首页 > 学术期刊知识库 > 曲线论文题目

曲线论文题目

发布时间:

曲线论文题目

视觉传达毕业论文题目

视觉传达毕业论文题目具体有哪些呢,大家有了解过吗?下面是我为大家介绍的视觉传达毕业论文题目,欢迎参考和阅读,希望能帮到大家!

视觉传达毕业论文题目

1.浅谈计算机图形图像设计与视觉传达设计

2.基于视觉传达设计中视觉思维模式创新的研究

3.新媒体艺术语言在视觉传达中的应用

4.基于视觉传达艺术发展的民族传统设计创新探讨

5.数字广告中数字媒体的视觉传达设计

6.视觉传达设计视角下的科技图像创作研究

7.动态构成在视觉传达设计中的运用与研究

8.跨界与融合--数字信息时代背景下视觉传达设计的新思考

9.色彩符号与企业形象的视觉传达

10.汉字象形造字法在视觉传达中的设计应用

11.中国传统元素在视觉传达设计中的应用研究

12.“视觉传达设计专业”在现实中的应用探究

13.新媒体语境下的视觉传达设计探讨

14.移动互联网背景下视觉传达设计专业人才培养模式研究

15.视觉传达设计中的图形创意表现研究

16.从空无、自然、融合三个角度谈视觉传达设计中的艺术美

17.“私人定制”视觉传达中的定制式设计理念

18.数码技术在视觉传达设计中的应用研究

19.基于视觉传达要素的制造装备人机优化设计方法研究

20.敦煌联珠纹的形态特征与其在视觉传达设计中的应用

21.基于可持续发展理论下的视觉传达设计

22.浅析视觉传达设计与品牌形象的有效整合

23.现代视觉传达的多维感官设计运用探析

24.探究UI设计的视觉传达艺术

25.旅游纪念品视觉传达设计与开发

26.色彩的视觉传达在广告设计中的运用

27.基于视觉传达设计领域的互补设计方法研究

28.信息时代的视觉传达设计特征与发展研究综述

29.动态视觉传达设计在数字媒体中的应用及发展方向

30.视觉传达的灵境语言

31.本土文化视域下的视觉传达设计及拓展重构

32.探讨视觉传达设计发展趋势的分析

33.独特的视觉传达系统研究

34.订制婚礼中视觉传达设计的应用研究

35.视觉传达设计中图形创意的应用与商业价值研究

36.基于观者位移产生的动态错觉在视觉传达设计中的应用

37.关于多媒体设计与视觉传达的完美结合研究

38.视觉传达设计中民族文化符号的应用

39.浅谈视觉传达设计中图形创意的表现

40.视觉传达设计专业学生的实践能力培养探析

41.视觉传达设计中的色彩应用分析

42.视觉传达设计在空间设计中的新发展

43.视觉传达设计中的视觉疲劳现象研究

44.基于信息设计的视觉传达领域新应用

45.文化产业背景下视觉传达设计的转型

46.江汉大学视觉传达设计专业创新型人才培养探析

47.视觉传达设计创新性思维模式初探

48.浅析视觉传达设计创新思维的内涵及原则

49.展示空间中的视觉传达设计元素分析

50.女性身体元素在竞技体育中的视觉传达

51.谈信息时代下视觉传达设计的发展

52.视觉传达设计中笔墨艺术元素的应用

数字化广告的视觉传达效应探析

54.论包装色彩视觉传达的话语意义

55.浅析现代婚庆视觉传达设计

56.数字时代的视觉传达专业的内涵与外延

57.视觉传达设计中抽象图形的针对性提炼与表现

58.探讨视觉传达艺术设计的创新设计理念

59.数字媒体对视觉传达设计的影响分析

60.浅谈视觉传达设计的多元化发展

61.对视觉传达设计中情感理念的表现研究

62.视觉传达设计中视觉思维模式的创新

63.网页设计之视觉传达研究

64.虚拟现实环境下计算机图形图像设计与视觉传达设计

65.数字媒体时代视觉传达专业图形创意课程改革研究

66.景颇族服饰视觉呈现中的社会情境表述

67.视觉传达技术在茶叶包装设计上的运用

68.从视觉心理角度解读自由版式中的视觉游戏

69.基于视觉信息传达的网页界面设计研究

