首页 > 学术期刊知识库 > 数学建模题毕业论文

数学建模题毕业论文

发布时间:

数学建模题毕业论文

加把油再好好找找首先建议你先列一个提纲,明确自己的目标,到底方向在哪里,想写什么,其实这是很重要的,即使你觉得你很难写出一整篇论文,或者想用copy拼凑的方式完成论文,都必须要先明确你的论文想说什么。 论文的内容都不清楚,又如何去找资料呢? 其次中国的毕业论文,就一大抄,我看过这么多网站,比较欣赏的有学生大(studa),感觉那里做的还不错,还有 ,其余的不予评价。 当然,最好就是你自己写,资料其实不必找别人的论文,既然是抄,你又明确了自己想写什么,那抄别的资料,新闻评论,各种论述也是一样,最关键的是拼凑的技巧。其实别人的论文,大部分也是从各方各面抄来的而已,主题一明确,就好抄了。 最后也是最重要的,无论什么论文,最好能有自己的观点,即使只是一点点,或者比较浅显的观点,也是很好的,会显得新鲜,有创造性,容易得到老师的好评。 怎样写论文 在整个读研的过程中,你需要写一到两篇(这取决于你所在系的规定)毕业论文,以获得PhD或者MS。 勤于写作不仅仅给你练习的机会。 学术的规则就是要么发表,要么腐烂。在很多领域和学校,这通常开始于 你成为一名教授时,但是我们实验室的很多研究生毕业之前就已经开始发表论文了。 鼓励发表和分发论文是很好的政策。 写下自己的想法是很好的调整思路的方式。你会经常地发现自以为很完美的想法一旦写下来就显得语无伦次。 如果你工作的目的是不仅为自己还要为他人服务,就必须把它发表。这也 是研究的基本责任。如果你写得精彩,会有更多的人来了解你的工作。 AI但凭单打独斗是很难做的,你需要经常地从他人那里获得反馈。对你的 论文作评论就是最重要的一种形式。任何事情,要做就要做到最好。 阅读有关如何写作的书籍。Strunk和White的《Elements of Style》对基 本的应该如何不应该如何做了介绍。Claire的《The MLA’s Line By Line》(Houghton Mifflin)是有关在句子级别如何编辑的书籍。Jacques Barzun的《Simple and Direct : A Rhetoric for Writers》(Harper and Row, 1985)是有关如何作文的。 写论文时,读读那些写作高超的书,并思考作者的句法运用。你会发现不 知不觉地,你已经吸收了作者的风格。 要成为写作高手,需要付出颇多,历经数年,期间还要忍受和认真对待他 人的批评。除此之外,并无捷径可走。 写作有时候是很痛苦的,看起来好像是从“实际的”工作中分心了。但如 果你已经掌握了写作技巧,写起来会很快。而且如果你把写作当作一门艺术的话,你 能从中得到很多乐趣。 你肯定会遇到思路阻塞的情况,这有很多的可能原因,没有一定可以避免 的方法。追求完美可能导致思路阻塞:无论开始写什么,总觉得不够好。要理解写作 是一个调试的过程。先写一个草稿,然后返回修订。写草稿有助于理顺思路,如果写 不出来正文,那就写个大纲。逐步对之细化,直到已经很容易写出子部分的内容。如 果连草稿也写不出来,隐藏掉正在写作的所有窗口,然后随便输入自己脑袋里想到的 东西,即使看起来好像是垃圾。当你已经写出了很多文本后,重新打开窗口,将刚才 写的东西编辑进去。 另外一个错误是以为可以将所有的内容依次写出。通常你应该将论文的核心内容 写出来,最后才是介绍部分。引起作者思路阻塞的另一个原因是不切实际的以为写作 是很容易的事情。写作是耗时耗力的,如果发现自己每天只能写一页,也不要放弃。 完美主义可能会导致对本来已经足够好的论文还在不停地打磨。这是浪费 时间。(这也是一种有意无意之间逃避做研究的表现)。将论文看作你与本领域其他 人交谈时的一句话。在交谈中,并不是每一句话都是完美的。很少有人会期待自己的 某次谈话就是全部的故事,是与对方的最后一次交流。 写信是一种很好的练习。很多技术论文,如果其风格更类似于给朋友的信 ,那么会有很大的提高。坚持记日记也是练习写作的方法(也会使你试验更多的文体 ,不仅仅是技术论文)。这两种方法还有其它的实质作用。 一个常见的陷阱是花很多时间去追求修辞而不是内容。要避免这样。LaTeX 并非完美,但是它有很多你所需的修饰语。如果这还不够,还可从其他从事这一研究 的人那里借用一些词语用法。很多站点(例如MIT)维护了一个写作修辞的库。 清楚自己要表达什么。这是清楚的写作中最难最重要的因素。如果你写了 拙劣的东西,且不知道如何修改,这很有可能是因为你不知道自己要说什么。一旦搞 清楚了自己要说什么,说就行了。 论文的写作要有利于读者查找到你所做的工作。无论是段落的组织还是通 篇的组织,都要将最核心的部分放在前面。要精心写作摘要。确保摘要已经反映出你 的好思路是什么。确保自己明白自己的创新点是什么,然后用几句话表达出来。太多 的论文摘要只是一般性地介绍论文,说是有一个好思路,却不说是什么。 不要用大话来贩卖你的工作。你的读者都是很优秀的人,正直且自尊。与 之相反,也不要为自己的工作道歉或者进行消减。 有时候你意识到某个子句、句子或者段落不够好,却不知道如何修改。这 是因为你钻到死胡同里出不来了。你需要返回重写这一部分。现实中这种情况很少发 生。 确保自己的论文中有中心思想。如果你的程序在10毫秒内解决了问题X,告 诉读者你是如何办到的。不要只是解释呢的系统是如何构建的,是做什么的,还要解 释其工作原理和价值所在。 写作是给人看的,而不是机器。因此光观点正确是不行的,还要易懂。不 要靠读者自己去推理,除非是最明显的推论。如果你在第七页的脚注上解释了某个小 玩意的工作原理,接着在第二十三页没有进一步解释就引用了它,此时如果读者感到 困惑一点都不值得奇怪。正式的论文要写清楚是很难的。不要模仿数学领域的文献, 它们的标准是尽可能少的解释,使读者感到越困难越好。这并不适用于AI。 