阵是准对角化的,其中只有少量的一些非零矩阵元,计算最小。但是由于有限差分时域法没有考虑晶格的具体形状,在遇到特殊形状晶格的光子晶体时,很难精确求解。散射矩阵法假定光子晶体由各向同性的介质组成,其中充满了各种开头和尺寸的没有重叠的光学散射中心。通过对所有的散射中心的散射场应用傅立叶-贝塞尔展开来求解亥姆霍兹方程,从而计算出在光子晶体中传输的场分布。应用这种方法对于求解场分布和传输光谱都是可行的,但是由于这种方法需要较长的运算时间,在有些情形下实际上是不可行的。实际理论分析中,还有很多其他的方法,如:有限元法、N阶法等。这些方法各有优缺点,在应用时要根据实际场合合理地选用。在光子晶体的研究中这些分析方法是十分重要的,由于光子晶体的制备非常困难,通常是先应用这些方法分析得出光子晶体的一些特性,再由试验来验证这些结论。 预言总是很难实现。但是,光子晶体电路和装置的未来看起来却是确信无疑的。五年之内,许多光子晶体的基本应用将会在市场上出现。在这些应用中,将会有高效光子晶体激光发射器和高亮度的发光二极管。而当每个家庭都连接到一个光纤网络的时候,与如今视顶盒类似的解码信号设备将使用光子晶体电路和装置而不是笨重的光纤和硅回路。在五到十年的范围内,我们应该制造出第一个光子晶体二极管和晶体管;在十到十五年里,我们能制造出第一个光子晶体逻辑电路并使之占有主要地位;在接下来的二十五年内,由光子晶体驱动的光子计算机应该可以制造出来。令人惊奇的是,合成蛋白石甚至可以在珠宝和艺术品市场上找到生存环境;并且光子晶体薄膜能贴在信用卡上作为防伪标志。如果我们的预言只是完全不可能实现的对未来的歪曲,我们希望大部分人会忘记我们曾经这样说过。然而,光子晶体的未来看起来还是充满光明的。

导读

背景

与使用电力的传统电路相比,光子集成电路使用光线取代电力进行计算和信号处理,具有更快的速度、更大的带宽、更高的效率。

但是它们的尺寸还不够小,无法与在电气电路继续占主导地位的计算以及其他应用进行竞争。

创新

罗切斯特大学的电气工程师认为,他们在解决这个问题上迈出了重要一步。该校团队采用光子学研究人员普遍采用的材料,创造出迄今为止最小的电光调制器。该调制器是基于光子学的芯片的关键组件之一,控制光线如何通过电路。

下面的示意图展示了电气与计算机工程系教授林强(音译:Qiang Lin)教授实验室开发的电光调制器。

在《自然·通讯》( NatureCommunications )中,林教授实验室描述了采用粘合在二氧化硅层上的铌酸锂(LN)薄膜,不仅可以制造出最小的LN调制器,而且它还可以高速运行并且节能。

这篇论文的领导作者、林教授实验室的研究生李明晓(音译:Mingxiao Li)写道:“这为实现大规模的LN光子集成电路奠定了至关重要的基础,而LN光子集成电路对于数据通信、微波光子学以及量子光子学中的广泛应用具有极其重要的意义。”

技术

林教授表示,由于铌酸锂具有出色的电光和非线性光学特性,它已经“成为光子学研究和开发的主打材料系统”。“然而,目前在块状晶体或薄膜平台上制造的LN光子器件都需要较大的尺寸,并且难以按比例缩小尺寸,这样就限制了调制效率、能耗以及电路集成度。主要挑战在于打造高精度、高质量的纳米光子结构。”

该调制器项目建立在实验室之前使用铌酸锂创造光子纳米腔(光子芯片中的另一个关键组件)的基础上。林教授表示,纳米腔只有大约一微米的大小,只能在室温下使用两到三个光子来调谐波长,“我们第一次知道甚至有两到三个光子已经在室温下以这种方式被操纵过”。《光学设计》(Optica)杂志上的一篇论文对该设备进行了描述。

这款调制器可以配合纳米腔使用,创造出纳米级的光子芯片。

关键词

参考资料

【1】Mingxiao Li, Jingwei Ling, Yang He, Usman A. Javid, Shixin Xue, Qiang Lin. Lithium niobate photonic-crystal electro-optic modulator . Nature Communications , 2020; 11 (1) DOI:

【2】

光纤光栅毕业论文

与此案的具体情况,用小双谱PM-LPG捏造的具体情况采用高折射率、气孔结构表现出强烈的熔覆地区的分裂(43海里)的两个谐振(slow-axis和fast-axis共振蘸)为同一层模式[6]。这增加了两个共振的光谱分离与同一层模式为时不时地告诉我们,如果双折射的具体情况是增加,熔覆结构的具体情况,我们可以适当选择两个谐振(slow-axis和fast-axis resonantdips)具有不同的层模式比那些接近顺序相同的层模式。在我们的具体情况提出了传感器系统的选择是熊猫型资料(日本)具有高折射率玻璃,熔覆元素扮演的角色,应用纤维芯的应变层区域。在这个由刻画了液化石油气(具体情况,两个共振共鸣和fast-axis slow-axis沉入)具有不同的层模式可以被密切座落在狭窄的波长(ocm 50海里)和被选入了波长的兴趣。它已经报道的波长偏移的共振蘸一液化石油气由于紧张或温度是不同于层模式取决于他们命令[7]。因此,温度和应变响应的较低的(例如,浸蘸波长较短的共鸣的PM-LPG制作可以不同于那些在下降(不再共振波长的区别),因为复模式。特别是如果两个共振蘸在线性应用应力和温度,同时测量应力和温度可以达到通过以下方程:(两个公式),分别为:波长转换上下共振蘸由于应用温度变化、应变变化规律,并和温度系数的上下共振跌落,respectively.系数和紧张的上下共振跌落。第三次世界大战。实验和讨论图1显示透射光谱的PM-LPG制作。从图,两个共振波长的(低)和共振浸蘸上共振化学方面的)可在正交极化条件(RLP可线性偏光系统)。PM-LPG是虚构的刻画了液化石油气以在一个具体情况(双折射。~ 的* 10负4方,B-Ge codoped)。准分子激光光束的KrF 248海里发光在球场,经480—μm振幅的纵向长度的30毫米,在40-mm-long资料所H2-loaded 100℃时在100条为7天。实验原理图的安装,同时测量在图2。我们用两个水平轴向应变翻译阶段分离的PM-LPG而使用温度室之间的阶段加热光栅独立。

求毕业设计!!我的毕业设计也是这个课题

其实就是罗列,对于布拉格光栅商业化应用来说,掩模法是最好的,其他的你可以罗列,对于掩模板的方法可以详细的叙述,我空间就有不少,掩模法随便抄就可以。另外在叙述一下特殊光栅,如D型,手征,塑料光纤光栅。