70.“东方葵”的图像叙事与视觉传达

71.网络广告中的视觉传达设计艺术探究

72.浅析视觉营销在商品E化过程中的应用

73.广告视觉传达设计的研究与探讨

74.从标志设计的演变谈视觉简化心理

75.视觉传达设计中传统装饰艺术符号的融入

76.节约型包装视觉传达设计研究

77.数字时代视觉传达设计的新观念探索

78.图表设计与可视化分析

79.技术推动观念 VR技术引发的视觉传达新观念

80.视觉传达设计中的多媒体艺术的表现形式

81.基于数字媒体语境下的视觉传达设计

82.虚拟现实环境下计算机图形图像设计与视觉传达设计

83.视错觉表现在视觉传达设计中的应用

84.论互联网时代视觉传达设计的方法和表现特性

85.视觉传达设计中的多媒体艺术表现形式研究

86.考虑视觉传达效果的夜视环境视觉定位方法研究

87.当代中国设计活动中审美形态的来源--以视觉传达设计为例

88.中国传统文化元素在视觉传达设计中的应用

89.数字时代视觉传达设计的新观念

90.交通标示颜色的视觉传达作用仿真分析

91.视觉传达设计中的传统文化符号探究

92.中国传统家具元素在视觉传达设计中的应用探析

93.视觉传达设计对地方经济发展的实效性研究

94.当代视觉传达设计中的适老性问题研究

95.黑暗中颜色刺激作用的视觉传达分析研究

96.视觉传达设计的交互动画特效制作手法探析

97.学习类网页设计中视觉传达理论的应用研究

98.字体创意设计是加深视觉传达记忆的根蒂

99.对中国甲骨文文字符号视觉传达的属性研究

100.广告视觉传达设计艺术在信息网络时代的传播研究

101.中国禅道文化中的神、意、形、色在视觉传达设计中的应用研究

102.视觉传达设计中的多媒体艺术表现形式分析

103.公共艺术形态下的视觉传达设计研究

104.浅谈数字图像时代视觉传达设计的几个要素

105.浅析视觉传达设计的情感效应

106.如何做到视觉传达艺术设计的与时俱进

107.试论传播学在视觉传达设计中的应用

108.隐喻图形在视觉传达设计中的应用研究

109.视觉传达设计中视觉思维模式的创新

Graphic在视觉传达中的应用研究

111.数字媒体时代视觉传达设计的特征与发展

112.当代视觉传达下汉字图形化设汁的形、意研究

113.网络媒体的视觉艺术传达设计研究

114.数字时代视觉传达设计的新思维探讨

115.中国传统元素在视觉传达设计中的应用

116.浅析视觉传达在室内设计中的应用

117.“新古琴双行谱”中的视觉传达设计

118.视觉传达图形创意在服装设计中的应用

119.从视觉传达的角度对新媒体时代地产广告的探究

120.分析创新设计理念在视觉传达艺术设计中的具体实施

121.视觉传达设计专业的基础课程改革探索

拓展:测绘工程论文题目

1、改善GIS数字底图的质量

2、教学实习在土地资源管理专业中的应用

3、数字化土地利用现状调查的数据采编

4、数字化地形测量的几个问题探讨

5、数字化地籍测量在城镇地籍调查中的应用探讨

6、数字化成图几种作业模式的分析比较

7、数字化测图与地籍信息系统研究

8、数字化测图在地籍补测中的两种应用技巧

9、数字化测图技术在郑州高新区房地产测量中的应用

10、数字化测图教学方法探讨

11、数字化测绘技术在地籍图测绘中的应用与建议

12、数字化测绘技术在地籍测量中的应用与实施

13、数字化测绘技术在地籍测量中的应用初探

14、数字化测绘技术在城镇地籍测量中的应用

15、数字化测绘技术在源影寺古砖塔测绘中的应用

16、数字图像边缘检测方法的探讨

17、数字土地利用现状图的制图概括

18、数字土地利用现状图的制图综合

19、数字地图系统设计

20、数字地形图测绘中的几个问题探析

21、数字地籍测绘实施中的技术问题

22、数字地籍测量中GPS控制网的建立

23、数字地籍测量主要误差来源探讨