写完一篇论文后,删掉第一段或者头几句话。你会发现那是与内容无关的 一般性话语,更好的介绍语句在第一段最后或者第二段的开头。 如果你等做完所有的工作后才开始写作,会失去很多。一旦开始了某个科研项目 ,要养成这样的习惯:写作解释当前工作进展或者每几个月学习所得的非正式论文。 从你的研究笔记中的记载开始。花两天的时间写下来——如果你花的时间更长,说明 你是一个完美主义者。将论文与你的朋友分享。写的是草稿——不是为了被引用的那 种。将论文复制数十份,送给那些感兴趣的人(包括你的导师)。与写正式论文相比 ,这样做具有很多相同的好处(评论,理清思路,写作练习等等),而且从某种意义 上讲,付出无需那么多。经常地,如果你做得不错,这些非正式论文以后可以作为正 式论文的骨干内容,也就是从AI实验室的Working Paper成为一篇期刊文章。 一旦你成为Secret Paper Passing Network的成员,会有很多人给你寄论文拷贝 要求评论。获得他人对自己的论文的评论是很有价值的。因此你评论的论文越多,你 获得支持就越多,也会收到更多人对你论文的评论。不仅如此,学习评价别人的论文 有助你的选择。 为论文写有用的评论是一门艺术。 要写出有用的评论,需要读两遍论文。第一遍了解其思想,第二遍开始作 评论。 如果某人在论文中屡次犯同一错误,不要每次都标记出来。而是要弄清楚 模式是什么,他为什么这样做,对此还可以做什么,然后在第一页清晰地指出或者私 下交流。 论文的作者在合并你的评论时,将会遵循最小修改的原则。如果可以,就 只修改一个词,不行再修改一个词组,再不行才修改整个句子。如果他的论文中某些 拙劣之处使得他必须修改整个段落,整个小节甚至整篇论文的组织,要用大字体的字 母指出来,这样他才不会忽视。 不要在论文写毁灭性的批评如“垃圾”。这对于作者毫无帮助。花时间提 出建设性的建议。要设身处地地为作者着想。 评论有很多种。有对表达的评论,有对内容的评论。对表达的评论也可以很不同 ,可以是校对打字稿,标点,拼写错误,字词丢失等。应该学一些标准的编辑符号。 还可以是校正语法,修辞,以及混乱不清楚的段落。通常人们会持续地犯同一语法错 误,因此需要花时间明确地指出。接下来是对组织结构的评论:不同程度(子句,句 子,段落,小节乃至一章)的次序混乱,冗余,无关的内容,以及丢失论点。 很难描述对内容进行评论的特征。你可能建议作者扩展自己的想法,考虑某个问 题,错误,潜在的问题,表达赞美等。“因为Y,你应该读X”是一种总是有用的评论。 当被要求对论文作评论时,你首先想弄清楚哪种评论更有用。对于早期的论文草稿, 需要你主要对内容和论文的组织结构作评论;对于最终的草稿,需要你主要评论表达 的细节。注意,作为一种礼貌,在要求别人评论之前,应首先用拼写检查器对自己的 论文进行检查。 你无须接受所有的意见,但是必须都认真对待。将论文的部分内容裁掉是挺令人 痛心的,但往往也提高了论文的水平。你经常会发现某个意见确实指出了问题,但是 解决方法你觉得不可接受,那么就去寻找第三条道路。 要多发表论文,这其实比想象中的容易。基本上,AI出版物评审者评审论文的标 准是:(a)有新意;(b)在某些方面,符合标准。看看IJCAI的会议录,你会发现论文录 取的标准相当低。这种情况由于评审过程本身固有的随机性而变得更糟糕了。所以一 个发表论文的诀窍是不停地试。 确保论文可读性比较好。论文被拒绝的原因,除了没有意义之外,就是无 法理解或者组织糟糕。 论文在投往期刊之前,应该交流一段时间,并根据反馈的评论进行适当的 修订。要抵制那种急匆匆地把结果投往期刊的做法。在AI领域,没有竞赛,而且不管 怎么说,出版周期的延迟要大大超过对草稿进行评论的时间。 读一读你想投稿的期刊或者会议的过刊,确保自己论文的风格和内容是适合的。 很多出版物都有一页左右的“作者投稿须知”,仔细看看。 主要的会议都会在被接收的论文中评出内容和表达俱佳的获奖论文,仔细 研究研究。 通常是向会议投交一篇篇幅比较短的有关部分工作内容的早期报告,然后 再往期刊投交一份篇幅长的最终的正式论文。 论文被决绝了——千万不要沮丧灰心。 期刊和会议的论文评审过程存在很大的不同。为了节省时间,会议论文的 评审必须迅速,没有时间细究或者交流。如果你被拒绝了,你就失败了。但期 刊论文则不同,你可以经常地与编辑争辩,通过编辑与评审人争辩。 评审人一般都会对你有帮助的。如果你收到了令人生厌的评审报告,应该 向大会的程序主席或者编辑投诉。不能期望可以从会议论文评审人的报告那里 得到多少反馈。但对于期刊论文,往往可以得到非常棒的建议。你不必完全按 照评审报告的建议去做,但是,如果你不按照报告去做,那么就必须解释原因 ,并且要意识到这可能会导致进一步的负面评价。不管怎么样,无论是哪种的 评审,作为评审者都要有礼貌。因为在余下的职业生涯中,你将会与被评审者 在一个学术圈子里。 MIT AI Lab Memos大体上是或者接近发表的水平。实际上,Technical Reports基本上都是这些Memos的修订版本。Working Papers则更不正式,这是 很好的将自己的论文分发给同事们的方法。要出版这些内部文件,只需到 Publications Office(在活动楼八层)领一份表格,并有两位教员签字即可。 就像其它的科研活动一样,论文写作所花的时间总是比期望的要高。论文 的发表在耗费时间这个问题上则更严重。当你完成了一篇论文,投出去,等待 发表。数月后,论文以及评论被返回来。你不得不对论文进行修改。然后又是 几个月,才返回对你的修改的确认。如果你同时发表了该论文的不同形式,如 有一篇短的投会议,一篇长的投期刊,这样的过程将反复数个回合。结果有可 能是当你已经厌倦了,研究主题也已经令人生厌后数年,你仍然在修改那篇论 文。这启示我们:不要去做那些需要热情投入但是很难发表论文的研究——苦 不堪言。采纳哦