论文网 供你参考

光纤材料论文

找189期刊网 陈老师 一切搞定

光纤通信在配电网自动化上的应用 论文 1前言随着国家经济的发展和人民生活水平的提高,人们对电力的需求日益增长,同时对供电的可靠性和供电质量提出了更高的要求。配网馈线自动化是配网系统提高供电可靠性最直接有效的技术手段之一。在近几年国家加大了对城网和农网的改造,国内各大供电局对配电网自动化的投入也在加大。在配网自动化实现的过程中,我们发现通信问题是一个难点问题。在此,仅就光纤通信在配网自动化方面的应用谈一点认识和体会。 2配电网自动化对通信的要求 同调度SCADA系统一样,配电自动化系统也需要一个有效的通信网,同时他有自己的特点:终端数量极多。配网系统拥有众多的开闭所、配电变压器、柱上断路器,要对这些设备进行监控就需要许多FTU和TTU,同时这些FTU随配电设备安装,地域分布广,通讯节点分散。 配网自动化系统的规模、复杂程度和自动化程度决定了通信系统应满足下述要求: (1)可靠性: 配网系统的通信设备有很多暴露在室外,环境恶劣,因此必须能够抵御高温、低温、日晒、雨淋、风雪、冰雹和雷电等自然环境的侵袭。同时,尽量避免各种电磁干扰,保证长期稳定可靠地工作,并要求在线路停电时,通信系统仍能正常工作。 (2)经济性: 考虑到配电网系统的总体经济效益,通信系统的投资不应过大,力争充分利用现有的主网通信资源,进行主、配网整体规划,避免重复投资。 (3)寻址量大: 通信系统不仅要考虑目前及未来的数据传输的需要,还要考虑系统升级的要求。 (4)双向通信: 配网自动化要实现遥测、遥信、遥控功能,就必须要求具有双向通信能力。 (5)容易操作和免维护。 根据以上的要求,伴随着光纤价格的下降,目前,光纤通信正广泛地应用于电力系统。 3光纤通信 自激光器和低损耗光纤问世以来,光纤通信系统以其技术、经济上无可比拟的优越性而迅速崛起,并风靡全球。该系统是以光纤为传输介质,以光为载波信号传递信息的通信系统,应用的光波波长为~1.μm靘,整个系统由电端机、光端机、光缆和中继器构成。光纤可分为单模光纤(SMF)、多模光纤(MMF)、长波长低射散光纤(LMF)、保偏光纤(PMF)及塑料光纤(POF)等很多种;常用的为单模和多模光纤,多模光纤就是传输多个光波模式,而单模光纤只传输一个光波模式。单模光纤比多模光纤传输距离长,目前一般地,光信号在多模光纤内可传6km左右,在单模光纤内可传30km。因此,单模光设备的价格要高于多模光设备。实用的光纤通常都是由多根光纤、加强芯、保护材料、固定材料等组合成光缆构成的传输线。 光纤MODEM可完成光信号与数字信号之间的相互转换。光纤MODEM一般有一个以上的数据口用以传递同步或异步信号。通信速率可达到2Mbps或更高,配网常用的通信速率一般为同步N×64K或异步19200bps以下。故足以满足配网通信的需要,光纤MODEM的连接示意图如下:另外,还有一种光纤MODEM具有双环自愈功能。这一功能使通信的可靠性大大增强。其功能示意图如图2所示:图2(I)中,A,B,C三点是通过自愈光MODEM实现的双环网,若在D点发生故障,则如图2(II)所示,光路在A站和C站愈合(环回),使通信不受影响,同时向主站发出相应的告警及定位信号,使维修人员及时修复故障段光缆。4光纤通信的特点 光纤通信具有通信容量大,衰减小,不怕雷击,抗电磁干扰、抗腐蚀、保密性好、可靠性高、敷设方便等优点,不过投资费用相对较高,尤其对于城区内直埋式电缆线路的光纤敷设,施工费用将更大。 5光纤通信在配电网上的实现方案 光纤通信的组网方式非常灵活,可以构架成星型、链型、树状、网状、单纤网、双纤网、环上多分支、多环相交、多环相切等各种拓扑结构的网络。 根据配电自动化系统的特点,光纤网通常需组成环型网,并与计算机局域网连接,实现数据共享。常用的组网方式如图3所示。图3中:“S”表示网络服务器,“W1、W2、Wn”表示工作站,“b”表示变电所,“k”表示开闭所,“T”表示配电变压器。 实际工程设计中,充分考虑到电力通信专网拓扑结构的复杂性,SDH传输系统可以采用多达126个E1(2M口)全交叉连接和双主光环+多光分支的设计思想。基本构架为1~3个SDH/STM-1双纤自愈环相交或相切,而且在需要时,可通过更换光卡的方式在线升级为SDH/STM-4。如果局调度中心局域网位于网络地理中心,建议设计为相切环,以调度中心为切点,如图4所示;如果局调度中心局域网偏离网络地理中心,建议设计为相交环,由于调度中心不在交点,为了环间可靠转接,各环相交至少两点,互为保护路由,如图5所示。6结束语 在实际的配网自动化的通信系统,必须构建一个成本低、收效高的双向通信系统,用可以接受的费用在可靠性和信息流量方面提供非常高的性能。同时,由于配电网自动化系统所要完成的功能太多而系统复杂,采用单一的通信系统来满足所有的功能需要是不现实的,也是不经济的。因此,在配电网自动化系统中,要应用多种通信方式,按综合的经济技术指标而选取其中最优的组合。在电力系统中较常用的通信方式还有一点多址数字微波、数传电台、无线扩频、专线电缆、邮电本地网、载波、扩频载波等,可供组网时选择。