24、数字地籍测量作业探讨

25、数字地籍测量应用分析

26、数字地籍测量控制网的建立及精度分析

27、数字地籍测量有关作业流程及精度控制的探讨

28、数字地籍测量精度的讨论及控制方法

29、数字平顶山空间数据基础设施建设的初步研究

30、数字摄影测量生产的质量控制

31、数字水准仪SPRINTERM的试验与评述

32、数字水准仪及其在机场跑道板块高程测量中的应用

33、数字水准仪及水准尺的'检定与精度分析

34、数字水准仪的测量算法概述

35、数字水准仪自动读数方法研究

36、数字水准仪观测模式及其应用实践

37、数字水准测量外业数据格式的转换与统一的实践

38、数字水果湖水下地形和淤泥厚度测量

39、数字测图中的坐标变换方法

40、数字测图中设站错误的内业改正

41、数字测图技术在罗营口水电站坝址地形测量中的应用

42、数字测绘产品的质量检查与质量控

43、数字综合法用于平坦地区地形图修测

44、数字高程模型与等高线质量相关性研究

45、数字高程模型及其数据结构

46、数字高程模型在农地整理排水渠道规划设计中的应用

47、数字高程模型地形描述精度的研究

48、数字高程模型的生产及更新

49、数字高程模型的裁剪与拼接技术

50、数学形态学在遥感图像处理中的应用

51、数据化测量在河道治理工程中的应用

52、数码相机可量测化的研制

53、斜拉桥变形观测方法及精度分析

54、斜距法在工程中的应用

55、断面测量内外业一体化系统研究

56、断高法在高等级公路测设中的应用

57、新州公路平面控制测量问题研究与施测

58、方位交会法在城区测量中的应用

59、方向交会法坐标计算之初探——待定点坐标的计算

60、方向后交最佳点位分析

61、施工测量中快速设站方法

62、无像控基础地理空间数据更新方法

63、无反射棱镜全站仪测距性能测试

64、无反射镜测距的目标特性研究

65、无定向导线环在城市地籍测量中的应用

66、无控制DEM表面差异探测研究

67、既有铁路航测数字化测图的特点与质量控制

68、时态地籍数据库设计与宗地历史查询的实现方法

69、明暗等高线自动绘制方法

70、智能全站仪ATR实测三维精度分析

71、智能全站仪快速测量处理系统

72、曲线拟合高程在公路测量中的应用研究

73、曲线放样中的坐标转换及转换精度分析

74、曲线矢量数据压缩算法实现及评析

75、最小二乘平差理论在制图自动综合中的应用

76、最小二乘法在土地复垦场平整中的应用

77、最小二乘法对多周期函数的周期筛选优化

78、有关地籍调查的几个问题探讨

79、有限条件下坐标转换矩阵的确定与精化

80、有非对称缓和曲线的曲线主点测设方法

81、服务城市化的测绘工程专业培养计划探讨

82、村庄地籍测量之初探

83、条码信号复原技术在数字水准仪中的应用

84、条码因瓦水准标尺校准方法的探讨

85、极坐标法测设平面位置的精度分析

86、构建城镇地籍管理系统的研究

87、栅格数据矢量化及其存在问题的解决

88、标准化大比例尺数字测图的实践与体会

89、树状河系自动绘制的结构化实现

90、根据三斜距确定点的三维坐标及精度

91、桥梁墩_台的沉降观测和沉降值的预测

92、模拟GPS控制网精度估算方法研究

93、模糊数学在土地利用更新调查质量评定中的应用探讨

94、模糊综合评判及其在测绘中的应用

95、气象因素对全站仪测量的影响

96、水下地形分析中空间数据存储与管理方法的研究

97、水下地形测量误差分析及对策

98、水下地形测量误差来源及处理方法探讨

99、水下地形测量高程异常点剔除方法研究

100、水位改正中虚拟验潮站的快速内插

记忆中,有这样一段话:“曲线之所以比直线美,就因为它不是简单的,就因为它是有转折的,就因为它富有流动的韵味,就因为它能引导眼睛作变化无穷的追逐,因而能引起多元的思索。”