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

数学毕业论文要建模

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

是需要的作为一个每年指导学术论文有上千篇的学术老鸟,给您一点建议感谢您的信任与支持,一般建模都是在优化方案之前,先是写概念,然后建模再下来,根据建模分析,根据数据分析发现问题,最后在写优化方案。那么论文里面也不一定非要建模,重点看的是工作量够不够,同时有没有自己的创新点。只要有十件数据支撑那是最好的,但是也不一定要建模。

需要一般理工类的论文写作需要进行建模。特别是数学类的专业,更是需要运用到建模这一板块。

有关数学建模毕业论文题目

我学校最近就搞了一次高一数学的论文竞速赛(也是生活中的数学),这里有几个获奖题材你可以参考(1)数学概率与股市的涨幅(这个得了第一名)(2)三角函数对生活中几何研究的帮助(第二)(3)数学VS台风(第三)我也写了一篇,不过没有获奖,千万记住:如果你的标题是《XXX论》的话,肯定打靶了,因为我的就是这个,我老师也说了,他们批改的时候,一看到这种题目,就不会有什么好印象如果有帮助就采纳吧O(∩_∩)O~

取数学建模论文题目取法如下:

首先看论文首页的三要素:

1.标题:基于xx模型的xx问题研究

2.摘要:针对每一个问题分别阐述问题、方法、结果

3.关键词

其次看论文题目基本要求:

简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。

最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。

基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究

基于利润最大化的奥运商业网点分布微观经济模型

基于力学分析的系泊系统设计

奥运场馆中临时商业网点设计中的数学模型化方法

CT 系统参数标定及反投影重建成像

拓展

参加数学建模比赛的意义

有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。

2有利干促迸高职数学课程的改革

大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

在网上找的,希望对你有帮助 :))

