首页 > 学术期刊知识库 > 高数研究性论文

高数研究性论文

发布时间:

高数研究性论文

大学高数小论文

在学习和工作的日常里,大家对论文都再熟悉不过了吧,通过论文写作可以提高我们综合运用所学知识的能力。那么一般论文是怎么写的呢?以下是我整理的大学高数小论文,欢迎大家借鉴与参考,希望对大家有所帮助。

【摘要】本文结合自己对高等数学的教学实践,以及高等数学的教学特点,给出了培养学生主动学习高数的方法和途径。

【关键词】高数;自学能力;会学;乐学

同志曾说:“会学比学会更重要,学会思考比学会知识更重要”。人们常说的“授之以鱼,不如授之以渔。”也就是这个道理。教是为了不教,学是为了会学。因此如何培养学生自学能力,使之找到适合学生自己的独立学习方法尤为重要。笔者结合自己高等数学的教学实践,以及针对石大商学院学生的特点,谈谈教师如何在教学中培养学生自主学习的能力。

一、是明确目标,端正学习态度,认识学习高数的重要性。

刚上大学,有的学生觉得学习数学一下子变得困难起来,开始怀疑自己的能力,有的甚至认为自己没有数学细胞,觉得数学越学越难学,越学越糟糕。其实,同学们没有找到真正的原因。与初高中相比,大学数学内容丰富,推理论证性强,抽象,教学难度大,学习要求明显提高。对于非数学专业的学生来说,感觉高数对自己以后找工作也没用,就是一门基础学科,学与不学都一样,另外再加上原来是文科的学生来说,更感觉是天书,一遇到学习困难就缴械投降,失去了学习的兴趣,从此就不再愿意学习数学。那么这个时候,带课教师的正确引导就变的更为重要。带课教师在高等数学教学前,非常有必要针对这门新课程进行入学教育,结合学生的专业,做些简单的介绍,使学生初步了解这门课程的内容、重要性、学习目的、学习方法及课程大致的教学安排。了解这些是为避免学生开始时就不自觉地进入被动的学习,在学之前就知道为何要学、如何去学。这也为以后的自主学习开了个好头。

二、是努力让学生对高数爱学,乐学,会学。

教学水平的高低通过学生来检验,教学效果优良的课程,学生一定由爱学到会学。其实也就是逐渐培养学生的自学能力,变被动学习为主动学习的一个过程。那么这个过程该如何体现呢?

(1)认真开列自学提纲

主要由教师根据某一单元的教学内容,抓住教学的重难点,给学生列出自学提纲。列题纲的目的就是为了激发学生的兴趣和体现学生积极主动性学习。同时,为了提出高质量的自学提纲,教师就必须要吃透课本,很好的把握教材的重难点。如在讲《线性代数》的矩阵概念和运算这一节的内容时,可以给学生列出这样的提纲。

1、什么是矩阵?也就是矩阵的概念。

2、矩阵与行列式的区别在哪?从形式上有什么区别?

3、矩阵都有哪些运算?具体的'每一种运算都是如何来进行的?在数k乘矩阵的运算与数k乘行列式的运算的区别在哪?在此基础上,学生就可以自学来解决这些疑问。

(2)提高学生的数学阅读能力

提高学生的数学阅读能力是培养学生自学能力的关键。自学能力的核心是数学阅读能力,数学阅读能力提高了,也会促进其他能力的发展。由于大多学生受传统教学的影响,习惯听老师讲,思维上养成惰性,被动的接受,从来不去自己主动的学习,老师讲多少就听听多少。这也是一部分学生对数学经常有“一讲就懂,一看就会,一做就错”的原因。只会用公式去套题,或用题去套公式,没有正确的解题思路,不会思考,更不善于思考,也就不能举一反三。因此,要让学生学会自学,必须学会阅读,这就需要教师加强对数学阅读的指导。把握数学阅读的“四种读法”。“四种读法”是指:

a、“泛读”:要求对本节课的大致内容有初步了解,了解基本内容;

b、“细读”:要求对所读内容有全面的一个了解,弄清定理、公式的性质,明确公式、例题的渐进梯度和知识关联的范围;

c、“精读”:在泛读的基础上,对与重点、难点有关的内容进行阅读,着重掌握数学内容的知识体系,既要知其然,又要知其所以然;

d、“熟读”:要求学生通过阅读,总结规律,融会贯通,基本内容烂熟于心。

(3)注重练习,及时的进行归纳总结

数学课不同于其它课,最大的窍门在于多练,孰能生巧。只有通过大量的做练习题,才能更好地巩固本节课的知识点,才能掌握更多的解题技巧,才能把失误降到最低点。平时练习太少,计算能力太差,考试的时候一做就错。另外,在做完题后及时的进行总结。就拿行列式的计算来说,只有多多练习,在做完题后,及时针对不同的行列式进行方法总结,你才能掌握求解行列式的技巧,比如定义法,目标行列式法,降阶法,升阶法,归纳法等等。掌握了方法后,在做题的时候,才能根据行列式的特点选择正确的计算方法。

(4)引导学生做好预习、复习,培养自学习惯

为了培养学生的自学能力,预习和复习也是非常重要的。通过预习,学生才能更清楚的知道自己对本节的哪个知识点看不懂,带着问题听课,听课的时候有所侧重,这也在某种程度上起到一种激发学生学习的兴趣,正因为不会,上课才要更好好的听老师讲,使学生“乐学”。学生一旦有了学习兴趣,特别是直接兴趣,学习活动对他来说就不是一种负担,而是一种享受、一种愉快的体验,学生会越学越想学、越学越爱学,有兴趣的学习事半功倍。相反,如果学生对学习不感兴趣,情况就大相径庭了,学生在逼迫的状态下被动学习,学习的效果必定是事倍功半。当然课后复习也特别的重要,学生往往不太重视对概念的理解,以致导致学生课堂上啥都听懂了,下去做题问题就出现了,其实这是学生对概念没吃透,稍微变下题型就不知道从哪下手。复习不是翻开书走马观花,要找到自己不会的地方,增强记忆。因此这一方面,老师一定引导学生围绕学习重点,理解相关的内容,在概念,理论以及方法上下功夫。

(5)创造良好的课堂氛围

大量的教学实践证明,要求学生循规蹈矩,洗耳恭听的课堂学习环境是不可能吸引学生好奇、自由想象和大胆质疑的,学生在这种环境中,学的被动,学的压抑,当然不可能调动起学习积极性。因此我们要营造良好的学习氛围,才能使学生愉快地、主动地参与到学习中来。要摒弃传统的“注入式”教学模式,给学生一定的时间和空间,启发诱导学生积极思考,主动参与,鼓励学生发表不同的见解,活跃氛围,让他们真正体会到他们是学习的主人。教师在讲课过程中要吸引学生眼球。教师讲课的内容要承前启后,突出重点,讲透难点;讲课的语言要规范,准确,力求生动;讲课的声音不仅要洪亮,而且要悦耳;语调要抑扬顿挫,有起伏,有高潮,还可以适当采取诙谐幽默的语言。教师在讲课时目光一定要关注学生的表情,看学生是否听课,注意力是否集中,是否听懂,切不可背向学生念讲稿。在教学的过程中,教师要调动学生的思维,可以恰当的在课堂中提问,或自问自答,或组织学生当堂讨论,或者给学生上台展示的机会,或者是如果课时容许的情况下辅导学生备课主讲某节内容,然后教师讲评,最后教师把学生讲的不到位的地方,再加以补充,效果很好。