是的,曲线是美的,美在它的变化。

“人有悲欢离合,月有阴晴圆缺”,“花好月圆”固然是美好的,一弯新月又何尝不有其独特的韵味,有其内敛的美呢?月,阴晴多变化,由圆到缺,由缺到圆,无不展现出它的低回婉转、婀娜多姿,给人一种别样的感受。

曲线是美的,美在它的隽永。

一条弯弯的小路缠绵曲折,徜徉在其中,有一种特别的享受。路基上的小石子错落有致的排列着,远远望去,就像是条涓涓流动的小溪,灵动而又轻盈。小路两旁长满了翠绿的藤蔓,白色的蒲公英,幽雅的薰衣草,盛开的紫罗兰,妖娆的郁金香,可爱的金盏花,各种景物错综交杂,无不展示着大自然的幽深,典雅。

曲线是美的,美在它的内涵

自然之路大多是蜿蜒曲折的,人生之路亦是如此。在这些曲折中,满含着苦涩与艰辛,饱蘸着心血与汗水,同时也伴随着希望与求索。

人生的曲折,美在它的过程。只有品尝过苦涩与艰辛,经历过汗水与泪水的洗礼,才能真正地铸就出一个大写的“人”。孔子厄而作《春秋》,屈原被逐乃赋《离骚》,孙子膑脚著《兵法》,司马迁受宫刑发奋著《史记》。艰难的求索,忘我的奋斗,总会使人倍受磨练,变得坚强而睿智。

“路漫漫其修远兮,吾将上下而求索”。朋友,当你在你的人生之路上遇到曲折的时候,你是否看到了其中的美呢?我想,只要我们用一双慧眼去发现,用心去感悟,就定能铸就出属于自己的壮丽人生!