数学建模论文题材

台阶设计中的建模分析一.问题的提出台阶,楼梯是我们日常生活中常见的,天天行走的建筑结构,良好的台阶设计不仅可以节省上楼时间,也可最大限度的减少体力消耗。然而,不合理的设计会使人们上楼时既费时又费力,甚至还会发生危险。所以我们不禁要问,怎样设计台阶长度宽度比才能达到最优呢?(下文主要针对上楼过程给出讨论,下楼的讨论在最后涉及)作为解决问题的第一步,我们首先来证明这个最佳设计的存在性,下面两张图为两种不同类型的台阶保持总高度,台阶宽度,体力消耗一定时令台阶高度h充分小,则台阶数目会充分大,最终上楼时间t趋于无穷。因此我们是不会去登此楼梯的。再令h充分大,而人腿运动能力是有限的,由于每一步做功的增加势必会造成登楼时间的集聚增长,这种h我们同样无法接受。由于各种状态的连续变化,我们就可以断定,存在这样一个h,使得t最小。同理,台阶长度r很小时,人无法站稳,r充分大时,时间t趋于无穷。所以我们便有充足理由相信最优的r,h皆存在。分析到这里只是依赖于感性的认识与几何的直观,下面我们将用数学的观点给出尽可能合理的解答。二.问题的分析符号表示:M 人体质量g 重力加速度l 人的小腿长度v 人的正常行走速度F 上楼过程中腿部力量H 楼梯总体高度h 台阶高度r 台阶长度P 人体登上高度H的楼梯时最舒适的输出功率C 人的脚长要细致而全面的分析此问题,可以将人登楼的全过程分解处理,将上楼的每一步设为一个单元,那么可以粗略的绘制出人体运动过程的简图。并考虑到上楼是个非常复杂的人体动力学过程,为了抓住主要矛盾并简化问题,一些人为的假设将是必要的。模型的假设:1,人每走一步脚的前端接触到B点。2,人的所有重量可以看成质点并集中在O(与集中在N是等价的),其他部位没有重量3,每一步迈出同样的距离(台阶宽),并且连续前进。4,人体上升的力量全部来自支撑腿的力F,F与h有关且在h取定的情况下F大小不变且始终保持ON方向。5,上台阶过程做功只在DN段,并且人总是以所谓最舒适的感觉(P恒定)上楼。6,台阶宽度大于等于脚长运动的分解:可以将登上台阶看为两个运动过程1.(由M到N)人若想登上台阶,向前倾斜重心将是第一步,毕竟人是前进的。要在D点发力,将M点移动到N点将是合理的。而且此过程与人在平地行走时的状态非常接近(这里将它们等同看待,速度也为v,v的方向近似水平)。为了简化计算,可以令此段做功充分小从而可以忽略(因为我们的主要矛盾是上楼,此段做功的变化也是相当于平地上走5米与10米的区别,而这种差别在正常人看来是微乎其微的)2.(N点竖直向上达到直立并回到初始状态)在此过程中所做的功为F的贡献(这里腿部的屈申很类似课堂上铅球投掷模型中球的出手过程,因为当时的主要矛盾为球的初速度,所以可以将其近似看做线性关系,然而此时的重点是这个屈申过程,因此假设与模型机理自然不同)。随后根据生物课所学知识,可以知道,人腿的运动都是靠肌肉细胞的伸缩变化产生伸缩力的(伸缩方向只能沿腿的方向),因此这里可以将所有肌肉的发力等效看为一个力,方向总是沿着腿的方向,大小恒定(实际上F要随着角度的变化而变化,为了简化问题可以将其设为恒定)。由于考虑到人在2过程上升时做的功实际为非保守力所做功(并不是w=mgh),一个很简单的直观,就是同样登上两米的高度我们分10步与分2步腿部做功一定不同。造成这种差异的根源在于腿的承重能力与发力方向角度的大小(也就是说台阶越高,我们所做的额外功越多)。所以要去用数学的观点度量所谓“腿部做功”这个概念,假设4将是必要的。其次我们要去度量所谓“舒适”与“疲劳”的概念。通常,在短距离内造成我们疲劳的主要原因实际为腿的运动强度过高,即功率P过大。这就使我们度量“舒适”成为可能。三.数据的获得行走速度v的测算:首先所谓“正常速度”就是一个模糊概念,但又是客观存在的,为了尽可能得到人正常行走时的速度并要求误差尽量的小,所以这里采用多次测量的方法。并且需要亲自进行实验。恰好家附近的楼门口的地面由方砖铺成,每块砖为正方形,边长为米。这就为距离的测定提供了方便。