去万方知网维普找啊。

光纤通信论文的写作格式、流程与写作技巧 广义来说,凡属论述科学技术内容的作品,都称作科学著述,如原始论著(论文)、简报、综合报告、进展报告、文献综述、述评、专著、汇编、教科书和科普读物等。但其中只有原始论著及其简报是原始的、主要的、第一性的、涉及到创造发明等知识产权的。其它的当然也很重要,但都是加工的、发展的、为特定应用目的和对象而撰写的。下面仅就论文的撰写谈一些体会。在讨论论文写作时也不准备谈有关稿件撰写的各种规定及细则。主要谈的是论文写作中容易发生的问题和经验,是论文写作道德和书写内容的规范问题。论文写作的要求下面按论文的结构顺序依次叙述。(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。现在往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。(三)论文——引言 是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。(四)论文——材料和方法 按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志 对论文投稿规定办即可。(五)论文——实验结果 应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据和不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。(六)论文——讨论 是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。 论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。(七)论文——结语或结论 论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。(八)论文——参考义献 这是论文中很重要、也是存在问题较多的一部分。列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。一篇论文中几乎自始至终都有需要引用参考文献之处。如论文引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与 论文有关的各种支持的或有矛盾的结果或观点等。(九)论文——致谢 论文的指导者、技术协助者、提供特殊试剂或器材者、经费资助者和提出过重要建议者都属于致谢对象。论文致谢应该是真诚的、实在的,不要庸俗化。不要泛泛地致谢、不要只谢教授不谢旁人。写论文致谢前应征得被致谢者的同意,不能拉大旗作虎皮。(十)论文——摘要或提要:以200字左右简要地概括论文全文。常放篇首。论文摘要需精心撰写,有吸引力。要让读者看了论文摘要就像看到了论文的缩影,或者看了论文摘要就想继续看论文的有关部分。此外,还应给出几个关键词,关键词应写出真正关键的学术词汇,不要硬凑一般性用词。

光纤检测论文

我是搞光纤通信的,要说论文,现在没有一篇高质量的论文,我大体给你说说吧,可以参照这个自己写。一、常见故障作为光纤通信,以光纤为介质进行数据的传输,最重要的就属光缆了,光缆分很多种,有单模和多模,一般光纤通信的常见故障有1、无光信号;2、光衰减过大;3、色散现象严重;二、解决方法1、无光信号,应检查光发射机的激光模块/激光器是否正常,是否有激光发出,可使用光功率计来测量;2、光衰减过大,可检查发射和接受端光纤接头是否有污物,可用95%乙醇擦拭,擦拭时一定注意不要损伤接口表面,否则光功率会衰减非常大;其次,检查接头是否对应,FC/UPC和FC/APC之间不能对接,因为由于接头接触面角度问题,会造成1-3dB不等的光衰减,要求发射和接受都采用相同规格型号的光纤接口;最后,检查链路;可用OTDR检测光缆链路是否畅通,是否有过大反射,一般在某一点有相对大些的反射,说明该点曾被截断过,后又重新熔接,如果有比较大的反射,说明该点没有熔接到位,造成了过大衰减,可去排查;光接收机接收灵敏度也决定了光功率,如果接收模块的灵敏度下降,那么也导致发射光功率不变的情况下 接受不到信号,或信号质量很弱;3、色散现象;色散可导致光信号接收不到或者接收到错误的信号等等,使误码率提高,影响正常的数据通信;色散现象主要存在大功率远距离的光纤传输,建议在采用光中继的方法来实现超远距离的光通信;以上是光纤通信设备常见的故障和排除方法,另外,还有一些因素也是影响光通信的原因,一下是一些经验,在排除故障时可先考虑:1、单模光纤可以通过多模光纤传输,但是多模不可以通过单模传输2、1310nm的光接收设备 可以接收1550nm的光信号,而1550nm的光接收设备无法接受1310nm的光信号;3、在换算传输距离的时候,1310nm可用计算,1550nm可用计算,要取最大上限作为计算值,不要取下限值!差不多就这些吧,其他的暂时想不起来了。多给点分吧。这问题我看了好几天了 都没人回答。

光纤通信光源技术论文篇二 我国光纤通信技术综述 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1. 我国光纤光缆发展的现状 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合规定的截止波长位移单模光纤和符合规定的色散位移单模光纤实现了这样的改进。 核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括光纤和光纤。光纤虽然在我国曾经采用过,但今后不会再发展。光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用普通单模光纤和低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 2. 光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。 超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。 仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。 光孤子通信 光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。 光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。 全光网络 未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。 全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。 目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。 结语 光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的"冬天"但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。 看了“光纤通信光源技术论文”的人还看: 1. 光通信技术论文 2. 光纤技术论文 3. 光纤传感技术论文 4. 光通信技术论文(2) 5. 电力系统光纤通信技术论文

  • 索引序列
  • 光子晶体光纤学位论文
  • 光子晶体研究论文
  • 光纤光栅毕业论文
  • 光纤材料论文
  • 光纤检测论文
  • 返回顶部