一、广告与文化:1. 传统文化与现代广告的关系2. 东西方文化差异与商业广告的关系3. 现代传播手段的进步与广告形式的演变4. 艺术表现与广告文化的面貌5. 广告的韵味与品味6. 文化的对冲与调和——中外文化在广告中的冲突与交流7. 广告中的人文主义表现8. 文化因素对广告创意的影响9. 中国传统文化元素在广告创意中的应用10. 后现代主义对现代广告的影响11. 广告中(怀旧主义、现代主义、后现代主义等)的表现12. 现代社会亚文化(如左岸、布波等)文化在广告中的应用13. 现代主义艺术流派对广告设计的影响二、广告创意与构思:1. 广告创意艺术谈2. 创意就在你身边——广告创意的几种方法及其应用3. 创意与生活经验4. 广告创意的设计要求5. (恐惧、悬念、幽默、拟人等)技巧在广告设计中的应用6. 广告的“神似”与“形似”7. 公益类广告的创意与构思特点8. 动画脚本的构思与设计三、广告表现:1. 论视觉传达设计的创新2. 谈平面设计的本土语言3. 图形创意的表现在广告中的运用4. 中国传统符号在现代招贴设计中的应用5. 平面广告中色彩要素与人的情感联系6. 多媒体广告与平面广告的表现特点9. 计算机数码技术与手绘原创结合10. 平面广告的形式美11. 动漫广告设计的创意思维12. 视觉传达的艺术手法13. 构成理论在广告设计中的应用14. 广告作品中节奏感的控制15. 网络媒体在当今广告行业的应用16. 公益类广告的表现手法17. Flash广告的使用与特点18. 技术突破与艺术表现的结合艺术设计论文题目《绘画与平面设计》《‘全球化’图景中的差异性选择》《“慨当以慷”与“与忧从中来”》《“灵”与“肉”的交融》《“中西合壁”要用中国文化底蕴来作为自己的根基》《Flash广告发展前景初探》《包装设计与环境的融合》《包装设计中人文思想的再思考》《被人遗忘的艺术》《标志设计潮流的风格演变》《标志设计的视觉语言》《标志设计要素浅谈》《标志设计中的虚形应用》《陈设艺术在现代室内设计中的地位和作用》《触目的真实比漂亮的谎言要美》《传统工艺美术中吉祥图案的文化意蕴》《传统酒包装设计的新理念》《传统美学观对现代广告招贴设计的影响》《传统美学观对现代广告招贴设计的影响》《传统文化对现代设计的影响》《传统与变革》《传统装饰纹样中的吉祥观念与现代设计》《从“摄影作为艺术”到“艺术作为摄影”》《从波谱艺术看美术与设计的互融关系》《从零度空间到多维空间》《大学集体宿舍的室内设计和智能话探讨》《对产品广告样本设计的探讨》《对农村户外广告设计定位的探议》《对数码革命与平面设计的一些思考》《对中国当代艺术的反思》《感性诉求广告创意新思维》《关于CI设计的论文》《观念艺术-后现代探索》《观念艺术形式中的传统文化资源分析》《广告创意对品牌的作用》《广告艺术设计中的情感因素》《广告中女性形象的四考》《汉字字体设计与民族文化的融合》《吉祥符号在现代标志设计中的运用》《劳动者美术(民间美术)的造型观念与方式初探》《论“美术”》《论产品的文化意蕴设计》《论传统的继承和发展》《论汉字的魅力与发展》《论科学美与艺术美》《论审美创造力与艺术表现语言的统一》《论中国当代艺术从‘理想’到‘时尚’的嬗变》《平面设计常用表现手法》《平面设计从混沌中走出》《平面设计的现状与思考》《平面图形设计中的符号原理》《平面艺术设计的本土语言》《浅论点、线、面及其综合运用》《浅谈版式设计》《浅谈包装设计的文字艺术》《浅谈波普艺术》《浅谈技术的发展对插图设计的影响》《浅谈美术教学过程中创新能力的培养》《浅谈美术教学中,如何培养中学生的创造能力》《浅谈企业文化中文化管理的特点和标志》《浅谈如何更好的在现代图形设计中运用汉字》《浅谈色彩语言中的色彩对比》《浅谈设计美学》《浅谈书籍装帧的封面设计》《浅谈图形的张力》《浅谈网页设计技术与艺术的紧密结合》《浅谈线造型教学与儿童创造力的培养》《浅谈药品的包装设计》《浅谈艺术创作》《浅谈印刷的基础知识》《浅析21世纪中国艺术设计的信息社会化》《浅析CI设计中的企业文化冲击力》《浅析表现与再现》《浅析灵感的产生在艺术摄影中的体现》《浅析现代标志设计与传统图形艺术的结合》《浅议设计思维的主体——符号》《情感的艺术表现论》《认识新媒体广告》《如何推进新传统之我见》《乳品包装设计现状与展望》《色彩与设计》《设计、文脉》《设计底蕴》《设计界面说——探讨设计艺术》《设计是空——极简思维》《设计引导人与人引导设计》《设计与美学》《设计专业对传统图案的学习》《视觉传达艺术——论独立创作》《视觉文化到来的几点因素》《试论广告人格化》《室内环境设计的基本内涵》《室内装饰设计的功能、设计与审美》《书籍装帧中的文字版式设计探讨》《数字空间——浅谈数码设计》《谈民居研究的实质手法》《谈色彩设计》《谈通过幼儿创造性的美术活动发展幼儿创造能力》《谈我国工艺品的市场前景与创新设计》《探悉我国北方农村商业广告的现状与发展》《图案在服装中的运用》《网络广告的现状与发展》《网络时代的设计》《网页的审美需求——设计因素在网页设计中的应用》《网页设计的布局与用色技巧》《网页设计的审美需求》《网页设计之视觉信息传达分析》《网站文化与网页设计》《文字视觉语言的力量》《我的“色”论——论色彩在建筑装饰与环艺设计中的应用》《现代包装设计的文化观》《现代和前卫的标尺是什么?