用最大自控能力以正常速度行走,规定走过五块砖时开始记时并规定这点为距离零点(为了将加速段去掉)。最终得到11组数据距离(米) 时间(秒)1 在matlab中进行拟合得到下图。一次多项式为y=所以算得自己的正常行走速度为体重53公斤,小腿长米,脚长米,都是可以精确测量的。唯有功率P未知,但由于我们假定它的大小不变,所以在随后的模型求解中可以根据关系式将其反解出。四.模型的建立由假设 台阶总数即为 (有分数出现时如 则可近似看为取每一小段时间的 倍。这种误差是可以被忽略的)设 那么过程一的时间为 且满足关系 代入可得过程一的总时间为过程二的总时间为其中 为h,l,F,p的函数由于我们假设了M,N点有近似相同的高度。那么 是与x无关的函数。若令总时间最小,一定要求x最小。所以可得 。我们得到结论台阶宽度应设计为近似脚长的宽度。由此,我们得到如下A图所示。并据此讨论h的变化由于我们先假设F大小恒定。若F能带动人体上移,必要求Fy至少等于mg,那么在最省力的情况下,我们取 .此时我们已将F分解。因此N点运动到S点过程中要求F所做的功只需对Fx Fy分别求功即可。我们将运动过程细致分析并放大为B图当台阶高为h时Fy方向上的做功:设NNm的长度为变量m,当Nm由N运动到S时。M由0→h变化。计算得用微元分析,当m变化△m时。 其中S(△m)为Om竖制直方向上运动距离。对m积分 2,当台阶高为h时Fx方向上的做功:微元分析,增加△m,我们得到 两边同除△m,并令△m→0。因此其中S(m)为PmOm的长度。对m积分由于我们假定的F为h的函数(h取定时大小恒定)。所以取综上我们得到上楼总时间 下面我们来由此式确定T的最小值,将参数 P待定。以上计算都可交给maple完成。计算过程如下 t:=m->sqrt(((2*)/2)^2); diff(t(m),m); e:=m->-sqrt(((2*)/2)^2)*1/2/(.2209-(.4700000000-1/2*h+1/2*m)^2)^(1/2)*(*h-1/2*m)/; int(e(m),m=0..h); wy:=h->(2**h-h^2/2)/(4*); F:=h->(2**53*)/(2*); wx:=h->> .4999999999**h^2由此,我们发现,Wx,Wy做功基本是一样的。所以最终,总时间表示为>f:=h->H*(*(2**53*)/(2*)*(.4999999999**h^2+.5**h^2)+*P)/(h*P*);而且根据如上结果我们可以观察出人腿做功(Wx(h)+Wy(h))与实际有效功Mgh之间的关系随h变化的过程图。其中红线为人腿做的总功,黄线为有效功Mgh。这种变化也是符合我们感觉的,例如,随h的增大,我们迈上台阶会感到越发的费力,h越大这种变化越明显。随后进行几组实验来确定P的近似取值。分别选取不同的楼梯,从下走到上按一般速率(不感到劳累),并记录下经过的时间。并根据假设与上式分别求得P,得到下表次数 台阶数 n 台阶高度 h 总高度H 时间 t 功率 P1 20 18 25 16 20 22 20 3 18 16 经实践证明,P并没有随总高度H以及h的变化而发生太大变化,说明我们之前的假设是基本合乎情理的。这里取9次测量的平均值作为P,所以我们得到P=.我们在第一种情况下对T进行分析。取H=>f:=h->*(*(2**53*)/(2*)*(.4999999999**h^2+.5**h^2)+*)/(h**); plot(f(h),h=);由图象,我们观察到,确实存在这样一个h使得总时间最少,也就是说任意给出某h下上楼的时间,就可以算得在此情况此功率P下,时间最小时h的理想高度。上图中,从到米间减少的时间在秒左右,而这种时间的优化由于太小(秒)以致于我们可以不去考虑(可以近似看为不变)。而时间迅速减少的阶段在到段。那么为了使腿部用力尽量的小,我们不妨将h定在米。随后我们要问,这种模型的可靠性如何,由于v P是粗略度量的,所以下面我们要对这两个参数进行灵敏度分析。 