在课堂练习中,让个别同学在黑板上做,做完教师并不要急于评价谁是谁非,而让其他学生自己来评讲,解错了,要分析原因,找出错误的症结,再重新做一遍。这样做,不但使得练中有思,而且锻炼和培养了学生的思维品质,正确的该怎么做;解对了,要想有没有更好的解法,鼓励学生采用多种方法解决问题;这样大家集思广议,不但把问题解决了,而且还可以拓宽大家的思路,使他们相互启发,共同进步。

(6)充分利用现代化高科技的教学手段

充分利用现代化教学手段,提高学生自学的能力。两方面,一方面是老师要根据该课程的特点,高数内容多且抽象,若能采取多媒体+适当板书的讲授,定能事半功倍。另外在课件的制作过程中可以使用动画,图案的效果,达到吸引学生的注意力。另一方面就是学生要利用网络优势,学会查找学习资料以及充分利用相关媒体资源。特别要注意网上学习资料的下载和学习,比如本学校的网络教学平台,任课教师一般会在教学平台上传该课程的教学大纲,教学日历,以及相关的学习课件,练习题。

这是笔者借鉴同行以及自己在教学过程中的一些体会,目的在于培养大学生学习数学的一种自学能力,或者说一种兴趣,要培养学生爱学,乐学数学;不要一提起数学,大家都很头疼的。总之,只有转变教学观念,只有以学生为中心,充分发挥学生的主体作用,通过教师适当的点拨引导,才能全方位地提高学生的综合素质,达到培养和提高自学能力的目的。

参考文献:

[1]徐振华.关注学生差异,提升有效教学[J].教育研究与实验,2010(12).

[2]马德炎.谈创新与大学数学教育[J].大学数学,2003(1).

黑笔填写,字迹尽量工整,不要涂抹过多,

确定论文题目:一般来说,论文题目需要具体而有限,以便准确定位论文研究范围,同时需要能够吸引读者的兴趣。

搜集和阅读相关文献:了解前人研究的成果和方法,可以有助于确定论文研究方向,避免重复研究,同时还能够帮助你深入理解高等数学的相关概念和理论。

确定论文研究范围和方法:根据论文题目和已有文献,确定论文的研究范围和方法,可以考虑使用具体的数学定理或方法来解决问题,或者进行数学建模、数值计算等实际应用研究。

开展研究和分析:根据确定的研究方向和方法,进行具体的数学分析、计算和证明等研究工作,需要使用逻辑清晰、严密的数学语言来表述。

撰写论文:根据论文规范,撰写高数论文,需要遵循科学的论文写作规范和语言规范,同时还需要注意语言表达、论据逻辑、结论的准确性等方面的问题。

总之,写好高数论文需要全面掌握高等数学的相关理论和方法,同时还需要具备严密的逻辑思维能力和科学的论文写作能力。如果你需要写高数论文,可以参考以上步骤,同时可以向导师或同学寻求帮助和意见。

高中研究性论文1800字数

3500字 一般的论文要求。要写PPT。PPT制作最简单的方法就是插入smart图 ,在框框里输入你要写的字就行了ppt不能少于10页。PPT就是把你的论文要点截取在里面,让大家跟看电影一样把重点记住

……你是小学生啊!