——论中国现代性的另类逻辑》《现代消费心理对包装设计的影响》《现代艺术发展浅析》《现代艺术之我见》《新媒体、新广告》《性别歧视与女性广告分析》《学慎始习 功在初化》《艺术设计与社会经济》《艺术与科学创造的融合》《在美的背后》《中、日、美动画创作之对比 》《中国传统文化与现代设计》《中国当代艺术的审美理想——论艺术之真、善、美》《中国古代图徽与现代标志设计》《中国广告发展中国际化与本土化》《中国书籍装帧设计的历史演进》《中国文字的演变与视觉运用》《中国现代平面设计发展过程中的分解与重构》《中国装饰艺术——论吉祥观念在现代设计中的体现》《中外电视广告中的品牌文化差异》《中西文化与广告语言》《装饰文化的现实意义》《自然光与建筑空间》《 重新回到传统 》《传统与个性》《激发成绩 培养创新》《优化课堂教堂 实施鼓励性教育》《现代室内环境色彩设计初探》《“天人合一”审美观在现代农村民居中的继承和发展》《波谱艺术的理论与文化背景》《城市大众休闲空间初探》《城市开放性休闲空间的人性化设计》《城市老年人的户外活动空间研究》《传统 现代 延伸》《传统聚落的交往空间对现代人居环境的启迪》《传统民居建筑美学特征试探》《传统四合院院落空间的继承与创新》《传统与现代的碰撞》《创新意识的培养》《从外文的运用论中国平面设计师的责任》《当今有材料表现》《对环境艺术设计人性化的一点看法》《高校校园的外部空间设计》《更新观念 转换角色》《公共图象与艺术》《构建自然和谐人居环境》《关于“后现代”的美学反思》《关于设计美的思考》《关于图书馆建筑人性化设计的思考》《关注人的健康-——将生态引入室内设计》《激发学生学习兴趣,培养创新意识》《继承传统 推陈出新》《家居环境的色彩设计初探》《家居环境的无障碍设计研究》《家具的绿色设计浅论》《家具设计的人性化思考》《居住区环境的绿色设计》《居住区环境设计的生态化设计》《居住小区中交往空间设计初探 》《空心的深度》《立体性与平面性》《略论色彩设计在公共空间环境中的运用》《论CI企业识别与现代企业文化》《论家居设计中人性与个性的统一》《论科学美及其美感》《论摄影艺术中的艺术因素》《论时代风格与审美意识的关系》《论中学生审美能力的培养》《美学思想的萌芽——希腊艺术文化》《美在和谐》《民间美术与现代意识》《民艺文化在现代家居设计中的应用》《民族性与全球性》《平面设计与绘画的差异》《浅谈包装与环保》《浅谈城市公共空间设计的人性化》《浅谈厨房的人性化设计》《浅谈家居室内照明设计》《浅谈家居中的灯光设计》《浅谈酒店大堂的“ 光色”设计》《浅谈居住区的户外交往空间设计》《浅谈老年人居住空间的无障碍设计》《浅谈美术/设计教学中的讨论艺术》《浅谈室内设计与审美心理》《浅谈现代家居的 “绿色设计”》《浅谈艺术的足迹》《浅谈艺术教育在基础教育中的地位和作用》《浅析城市广场的文化性》《浅析家居设计》《浅析家居设计元素——室内绿化》《浅析居民小区的无障碍设计》《浅议包装设计中的色彩》《诠释现代艺术,解构感知体系》《少一点模仿 多一些创意》《时尚家装》《视觉设计个性化探微》《室内装饰织物的色彩应用》《谈儿童房设计的人性化》《谈现代家居设计风格》《谈现代家居设计元素——材质语言的设计》《拓宽思维空间 培养学生的创新创造能力》《网页艺术设计初探》《我谈中西审美的区别》《物质性对精神性》《西方后现代主义在中国》《析中国传统文化对家居设计的影响》《现代设计观念与传统书法》《现代视觉艺术思维》《小区景观灯光设计探索》《寻找陌生感》???《用新型建材打造新农村人居环境.》《与新课程零距离》???《在美术/设计教学中培养学生的创新意识》《怎样创造理想的家居环境》《中国:后现代主义温床》??《中国CI热的冷思考》《中国传统民居的审美分析》《中国传统民居设计对当代人居环境的启示》《住区的生态化设计》《住区外部聚合空间环境的设计》《住区外部人性化空间环境的设计策略》《自由与控制——关于毕业创作的一点思考》

圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。

高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究

圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.

一、高中数学圆锥曲线教学现状

1.从教师角度分析

高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.

考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.

2.从学生角度分析

圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.

二、提升高中数学圆锥曲线教学效率的措施

1.培养学生学习圆锥曲线的兴趣

众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.

2.教师要重视演示数学知识的形成过程

考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.

3.坚持学生的主体地位

教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.

三、结语

高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.

高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考

【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。

【关键词】 椭圆;双曲线;相似性质

学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:

1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。

2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。

3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?

4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。

5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。

我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。

首先,有关椭圆的第一定义与双曲线的第一定义。

“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。

比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。

其次,有关用二次平方法化简方程。

在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。

数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。

根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。

最后,椭圆与双曲线的相关性质。

在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。

通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。

1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。

例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。

又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。

例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。

3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。

例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。

鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。

通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。

在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。

参考文献

[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.

[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.

[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.

高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题

摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。

关键词:课程标准 数学高考 解析几何 存在性问题 思考

前言

最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]

一、是否存在这样的常数

例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.

(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

二、是否存在这样的点

【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.

三、是否存在这样的直线

【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条

件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]

四、是否存在这样的圆

【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系

结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.

2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;

参考文献:

[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003

[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012

[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006

高二曲线论文题目

1、 数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2 b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算函数图像中的对称性问题泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用

可以通过线性关系,计算生活中手机充话费,什么样的人群使用什么样的套餐比较划算。希望能帮到你

浅谈中学数学中的反证法数学选择题的利和弊浅谈计算机辅助数学教学论研究性学习浅谈发展数学思维的学习方法关于整系数多项式有理根的几个定理及求解方法

关于圆锥曲线的论文题目

附件10:论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告论文(设计)题目 圆锥曲线切线的几个性质及其应用探究系(院) 数学与应用数学 专业班级 09级数本(2)班 学科 理科学生 姓名 成骏 指导教师 姓名 徐权年学号 0925809070 职称 教授一、 选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。2、撰写要求:宋体、小四号。)1.选题的来源及意义圆锥曲线是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。圆锥曲线的主要内容之一是圆锥曲线切线的相关问题,课本中虽然没有对该类问题进行深入探究。但在考试中却常常出现与圆锥曲线切线相关的题目。而国内外的参考文献中涉及到这方面的研究大都只给出抽象的性质和证明,很少给出性质的相关应用,实际处理具体问题时学生难于灵活运用这些性质,因此,本选题具有十分重要的实际价值和意义2.国内外研究状况从目前参考道德文献资料中所了解的信息看,对圆锥曲线切线的性质,近几年研究者们从各自的角度出发,进行了一定的探讨,得到一系列结果。比如:在《圆锥曲线的一个性质的证明与推广》一文中张留杰得出了准线上任意一点与焦点弦的两端点,焦点弦所在直线的斜率之间的关系的性质:在《圆锥曲线切点弦的一个性质》一文中周伟林得出了圆锥曲线切点弦的共通性质:在《圆锥曲线的一个几何特征》一文中黄堰创得出了圆锥曲线的切线,对称轴以及顶点在圆锥曲线上的三角形的内在性质:在《圆的重要性质在圆锥曲线上的推广》一文中吴翔雁得出了切线长的性质:在《圆锥曲线的一个性质》一文中张家瑞得出了切线,割线间的关系的性质:在《圆锥曲线的一个性质及应用》一文中潘德党得出了圆锥曲线的焦点,准线与切线三者间的位置关系的性质及应用:在《高中几何学习指导》一文中李铭祺得出了切线长相等的性质等等。3.研究目标通过探讨从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线的相关性质及应用,揭示圆锥曲线隐藏的统一特性。4.本文创新点在现有的参考文献的基础上,通过从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线,对圆锥曲线切线进行研究,得到了圆锥曲线切线的5个性质并加以应用,以揭示圆锥曲线切线隐藏的统一性质。5.主要参考文献[1]郑观宝.圆锥曲线的一个公共性

圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。

高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究

圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.

一、高中数学圆锥曲线教学现状

1.从教师角度分析

高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.

考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.

2.从学生角度分析

圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.

二、提升高中数学圆锥曲线教学效率的措施

1.培养学生学习圆锥曲线的兴趣

众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.

2.教师要重视演示数学知识的形成过程

考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.

3.坚持学生的主体地位

教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.

三、结语

高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.

高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考

【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。

【关键词】 椭圆;双曲线;相似性质

学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:

1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。

2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。

3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?

4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。

5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。

我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。

首先,有关椭圆的第一定义与双曲线的第一定义。

“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。

比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。

其次,有关用二次平方法化简方程。

在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。

数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。

根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。

最后,椭圆与双曲线的相关性质。

在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。

通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。

1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。

例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。

又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。

例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。

3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。

例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。

鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。

通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。

在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。

参考文献

[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.