plot3d(f(h,v),h=); plot3d(f(h,p),h=);从三维图形可以观察出,模型还是比较可靠的。这里没有用老师上课应用的灵敏分析方法是因为我只想直观的表现出解对参数的连续依赖程度。仅仅用离散数据似乎是不直观的。到这里为止,已经算得对于我来说,最佳的台阶高度应该为米左右,也就是说,这个高度可以最充分而有效的利用我的正常功率,使上楼总时间最短,而不致超过限度而感到疲劳。这里顺便说明一下下楼过程,人的下楼过程在短距离内完全可以近似看为腿部做0功并完全由重力做功的过程。由于重力是保守力,那么下楼时间应该于h近似无关。但是长时间下楼为何又使我们感到疲劳呢?原因也许是下楼时的缓冲用力。毕竟人不同于木块和小球,过快的下降对腿部以及身体的冲击造成人的不适感,因此腿部总要做一些功使其缓慢下降,平稳着陆。我在这里引入缓冲时间 这一变量并且 其中T为下楼实际总时间,L为台阶宽度,v为水平行走速度。显然 便为缓冲(延迟)时间总和。对于大部分正常人,在短的距离下楼过程中,在h正常范围内(上文算得的范围内), 都可近似看为0。则我们只许讨论上楼的过程即可。然而,是不是 可以永远被忽略呢?答案显然是否定的。例如当H很大时 就是H与h的函数了(H的影响不可忽略),又如一些特殊人群老年人,残疾人等等 便会相当大,这时下楼这一过程就要单独考虑了。五.模型的检验由于这个以上数据的特殊性,便使模型过分特殊化了,毕竟台阶不是我一人走。然而自己是个正常人,即使考虑到众多人参数的不确定性因素,变化也不会太大。经调查发现,校园内各台阶都是在到米之间变动,最低为科技楼前台阶,最高为四食堂前台阶。宽度都为近似脚的长度,说明模型的结论还是勉强可以的(虽不那么准确)。这就相当于对模型做了一定程度的检验(因为台阶的高度可以根据实践进行适当调整,不适当的高度一定无法存在的,或是被改造,或是在下一次建设中改进)进一步,我们可以参考1999年6月1日起实施的《建筑设计规范GB50096-1999》的相关规定:“楼梯踏步宽度不应小于,踏步高度不应大于,坡度为°,接近舒适性标准。”而其中的一定是脚长,便是最佳高度。(此结果也许是相关力学家与统计学家做出的结果,应该是比较权威的数据)误差分析:从上面的检验可以看出,计算的结果与实际确实有着差异,计算的h偏大,造成这种偏差的原因我归结为如下几点(1) 人的体重差异(2) 身高以及腿长的差异(3) 人的脚长差异(4) 身体前倾的速度(这里取为行走速度,然而过程一,只是前倾过程,其速度一定要比行走速度大,可不易测量,因此误差一定不可避免)(5) F随腿的运动而变化的函数未精确知道(将涉及复杂的人体动力学,由于所学知识有限,为化繁为简,只好假设其大小恒定。计算结果又无太大偏差,说明假设基本合理,但误差同样不可避免)(6) 人的正常功率的差异,例如:老年人与青壮年,专业运动员与普通人所能承受的运动量一定不同因此如果能够精确知道如上数据,有理由相信计算结果的误差会非常之小。模型将会更加可靠。六.模型的意义通过对此模型的分析,找到了F v P c L M 之间的大致关系。但也由此提出了一个问题,建筑设计规范《GB50096-1999》中的规定是否太片面呢?其中数据米一定是一个统计平均值。在某些特定场合一定要再进行进一步明确的规定,例如:中学校舍与大学校舍台阶高度可以等高。然而幼儿园内,养老院内,康复中心内的台阶就一定要另做规定。否则会由于台阶高度的不适当导致危险的发生。如果我们得到相关数据便可根据模型,分别计算最适高度,从而将建筑设计规范的内容进行扩充。END参考资料:相关人体力学分析可参考网页小注:此模型最早由中学数学老师在建模课中提出,当时由于数学工具的缺乏只是作为话题提出的。由于自己的好奇从此便将此问题牢记在心。随着数学知识的积累,今天在自己的能力范围内做了一次大胆尝试,心知此问题必定有许多人潜心研究过。但这并不妨碍建立自己的模型。虽然假设过多,内容略显粗糙臃肿。至此问题得到了基本粗略的解决.Thank you for your time and kind consideration !!