高中生研究性学习论文课题:我们身边的水摘要:本文是我们五位同学综合实践活动的成果,阐述了水的组成、性质,对我们生活中的水进行了分类和比较,在此基础上阐述了它们的各自用途。最后分析了长江流域和古运河流域镇江段水质污染状况及其原因,并初步提出治理构想。关键词:水,身边的水,分类,用途,水质污染水(H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。1水的性质物理性质 水在常温常压下为无色无味的透明液体。在20℃时,水的热导率为 J/s�6�1cm�6�1K,冰的热导率为 J/s�6�1cm�6�1K,在雪的密度为×103 kg/m3时,雪的热导率为 J/s�6�1cm�6�1K。水的密度在℃时最大,为1×103kg/m3,温度高于℃时,水的密度随温度升高而减小 ,在0~℃时,水不服从热胀冷缩的规律,密度随温度的升高而增加。水在0℃时,密度为×103 kg/m3,冰在0℃时,密度为×103 kg/m3。水是良好的溶剂,大部分无机化合物和少部分有机化合物可溶于水。化学性质 水的热稳定性。水的热稳定性很强,水蒸气加热到2000K以上,也只有极少量分解为氢气和氧气,但水在通电的条件下会分解为氢气和氧气。2H2O 2H2↑ + O2↑水与金属反应。很多活泼的金属能与水反应,如钠、钾、铁等。2Na + 2H2O = H2 ↑+ 2NaOH3Fe + 4H2O Fe3O4 + 水与非金属反应。少部分非金属能与水反应,如氟气、氯气、碳等。Cl2 +H2O HCl + 水与一些金属氧化物和非金属氧化物能与水反应。如氧化钠、氧化钙、二氧化碳、二氧化硫等。Na2O + H2O = 2NaOHSO2 + H2O 与其它物质反应。NH3 + H2O + H2O → Ca(OH)2 + C2H2↑2水的分类及其应用普通水、重水、超重水氢元素有三种核素,分别为普通氢(核中1个质子,又叫氕)、重氢(核中有1个质子,1个中子,又叫氘)、超重氢(核中1个质子,2个中子,又叫氚),它们分别与氧结合形成普通水、重水和超重水。普通水的分子式为H2O。重水又叫氧化氘或氘水,分子式是D2O。重水是无色、无臭、无味的液体,但它的一些物理性质跟普通水稍有差异。例如,重水的密度是(25℃),而普通水是(25℃)。这是重水得名的由来。重水的熔点是℃,沸点是℃。盐类在重水里的溶解度比在普通水里小。例如,在25℃,100g普通水中能溶解,而100g重水只能溶解。许多物质跟重水发生反应,反应比普通水慢。重水对生物有不利影响。植物种子浸在重水里不能发芽,鱼类在重水中会很快死亡。一般的普通水中含重水约%。电解水时,由于普通氢气(H2)比重氢(D2)放出快6倍,所以电解水的残留液中重水被富集。目前生产重水的方法有电解法、精馏法和化学交换法。重水的主要用途是在反应堆中作慢化剂(又叫减速剂)和冷却剂。重水分解时产生的氘是重要的热核燃料。在化学和生物学中,重水用作示踪物质来研究反应机理等。 超重水的化学分子式为T2O,每个重水分子由两个氚原子和一个氧原子构成。超重水在天然水中极其稀少,其比例不到十亿分之一。超重水的制取成本比重水还要高上万倍。生活中的水自来水 天然水经过过滤、沉淀、消毒以后的水,主要成分是水,其次有一些离子如Ca2+、Mg2+、Cl-等等。虽然自来水经过处理后,但还有微量的细菌如大肠杆菌,另外还有一些其他的溶质,因此自来水不能直接饮用。自来水的密度大于纯水的密度,没有固定的沸点。自来水在加热沸腾后可以饮用,可直接作为工业用水。矿泉水 矿泉水是从地下深处自然涌出或经人工揭露、未受污染的地下矿水。矿泉水含有对人体有益的多种矿物质和微量元素,如锂、锶、硒、锌、溴、钼等,生理功能强,对人体有一定的保健作用。在通常情况下,矿泉水的化学成分、流量、水温等动态在天然波动范围内相对稳定。纯净水 纯净水是以江河湖水、自来水等为水源,采用蒸馏法、电渗析法、离子交换法、反渗透法等处理工艺制成的。就是经过复杂深层的净化程序达到无菌纯净。纯净水是把水中各种元素最大限度的去除,只保留水分子,在去除有害物质的同时,也去除了有益的物质,因此不能长期饮用纯净水,要和矿泉水搭配喝 磁化水 磁化水是使水经过高科技超导磁体的磁化,使水分子结构发生变化而得到的一种水。水磁化后,其物理化学性质发生了很大变化,主要表现为电导率增大,PH值升高,密度减小,挥发性加快,溶解氧(DO)升高,难溶物质在其中的溶解度增大等。在大多数磁场下得到磁化水表面张力增大、沸点降低;在极少数磁场下,表面张力下降、沸点升高。磁化后的水的冰点变化不大。由于磁化水具有不同于普通水的结构和性质,使它在生产和生活中有很多用途。在医疗上,它对人的高血压、糖尿病、血稠、肾结石等疾病都有一定的刺激和疗效。饮用磁化水对消除运动疲劳也具有一定的作用。在工业上使用磁化水具有抑垢防垢、灭尘、提高混凝土的强度等用途。在农业上用磁化水对农作物进行灌溉,可以激活各种生物酶,增强酶的生物活性,促进叶绿素的形成,提高光合作用,从而促进作物的生长发育,提高作物的产量和质量。用磁化水养鱼,使鱼类的生长和抗病抗寒能力得到加强。超水 将普通水在密闭容器中加热蒸发为水蒸汽,并使水蒸汽在石英毛细管(内径在nm数量级)中凝结,这样得到的水叫超水,有人不科学地称之为纳米水。经过处理得到的超水缔合结构发生了很大变化,形成一种链状六角环结构的聚合物,其颗粒直径达到nm数量级。由于超水结构的特殊性,决定了它具有不同于普通水的一些性质:①其密度为普通水密度的倍(ρ超=ρ普);②其粘滞系数是普通水粘滞系数的15倍(η超=15η普),挥发性低;③超水的冰点为-100℃,在700℃时仍保持其特性。加热到900~1000℃时变为普通的水,并且在-100~700℃内无论加热、冷却还是长期存放,都不会改变其特性。超水活性高,能更容易地进入其它物质的分子之间,某些与普通水不相容的物质,如燃料油,能与超水很好相溶,水进入到油分子之间,改变了分子之间的相互作用,使分子结构更松散。按一定比例配成含有超水的燃料油,燃点低且燃烧充分,一方面可以提高燃烧率和机械效率,另一方面可以减少大气污染,具有巨大的经济效益和良好的社会效益。用超水做溶剂,可以制成在低温下仍保持液态的溶液,也可以根据其挥发性低及粘滞系数大的特点,制成抗挥发和抗渗透的溶液,在工业上大有用处。中水 中水就是将人们在生活和生产中用过的优质杂排水(不含粪便和厨房排水)、杂排水(不含粪便污水)以及生活污(废)水,经集流再生处理后,达到一定的水质标准,可在一定范围内重复使用的非饮用的杂用水,其水质介于上水(清洁水)和下水(污水)之间。对于“中水”有多种解释,污水工程方面称为“再生水”,工厂方面称为“循环水”或“回用水”,有的人又称之为“复新水”,一般以水质作为区分标志。经过处理所得到的中水水质必满足如下条件:(1)满足卫生要求:其指标主要有大肠菌群数、细菌总数、余氯量、悬浮物、COD、BOD5等;(2)满足人们感观要求,无不快感觉,其衡量指标有浊度、色度、臭味等;(3)满足设备构造方面的要求,即水质不易引起设备、管道的严重腐蚀和结垢,其衡量指标有PH值、硬度、蒸发残渣、溶解性物质等。处理后的出水一般用来冲洗厕所、喷洒道路、绿化、洗车、作为冷却水的补充水等。硬水与软水软水 含钙离子、镁离子较少或不含钙离子、镁离子的水,一般硬度低于8度的水为软水。 硬水 含钙离子、镁离子较多的水,一般硬度高于8度的水为硬水。硬水会影响洗涤剂的效果,硬水加热会有较多的水垢。 工业上在使用硬水之前一般要进行软化。淡水与咸水淡水 含较少盐份或不含盐份的水,一般作为民用水或工业用水。咸水 含有较多盐份的水,如北方盐湖水,部分地下水和海水都是咸水。

《普通高中“研究性学习”实施指南》,以下简称“指南”): ☆研究性学习是学生在教师指导下,从自然、社会和生活中选择和确定专题进行研究,并在研究过程中主动地获取知识、应用知识、解决问题的学习活动。 ☆“研究性学习”是指学生在教师指导下,以类似科学研究的方式去获取知识和应用知识的学习方式。 这个表述包含了以下几层含义。 “学生在教师指导下”,表明了学习活动中的师生关系。⑴研究性学习是在学校教育和集体教学的环境中进行的。它有别于个人在自学过程中自发的、个体的探究活动。⑵在学习过程中,学生需要的是指导或帮助,不仅仅是传授或教导。教师的主要职责是创设一种有利于研究性学习的情景和途径。 “以类似科学研究的方式”,表明了学习的基本形式。科学研究的本质是人类对未知世界的探究,在这种探究活动中,人们通过假设、想象、实证、逻辑等方式方法来认识世界、追求真理。在研究性学习的过程中,学习者将模拟科学家的研究方法和研究过程,提出问题并解决问题。如通过讨论、课题研究、方案设计、模拟体验、实验操作、社会调查等各种形式,探究与社会生活密切相关的各种现象和问题。中小学生的研究从研究过程说,大多并不具备严格意义上科学研究的严谨性和规范性,从研究结果看,一般是已有科学研究成果的“再发现”。因此,研究性学习的实质是学习者对科学研究的思维方式和研究方法的学习运用,通过这样一种基本形式和手段,培养创新意识和实践能力。 “获取知识和应用知识”,表明了学习的基本内容。这包括学习如何收集、处理和提取信息;如何运用有关的知识来解决实际问题;如何在研究过程中与人交流和合作;如何表述或展示研究的成果等等。 研究性的知识来源是多方面、多渠道的,即除了学习教科书中的间接知识以外,学习者还要广泛地获取未经加工的第一手资料—直接知识。获取知识的目的是为了应用,学会实际动手操作是研究性学习的重要内容,也是与一般的知识学习的基本区别。