[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.

[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.

高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题

摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。

关键词:课程标准 数学高考 解析几何 存在性问题 思考

前言

最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]

一、是否存在这样的常数

例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.

(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

二、是否存在这样的点

【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.

三、是否存在这样的直线

【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条

件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]

四、是否存在这样的圆

【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系

结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.

2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;

参考文献:

[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003

[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012

[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006

美声歌曲曲目论文题目

美声唱法民族化、民族唱法美声化,是中西文化相互影响、相互融合的结果,也是中国声乐发展的一大成就。两种唱法互相渗透互相补充,以及在作为个体的歌唱者身上的高度融合,说明二者共同发展是可能的,民族唱法与美声唱法的高度融合成为声乐艺术发展的必然趋势。1 钟键;浅析中国戏曲唱法的特点及其训练方法[J];星海音乐学院学报;2001年02期2 刘方;浅析中国戏曲唱法的特点及其训练方法[J];宜春学院学报;2003年01期3 张红霞;浅谈三种唱法的形成[J];苏州大学学报(工科版);2002年06期4 李琳;曲高也可和众——试论美声艺术的现状和出路[J];人民音乐;2003年06期5 李光羲;美声的前途[J];人民音乐;2003年01期6 阿红;;由民族化触及的——西窗诗话[J];诗探索;1982年04期7 李静,尚庆云;美声与京剧唱法的比较研究[J];齐鲁艺苑;2005年03期8 路海波;;电影“民族化”质疑(摘录)[J];电影艺术;1985年05期9 史建华;论美声艺术的普及[J];辽宁工学院学报(社会科学版);2004年01期10 ;湛蓝美声——Sometimes I Dream我梦想[J];音乐爱好者;2003年04期

大四音乐表演声乐方向美声我有题材可以参考.

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 (一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法: 一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行: 第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。 第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。 第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。

女生:梧桐树 男生:母亲我和我的祖国 母爱五年前你说你爱你 我爱你中华为祖国干杯 小白杨 乡音乡情 我像雪花天上来七月的草原 跟你走怀念曲 大江东去火把节的欢乐 牡丹之歌我亲爱的爸爸 多情的土地 你们可知道 三套车还有常思思的歌虽然她本人是民歌但也有美声的元素像春天的芭蕾很好听,这些你先听,都是比较好听的

琵琶文曲舞曲论文题目

通过描写琵琶姑娘一生的不幸,结合诗人本人在仕途上的打击,他唱出了“我们相遇时为什么会相遇?”。社会的动荡,世界的冷淡,对不幸者命运的同情,对他们自己失望的情感,所有这些深藏在他们心中的痛苦情感,一起倾注在这首诗中。它的艺术成功还在于运用优美、独特、音乐化的语言,用视觉形象表达听觉感受;凄凉秋风的自然风光和离别的心情使作品更加动人。

描写鉴赏一、比喻 ☆用了许多形象、新鲜、贴切的比喻来表现琵琶曲中 复杂、细微的音响变化,给了读者十分深刻和具体的 印象。(角度) ☆如以人们在生活中

写基础技法的不容易有新意,虽然材料多,但是答辩的时候有困难.起源什么的根本不用考虑,一般这样的命题是不会被通过的可以写那种从一个具体的乐曲然后写作者风格,流派的那种比如我以前写过一个<天鹅>的~不过最好选择自己熟悉弹奏过的乐曲,这样说起来也比较有话~或是写那种两个乐曲之间的比较,比如都是文曲,或都是武曲的两首之间有哪些相同和不同流派之间的对比也是可以写的~不过资料可能比较难收集~

可以谈论一下琵琶对民乐的影响---民乐之王。在探讨一下为什么琵琶可以到达今天这样的地位和为此做出过贡献的著名演奏家。也可以讨论一首琵琶曲,例如十面埋伏,将他的磅礴大气,以及创作背景,运用等等方面谈及。。。

  • 索引序列
  • 曲线论文题目
  • 高二曲线论文题目
  • 关于圆锥曲线的论文题目
  • 美声歌曲曲目论文题目
  • 琵琶文曲舞曲论文题目
  • 返回顶部