取数学建模论文题目取法如下:

首先看论文首页的三要素:

1.标题:基于xx模型的xx问题研究

2.摘要:针对每一个问题分别阐述问题、方法、结果

3.关键词

其次看论文题目基本要求:

简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。

最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。

基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究

基于利润最大化的奥运商业网点分布微观经济模型

基于力学分析的系泊系统设计

奥运场馆中临时商业网点设计中的数学模型化方法

CT 系统参数标定及反投影重建成像

拓展

参加数学建模比赛的意义

有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。

2有利干促迸高职数学课程的改革

大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

数学建模论文题目

论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词:…、…、建模论文题目形式一般采用以下两种:Ø 基于xx模型/方法(主要的、特色的)Ø 赛题所给题目/研究的问题

1、小学低年级数学游戏教学方法的案例研究。

2、以学习为中心的小学数学教学过程研究。

3、激发小学生数学学习兴趣的实践研究。

4、农村小学与初中数学教学衔接问题的研究。

5、小学低年级学生数学学习兴趣的培养。

6、游戏化教学在小学数学教学中的应用与研究。

7、激发兴趣对小学生数学探究能力影响的研究。

8、小学数学教学中信息技术应用策略研究。

9、《几何画板》在小学平面图形上的教学应用研究。

注意。

1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。

2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。

3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。

4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。

取数学建模论文题目取法如下:

首先看论文首页的三要素:

1.标题:基于xx模型的xx问题研究

2.摘要:针对每一个问题分别阐述问题、方法、结果

3.关键词

其次看论文题目基本要求:

简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。

最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。

基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究

基于利润最大化的奥运商业网点分布微观经济模型

基于力学分析的系泊系统设计

奥运场馆中临时商业网点设计中的数学模型化方法

CT 系统参数标定及反投影重建成像

拓展

参加数学建模比赛的意义

有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。

2有利干促迸高职数学课程的改革

大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

  • 索引序列
  • 数学建模题毕业论文
  • 数学毕业论文要建模
  • 有关数学建模毕业论文题目
  • 数学建模论文题材
  • 数学建模论文题目
  • 返回顶部