高中数学研究性课题论文范文

高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科,如何才能提高数学教学的有效性呢?本文是我为大家整理的高中数学有效性教学研究论文,欢迎阅读! 高中数学有效性教学研究论文篇一:高中数学作业的有效性 一切实把握好“度”。 教师要认真钻研教材,正确掌握教学目标和学生实际,认真挑选与教学目标密切关联的作业内容,合理安排作业的量,正确把握作业的难易度,哪些是必做题,哪些是选做题。让学生根据自己的知识水平量力而行。 二做好作业前期准备。 作业前期准备有学生和教师的准备。学生首先认真阅读课本,本节知识点有哪些,需要掌握到什么程度,知识点之间有什么联络,研究例题,反思老师怎么分析、怎么讲解、怎么板书。其次反思本节知识难点的分解,反思所涉及的数学思想。最后再做作业。教师根据所任教班级的学生学情来把握是否有必要题意解释,适当地点拨,甚至详讲。 三精选作业内容。 1.选择涉及本节知识的部分较易的作为作业。如:学习全集补集概念课后布置作业:1若C∪A={5},则5与U,A的关系如何2已知全集U={1,2,3,4,5,6},C∪A={5,6},则A=____2.选择以涉及本节知识为主,但相对稍难的作为选作作业。例如,学习全集补集概念课后布置作业:已知 *** A={1,3,x},B={1,x2},设全集为U,若B∪〔UB=A,求〔.选择以章节知识为主,但具有一定的综合性、拓展性的作为章节复习作业。例如, *** 复习课后布置作业:设全集U={x∈N+|x≤8},若A∩C∪B={2,8},C∪A∪C∪B={1,2,3,4,5,6,7,8},求 *** A 四精选题型 要注重变式题、同类题、多解题、易错题、探究题题型的精选。1.变式题变式题指对原命题交换条件和结论或变换部分条件得出新题。这类题型有助于学生开阔思路,思维灵活多变,培养解题的灵活性,思维的发散性以及创新能力。例如,学习空间图形的基本关系与公理后布置作业:在平面几何中,对于三条直线a,b,c存在下面三个重要命题:若a‖b,b‖c,则有a‖c;若a⊥c,a‖b则有b⊥c:若a⊥c,b⊥c则有a‖b,它们都是真命题,若把a,b,c换成i不在同一个平面内的三条直钱,ii三个平面α,β,γ,iii其中两条直线换成两个平面,另一条还是直线,iv其中一条直线换成平面,另两条还是直线。一共可得到16个不同的命题,其中将正确的命题写在空白处。2.同类题同类题指具有多题一解的一类题。这类题型让学生领悟一类题解题的一般规律,加深对知识的理解,培养类聚思维,化归思想。例如,学习了简单的幂函式后布置作业:1已知fx+2f1x=2x,求fx的解析式。2若函式fxgx分别是R上的奇函式,偶函式,且满足fx-gx=x3+2x2+1求fx的解析式。3.多解题多解题是指是有多种解法的一类题。这类题型可以开拓学生解题思路,激发学生发散性思维和创新能力。但要注意多解不是目的,主要是能从多解中寻求最佳解法。例如,学习完直线与圆的位置关系后布置作业:已知x,y满足x+y=3,求证:x+52+y-22≥184.易错题易错题是一类具有隐含条件,解题稍一疏忽,就会因考虑不周到而失误的题目。这类题型能够考察出学生考虑问题是否全面,思维是否缜密。例如,在学习了 *** 间的基本关系后布置作业:已知 *** A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B哿A,求实数m的取值范围没有考虑B=Φ时的特殊情况而失误在学习了导数后布置作业求过点P1,2且与曲线fx=x3-2x+3相切的直线方程。没有考虑P不是切点的情况而失误5.探究题探究题是指提供情境,从中发现问题进行探究的一类问题。这类题型可以培养学生观察能力与思维能力,分析问题和解决问题能力。例如,学习完指数函式后布置作业:fx是定义在R上的函式,且满足fx•gx=fx+y,当x>0时,fx>1,f0≠0,求证:1f0=1;2fxf-x=1;3当x<0时,0 五做好作业的指导 对学生作业的指导是提高有效性的重要保证。成绩好的学生往往喜欢独立思考,独立完成作业;而成绩不理想的学生往往不善于独立思考,喜欢依赖别人。教师要根据学生在课堂上掌握情况预知作业进展情况,预料学生做作业时可能存在的问题,布置作业前在课堂上进行提示或讲解,之后学生再做作业,效果会更好一些,真正达到做作业的实效。 六改进作业的评价 批改作业,教师要做到及时,认真,把批改作业中发现的问题,错误以及所犯错误的数量,性质进行记录分析,并在下一次课中有针对性的指出,纠正。教师往往对作业评价只打“√”或“×,这样不利于调动学生学习的积极性。教师应改变对作业简单地打“√”或“×”的评价方式。可以改“×”为在出错的地方打“?”或提示语的方式,使学生明确错在何处或何因出错。根据学生作业情况反馈资讯及时作出正确评价。对于优秀作业或解题有创意的作业用赞美的语言或采用优秀作业展览的形式来激励学生。总之,让学生感受到老师的关爱,以及自己勤奋严谨获得的成功,增加学好数学自信心。 作者:姜长虹 单位:内蒙古扎兰屯第一中学 高中数学有效性教学研究论文篇二:高中数学教学模式 一、在高中数学实现有效的教学模式的意义 高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科。纵观高中数学的内容,我们发现高中数学的难度比较大,单单依靠学生自学是无法完全掌握这门学科的,还需要教师对于知识的归纳和总结,提供给学生一种解题的思维和技巧。因此在提高高中数学课堂的有效性显得尤为重要。实现高中课堂学习的有效性,可以提高学生学习的效率。高中课程的学习不同于初中课程,高中每门课程的难度都比较大,要全面兼顾好每门课程的学习,因此学习效率对于高中生而言尤为重要,只有提高了学生的学习效率,学生才有更多的时间用于身体锻炼和学习更多的内容,这样才能培养全面的人才,贯彻新课改的要求。 二、如何实现高中数学有效的教学模式 一高中数学教师要创新教学模式,改变沉闷的教学氛围。在传统的高中数学教学模式之中,教师往往忽视教学氛围对于学生学习的重要作用,在枯燥的教学环境中,学生往往对课程的学习也不感兴趣。因此为了使高中数学课堂更加高效率,教师在教学模式上也要创新和改革,改变以往不符合学生学习规律的教学方法,建立起新的教学模式,活跃课堂气氛,提高学生学习的积极性。例如教师在教学生抛物线这个知识点的时候,老师可以在上课时,用一根粉笔,直接用手将粉笔往上抛,以这种生动的形式来作为课堂导课。这样不仅仅在一瞬间抓住了学生的注意力,还能够让学生将今天所学的知识与自己的生活实际联络在一起,不仅仅体现了新课改的要求,还极大的激发了学生学习的兴趣。 二高中数学教师要以学生作为教学的主体,给予学生更多的关注和鼓励。总所周知,学生对于这个老师的好感与学好这门课程是密切相关的,因此,教师要和学生建立良好的师生关系。高中数学的知识点比较难,考验学生较强的思维能力,但是很多学生在面对高中数学时常常有挫败感和恐惧感,这些挫败感和恐惧感极大的阻碍了学生学习高中数学。因此高中数学老师在教学中应该这样做,例如,在为学生讲述数列这一个知识点的时候,要求学生做相应的基础知识的练习,刚开始对学生要求做的练习的难度不应该太大,慢慢培养学生的成就感和对于高中数学的喜爱。除此之外,教师在教授课程的速度也不应该太快,要考虑到学生的接受能力,对于那些数学基础比较差的学生,教师要有足够的耐心去教,不要随意放弃任何一位学生,对于基础差的,跟不上全班学习进度的学生,高中数学教师可以为这些学生在课前找一些基础的练习题,让这些学生提前练习,学会笨鸟先飞,逐步跟上全班的数学水平。 三高中数学教师要创新自我的课堂教学设计,善于使用肢体语言让学生得到肯定。在新课改的背景下,高中数学教师不仅仅作为一名传授课堂知识的工作者,还要学会如何有效地将课堂知识传授到学生的身上,让学生真正的掌握知识。课堂知识的传授不在于教师讲授了多少,而在于学生吸收了多少。在创新课堂教学设计中,例如高中教师在讲授函式的单调性的时候,可以采用设问的方法,让学生主动思考,例如,教师可以让学生回答一次函式的单调性,然后再想想我们所学的函式方程,他们的单调性又存在什么特点,通过问题教学法,层层的问题的设定,让学生在思考问题中自己发现函式单调性的内在规律,除此之外,教师在教学的过程中,要常常对学生微笑,运用肢体语言给予学生更多的鼓励和肯定,让学生在学习中逐渐找到自我的学习方法和成就感。 作者:黄兵 单位:贵州省遵义县第一中学 高中数学有效性教学研究论文篇三:高中数学的有效教学 一、采取恰当的教学方法 高中数学这门学科虽然是一门对逻辑性思维具有较高要求的一门学科,但是在整个的教学过程中,笔者认为教师还应该积极地根据教学的不同内容和知识特点采取不一样的教学方法,从而更好地促进学生的能力发展和实现有效教学这一目标.所谓采取恰当的教学方法具体而言就是要根据函式和三角函式这一类的知识点采取数形结合、讲练结合的方式来开展教学;要根据立体几何的立体空间特点引导学生通过观察立体图形的方式开展教学;要根据 *** 、命题、概率等内容采取透析概念、侧重语言文字转化为数学语言的方式来开展教学;等等. 通过这样一系列的各种各样的方式,将有效地提升学生的认识,引导学生分别从不同的方面找出不同的思考方式,从而更好地开展高中数学教学,有效地提升学生对知识的理解.例如,在讲“ *** ”时,教师要注意加强对 *** 、元素、子集、 *** 的特征等概念的学习,加强学生对 *** 的基本运算交集、补集、并集的概念区分.特别是要引导学生对 *** 内元素的互异性这一具体运用以及具体的教学例子的讲解,帮助学生获得提升和发展.通过这样一种细化不同知识点的方式,将有效地提升学生对 *** 内各个概念的理解,也将更好地提升整个教学的效率,从而实现高中数学有效教学. 二、注重教学的启发性 高中数学这门学科因为具有很强的逻辑性所以对学生的思维发展是一个挑战,也是一个重要的契机.所以,在整个的教学实施过程中,笔者认为教师还应该积极地引导学生在教学实施的过程中注重教学的启发性,从而更好地发散学生的思维,促进学生的创新行思维和经纬网式的综合性思维的发展.在教学过程中,教师要注意通过一些具有启发性的题目和内容来锻炼学生的思维,鼓励学生去探究有关的知识点和激励学生去思考,激发学生的潜力。这样一改,学生能够在第一眼就发现这个题目解答的最便捷方法就是属性结合,可以将已知内容看做一个圆,而需要求解的内容则是一条直线.然后就是求解该直线与圆之间相交的范围.随后,教师再引导学生切入到之前的题目中,从而更好地激发学生的思维,有效地启发了学生思考. 作者:陈督武 单位:浙江乐清市白象中学 看过" 高中数学有效性教学研究论文"的还:

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

2009年06月03日 数学(shuxue)建模论文范文--利用数学(shuxue)建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。 强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的 高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好 数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示, 从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各 个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现 代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合 能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海 战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具 有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要 的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车 流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数 学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并 给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定 义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函 数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前 功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只 重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高 学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质 教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模 教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训 练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识 和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知 识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的 兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就 能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟 为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对 称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型, 并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及 参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问 题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固 数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以 利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据 实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型 来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期 付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问 题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳 定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数 量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻 合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注 意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住 一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实 习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手 拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及 解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、 解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对 应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积 (XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x) =(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+( t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再 由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直 线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就 能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学 应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模 解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得 到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决 的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实 际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场 经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的 知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解 决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模 型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有 突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱 ,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如 1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身 综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数 学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主 要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选 择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强 数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程 的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素 质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工 作者的足够重视

提高小学数学课堂有效性研究论文

随着新一轮课程改革的深入开展,课堂提问作为一项可操作、可演示、可评价、可把握的数学教学技能,已越来越受数学教师的重视.但是,在目前的小学数学课堂教学中,提问作用发挥的远远不够.有些教师的提问得不到学生的配合,学生要么答非所问,要么答者寥寥,造成课堂教学的冷场,达不到预期的效果.所以在数学课堂教学中,要做到提高课堂提问的有效性,我认为应做到以下几点:

一、提问用语清晰,表达准确

首先,提问用语要贴近学生的语言.学生对教师的提问作出解答的过程可以视为获取、加工和运用信息的过程.学生能不能对教师的提问作出有效、积极的思考,前提就是他是否明白这句话的意思.课堂上,教师的语言要尽量少用脱离学生语言环境的词语或字眼.其次,提问语言要明确.数学语言的特点是严谨、简洁,形成符号化,教师提问语言既要顾及数学这种特点,又要结合学生认知特点,用自然语言表述要准确精炼,不能含糊不清.比如:“观察这两列数列,发现了什么特点?”这个问题学生不好回答.究竟是问每列数列相邻两项之间的数量关系,还是指两列数列对应项之间的数量关系呢?还比如:“看到此题,你能想到什么?”这样的提问,学生也不好回答.教师发问时,问题要只说一遍,尽量做到长话短说,如果问题太长可设计课件或用文字呈现.教师把问题说出之后,就不要再复述问题,以免养成学生不注意教师发问的习惯.倘若某个学生没有听到教师所问的问题,教师可另行指定一个学生回答.

二、课堂提问要抓住时机,看准火候.

提问的课堂时机:

一是学生学习情绪需要激发、调动的时候;

二是学生研究目标不明、思维受阻的时候;

三是促进学生自我评价的时候.教师在课堂上不能“随意问”,更不能“惩罚问”.随意问会产生两种不良的情况,一是问得过深,脱离学生的实际“枪枪卡壳”,打击学生学习的积极性;

四是问得过浅,学生无须思考就能回答,既浪费时间,又影响学生学习的积极性.惩罚问则是教育的一种失误.

三、提问要选择合适的方式

提问的方式从形式角度说是怎样问,一般我们可根据教学实际选择以下形式:直问——就是开门见山、直截了当地提出问题.曲问——就是转弯抹角,从侧面或反面提出问题.它有助于学生澄清概念、疏通思路,使学生沿着奇道曲径达到知识的深层与高层.例如:教完分数基本性质,让学生比较它与商不变性质的异同,教师设问:为什么分数基本性质不也说成“分子分母都扩大或缩小相同倍数”而是“分子分母同时乘或除以相同的数(0除外)”?通过比较、分析让学生理解随着学习内容的深入,必须对原有的概念进行修正、扩充、完善.正问——就是从问题的正面设问.反问——就是从问题的反面设问.正问与反问可以促使学生从问题的两个对立面出发加深理解,能培养学生对问题进行顺向与逆向思维的能力.追问——就是对某一内容或问题,为了使学生弄懂弄通,往往在一问之后又再次提问,穷追不舍,直至学生真正理解为止……

四、提问要适合学生认知实际

为了促进学生积极思维,教师根据小学生学习的情况,发挥教学机智,既要在备课中有充分的准备,同时,对一些不能满足学生认知水平和思维需求的问题要及时调整.数学问题要考虑到学生的实际水平,要以学生已经学过的知识为基础,使学生能够利用已经学过的知识,通过认真的思考,才能回答问题,这样学生就能把新旧知识串通起来,更能加深他们的印象.对于一些有难度的问题,教师可以先提问一些相关的简单问题作为铺垫,引导学生层层深入,最终找到正确的答案.

五、尊重学生的提问权

学生是一个个有着丰富而细腻的思想的人,每一堂课中他们都会产生一些想法或疑惑.由于学生自制力较弱,这些想法或疑惑一经产生,便急欲一吐为快,否则即会形成一个个思维干扰.学生是学习实践活动的主人,教师要允许学生质疑,热情地为他们创造吐露思想的机会.对于学生的质疑,要在态度上给予鼓励,方法上加以指导,让学生在教师亲切、赞赏的言行中产生强烈的思维意向,积极进行思维活动.

六、提问要面向全体,尊重学生的个别差异

提问活动是全体学生同教师的信息交流,提问要面向全体学生,让每一个学生都有答问的机会.课堂提问,不能出现“遗忘的角落”,要让所有学生都感受到教师的关注、期待,培养所有学生的积极参与意识和强烈竞争意识,从而营造出一个主动积极的集体思维氛围,转而推动每个学生更主观能动地进行思维活动.选择恰当的提问对象,有助于培养全体学生回答问题的兴趣和能力.要让不同水平的学生都有回答问题的机会和获得成功的喜悦.例如,对优等生提问有一定难度的问题,如理解性的、发散性的、综合性的问题,激励其钻研;中等生则以一般性问题,助其掌握、巩固知识、提高学趣,培养良好的思维情绪;而后进生宜问一些浅显的,如简单判断性、叙述性的,比较直观的. 课堂提问既是一门科学更是一门艺术.课堂环境的随时变化,使实际课堂提问活动表现出更多的独特性和灵敏性.教师只有从根本上形成对课堂提问的正确认识,才能在教学实践中让课堂提问的有效性表现得淋漓尽致,让我们的数学课堂波澜起伏,使学生真正体会到智力角逐的乐趣!

课堂提问是一种有效的教学组织形式,它是联系教师、学生和教材的纽带,是激发学生学习兴趣、启发学生深入思考、引导学生解决问题、检验学生学习效果的有效手段。它不仅是重要的教学手段,更是一种精彩的教学艺术,设计得好,应用得当,对激发学生的学习动机,开拓学生的学习思路,发掘学生的学习潜能,培养学生分析、解决问题的能力及创新精神,提高课堂教学的有效性都有积极的作用。然而,在实际的教学及教研活动中我们经常发现:部分教师课堂提问具有较大的随意性;不能很好地把握提问时机;提出的问题不够精准;缺乏提问的艺术、和技巧;或者提出的问题价值不高;缺乏对生成性问题的预设;导致课堂“低效提问”的现象时常出现。针对以上现象,我参加了南京市规划个人课题《小学数学课堂有效性提问的策略研究》,经过一年多的学习、实践与研究,笔者认为:提高小学数学课堂提问的有效性,教师在教学中要注意处理好以下几个问题:一、要准确把握课堂提问的时机和学生思考的时间研究表明:虽然一节课中提问次数没有确定,但准确把握好提问的时机却非常重要。何时提问,提问什么内容,教师课前一定要设计好。若能在恰当的时机和火候提问,能够起到非常好的效果;它能调动学生情绪、活跃课堂气氛、保证思维质量、提高教学效果等。研究中还发现,课堂提问的时机通常产生于下列情况:一是学生学习中有所知、有所感、意欲表达交流时;二是学生学习中有所疑、有所惑、意欲发问质疑时;三是学生学习情绪需激发、需调节、意欲表达倾诉时;四是促进学生自我认知、自我评价、信心倍增时。教师若能准确把握好以上的提问时机,课堂提问的有效性将会大大提高。此外,在提问后教师应注意停顿一会儿,让学生有一定的思考时间。我们在听课中经常看到:教师在提问后,常常缺乏等待的耐心,总希望学生能对答如流,如果学生不能很快作答,教师就会重复这个问题,或重新加以解释,或立即降低难度,甚至叫其他的同学来“帮忙”,根本不考虑学生是否要有足够的时间去思考、去形成答案并作出反应。实验表明,如果教师提问后能给学生一定的思考时间,那么他们的课堂将出现许多有意义的变化:学生的应答兴趣就会加大,随意回答的情况就会减少,回答会更完整、更准确、更精彩,学习的成就感和自信心也明显增强。如:教师在教学《平行线》时,围绕教学目标设计了三个问题:在创设了“学生在纸上任意画出两条直线”的情境以后,教师提出的第一个问题是:“你们能根据两条直线的关系把自己画出来的图形分类吗?”稍作停顿,在学生分类之后引出平行线,教师接着提出第二个问题:“你们能用哪些方法来说明这两条直线互相平行?”在多数学生得出平行线概念之后,教师又让学生思考:“生活中哪些地方存在平行线?”……课堂教学中教师较好地把握了提问的时机,紧紧围绕着这三个问题,组织了相应的活动,且保证每个环节的活动有足够的时间,让学生去充分地探究和交流,促进了学生思维向纵深发展及课堂教学目标的有效达成。二、要注意课堂提问的“精”与“准”所谓课堂提问的“精”“准”是指教师设计的问题要求精确、正确、准确,力求精巧、精致、不随意。研究表明,要实现这一目标,教师必须紧扣教学目标和教学内容,多做提问设计的思考,并以此作为问题设计的依据,使设计的问题既简明准确,又能突出重难点。在关键性的问题和小结性的问题设计上更要斟字酌句、反复推敲。另外,课堂提问还必须针对学生已有的知识水平和学生的实际情况,找准问题的切入点,要问到关键处,问到点子上,问出精彩来,问出实效来。为此,要实现课堂提问的“精”“准”,教师还要把握好提问的“三度”:即难(易)度、精(准)度、适(量)度。1、要把握问题的难易,做到适合适中教师在设计问题时,应充分考虑到学生的实际情况,问题既不能太难又不能太易,尽量设计让学生“跳一跳能够着”的问题。因为问题太易会使学生提不起数学的兴趣,问题太难又会使学生失去信心,影响课堂教学的效果,久而久之,还会挫伤学生学习的积极性。2、要注意提问的语言,做到精确准确苏联教育家苏霍姆林斯基说:“教师高度的语言修养是合理地利用时间的重要条件,极大程度上决定着学生在课堂上脑力劳动的效率。”这就要求教师:课堂提问语言不仅要讲求科学性,还要讲究艺术性和准确性。教师要善于精心设计和提炼富有启发性、准确性、挑战性的数学语言,提问语言要严谨、简洁、精巧精致,不能含糊不清。如:在教学《两位数加两位数的加法口算》时,教师在出示了“小卡车、小轿车、大客车”及各有多少辆之后,提出这样的问题:“同学们,根据这些条件,你能提出什么问题?”这时第一个发言的学生提出“谁比谁多多少辆?”,紧接着,其他同学受到启发也提出了“还有谁比谁多多少辆?”、“谁比谁少多少辆?”等一大串问题。显然学生的回答不是老师所期望的,但根本问题却是教师的提问不够精确和准确所造成的。3、要注意提问的“数量”,做到精问巧问实验中我们经常看到:教师的提问如连珠炮似地射向学生,问题的量多而散,尽管有的问题设计的还比较好,但由于太密集太频繁,学生不能静下心来做深入的思考和交流,效果当然不佳。这就要求教师要根据教学内容的特点,抓住数学知识的关键(重点、难点)与本质,运用归纳和综合方法,尽可能设计容量大、定位准的问题,避免问题过于繁琐、直白、密集,以提高学生思维的密度与效度,达到以“精问”促“深思”的目的。如教学梯形的面积计算公式时,两位教师设计的问题如下:甲教师:两个完全一样的梯形可以拼成一个平行四边形吗?拼成的平行四边形的高、底和原梯形的高、底有什么关系?拼成的平行四边形的面积和原梯形面积有什么关系?怎样求梯形面积?乙教师:两个完全一样的梯形可以拼成一个什么样的图形?拼成的平行四边形的高和原梯形的高相等吗?拼成的平行四边形的底和原梯形的上底与下底的和相等吗?拼成的平行四边形的面积等于原梯形面积的几倍?平行四边形的面积怎样计算?梯形面积又怎样计算?梯形面积为什么是上底加下底的和乘高,还要除以2?比较之下,前者的问题所包含的思考容量较大,突出了“平行四边形与梯形各部分之间的关系与联系”这个重点和难点,具有一定的层次性和逻辑性,达到了教师问得精、问得巧,学生想得深、想得准的效果。而后者的问题设计显得杂乱、琐碎、过于直白,没有太大的思考价值,缺乏思维的深度和广度,不利于学生利用已有的知识经验对问题进行分析、推理、概括和总结。三、要处理好“预设问题”与“生成问题”之间的关系在课堂教学活动中,教师的“预设问题”和教学过程中的“生成问题”,对学生的发展都具有积极的作用。“预设问题”的设计,既要考虑对教学活动的引领作用,又要考虑到能否引发学生的积极思考,从而促进课堂的有效生成;同时还要注意“预设问题”会诱发“生成新问题”的出现,而这些新的“生成问题”会因学习主体的特点、思维方式及个体差异而很难预料;针对课堂呈现出的丰富、多变和复杂的“生成问题”,教师应当首先不拘泥于课前的预设,应该灵活调整、整合乃至放弃预设的问题,机智生成新的问题方案,伺机而动,随机应变。这就需要教师在设计问题时,充分考虑到学生可能生成的新问题,多做预设;只有这样,才能使课堂教学更加精彩,这既是教师教学经验的体现,也是教师教学机智的显现。由此可见,课堂“预设问题”和“生成问题”不是截然分割的两个部分,而是相互影响、相互启发、相辅相成的矛盾统一体。我们应正确理解“预设问题”与“生成问题”的不同作用,恰当处理好两者的关系,并善于抓住课堂中生成的新问题,启发引导学生做深入的思考和交流,实现课堂“生成问题”对加深知识理解的积极作用,真正发挥课堂提问的有效性。课堂提问是一门科学,更是一门艺术。课堂环境的随时变化,使实际的课堂提问表现出更多的独特性和灵活性。我们教师只有从根本上对课堂提问的价值与作用有一个正确的认识,勤思考、多分析、勤学习、多钻研,努力优化课堂提问,精心设计课堂提问、巧妙使用课堂提问,才能更好地发挥课堂提问的灵活性与有效性,“问”活学生的思维,“问”出学生的激情,“问”出学生的创造。

如何提高小学数学课堂练习的有效性小学数学教学大纲就明确指出:“练习是使学生掌握知识,形成技能,发展智力的重要手段”。的确我们的学生正是借助于我们安排的各种练习题的刺激,积极进行思维活动,进而完成其学习任务的,它对学生能否真正理解课堂内容起关键作用。练习的目的,就是获取知识。设计好练习,也就成为数学教学的重点所在。要使课堂练习真正起作用,教师针对本班学生情况的、特有的、有效的练习需要我们精力地设计。做到适度、高效,让学生既掌握知识,又发展能力,也只有这样,我们的学生练起来才会更省时更有成效。 在平常的教学中,有好多的老师在学生获取知识的认识上有误区,第一认为投入与产出是成正比的。如学生哪个字写错了,就罚他抄十遍。在听一次公开课中,有位老师布置的作业(1)、4小时行8千米,1小时行多少千米?(2)、6小时行3千米,1小时行了多少千米?第一题学生很快就做出 8÷4 =2的正确答案;第二题学生一看与第一题一样的,没多想就说是6÷3=2的错误答案。第二是认为要形成技能,越多越好。从心理学的角度上看,人形成技能,不是越多越好,它有一个衰退点。如六年级的复习考试,考多了,他不投入,相反是越考越差。我们试想一下:一节新授课下来,给学生布置同类型10道练习题做,如果学生会做,做这么多只是机械的重复,为什么要做这么多呢?如果连一题都不会做,让他做更多的题又有何意义?数学课应该是重“质”而不是“量”!为什么有的学生不需要课下做很多的习题,照样会做,而有的学生每天徜徉在题海中,却没有什么提高?原因就是“质”和“量”区别。所以科学合理的安排学生的练习是非常重要,本人结合自己的教学实践谈点粗浅的认识。一、练习要重算理。 如在教两位数除以一位数42÷3时,师可以利用画小棒给学生讲明算理,先一人一捆(10根),然后拆开一捆再进行分配。学生在明白天算理后,再引入竖式除法,学生就能轻松接受。二、练习要突出重点。 数学教学是分单元进行的,每一单元可划分为几个“知识块”,同一“知识块”的几个教学课时又有不同的侧重点或叫“知识点”。课堂练习就是要围绕每堂课的教学重点进行设计。例如,教学“两位数的除法笔算”前两课时,重点、难点是试商。新课前的练习应为学习试商方法作知识铺垫,可这样设计:1、括号里最大能填几:24×()<89; 2、估算:7 9×8=□、490×3=□。 讲授中的练习要为理解试商方法服务。 三、练习要有层次。 每堂课的练习设计要根据知识的结构特征和学生的认知规律进行设计,做到由浅入深,有层次、有坡度,一环套一环,环环相扣。例如,百分数的认识的教学,可设计以下几个层次的练习。基本练习:7 3 =( )% 、 80%=( )填小数。综合练习:从小到大43 、 、 创新练习:(5 4 -45%)×(40%-4%)通过上述几个层次的练习,学生在简单运用、综合运用、扩展创新的过程中,理解和掌握了知识,同时也照顾到全班不同层次学生的学习水平,使他们都有收益。 四、练习要有创新。 多途径、多角度地训练学生思维,开发学生智力,是提高学生个体素质的需要,是课堂练习设计的重要依据。要达到这一目的,这就要求教师设置创新的情境。 1、设计联想题,训练学生思维的敏捷性。教师可从引导学生进行横向、纵向和逆向联想等方面设计练习题。如看到“a是b的5/6”,要求学生联想到:(1)a与b的比是5∶6(横向);(2)b与a的比是6∶5(逆向);(3)b是a的1 1/5倍(横向、逆向);(4)a比b少它的1/6(纵向);(5)b比a多它的1/5(纵向、逆向);(6)a增加它的1/5与b相等(纵向);(7)b减少它的1/6与a相等(纵向)。 2、设计多解题,训练学生思维的变通性。例如,学习分数应用题后,教师可出示应用题:“一根长64米的铁丝,剪去总长的5/8做了20个周长相等的方框架,余下的还可以做同样的方框架多少个?”并要求学生采用不同的方法来求解: (1)用分数应用题解法求解:①20÷5/8-20=12;②64×(1-5/8)÷(64×5/8÷20)=12;③64 ÷(64×5/8÷20)-20=12;④20÷〔5/8÷(1-5/8)〕=12;⑤20÷(5/8÷1)-20=12;⑥20×〔 (1-5/8)÷5/8〕=12;⑦20×(1÷5/8)-20=12。 (2)用比例方法求解:设还可以做x个方框架,得5/8∶20 =(1-5/8)∶x。 (3)用工程问题解法求解:①(1-5/8)÷(5/8÷20)=12;②1÷(5/8÷20)-20=12。 3、设计多变题(或多问题),训练学生思维的多向性。“一题多问”和“一题多变”能引导学生从多角度、多层次观察和分析问题、沟通知识的内在联系,培养创造思维能力。例如, (1)、公鸡有120只,母鸡的只数是公鸡的3 1 ,母鸡有多少只? (2)、公鸡有120只,是母鸡只数的31 ,母鸡有多少只? (3)、公鸡有120只,母鸡比公鸡多31 ,母鸡有多少只? (4)、公鸡有120只,比母鸡多3 1 ,母鸡有多少只? (5)、公鸡有120只,母鸡比公鸡少31 ,母鸡有多少只? (6)、公鸡有120只,比母鸡少3 1 ,母鸡有多少只? (7)、公鸡有120只,母鸡比公鸡多31 ,公鸡比母鸡少几分之几? (8)、公鸡有120只,公鸡比母鸡少3 1 ,母鸡比公鸡多几分之几?4.设计开放式习题,训练学生思维的广阔性。如在下面式中的()内填上适当的数,要求连续进位:235×( )。学生通过观察、尝试,最后得到只要看数字2,能进位就可以连续进位了。

数学研究性论文1000

数学家庭中的一对孪生兄弟 ――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形 1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。 2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形 1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。 2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形 2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学!

数学,一个多么熟悉的字眼,平凡而又美丽。你也许会说:“数学不就是几个阿拉伯数字嘛,那也谈得上美丽?”然而,正是它的简洁,才造就了它的美丽与神奇。初识数学,是再简单不过的“1、2、3”,难道这就是我想象中的数学?可是,我错了,我看到的仅仅是一个表面,它有着更深层的含义。数学的难度渐渐的加深。从加、减、乘、除到小数、分数,数学的奥妙与美丽正逐渐向我展现。数学就像一个大集体,而那一个个数字则像一个个快活的小精灵,整天舞动着。“1”是它们的大哥,将身体挺得笔直,显得威风凛凛;而“2”则像个恬静的少女,扭曲着身体,显得羞答答的;“3”是个健壮的小伙子,天性乐观,怀抱远大的理想……其他几个兄妹更是俊俏、清秀,个个身怀绝技。这十个小精灵朝夕相处,团结一心,见姐妹太少,它们还会进行自我组合,产生新的数字呢!看,“1”见“0”一个人太寂寞,胆子又小,便主动与它组合,陪伴在它身边,便产生了“10”。其他兄妹受到启发,纷纷响应,庞大的数字从此遍布天下。有数字还不够,小精灵们觉得不够热闹,便请来了更多的玩伴。于是,小数点来了、分数带着家人来了、字母们也应邀而来……凡是受到邀请的,都从四面八方赶来了。数学王国热闹极了!可是,尽管来了,调皮的本性依旧改不了。瞧,“顽皮鬼”小数点趁主人不注意,从“2”的身边一蹦蹦到了“3”的前面。见主人心急火燎地寻找,它却在一旁哈哈大笑,活像是在与主人捉迷藏。为此,我也没少被它愚弄。见它“胜利”后得意洋洋的模样,我暗下决心:一定要养成细心的好习惯,抓住这调皮的小数点!很快,在考试时,我俩又相遇了,一见是我,小数点轻蔑地说道:“嘿嘿,手下败将,怎么又回来了?”说着,又想使用“看家本领”来迷惑我。早有防备的我一举看穿它的诡计,迅速将它揪住,将它放回原位去了。调皮的小数点终于被制服了,望着它那垂头丧气的模样,一丝快慰不禁涌上心头。如果仅仅是外表,数学还不足以称得上美丽,它那独特的内在美,更是使它留名千古。数学的范围很广,得到的传播空间也较多,几千年前,印度人创造了它,阿拉伯人将期修正,它有着很强的表达力,形象以及快捷铸就它不朽的历史。古今中外,它成就了多少事物的诞生,世界七大奇迹,有哪一样不是在数学的熏陶下完成的?从祖冲之精密的推算到陈景润的哥德巴赫猜想,从爱迪生数千种发明到高科技世界,数学都起了决定性的作用!如果没有数学,哪有许许多多的发明?哪来猜想与定理?会有哪一个工程能顺利进展?数学是无私的,它将自己的一切奉献给大家,从不索取什么;数学是公平的,它只将自己奉献给勤奋努力的人,鼓励他们继续奋斗;数学是“无情”的,它憎恨懒惰,面对那一只只贪婪而不肯付出的手,它一概置之不理。数学就像一根丝带,将自己与人们的生活紧紧地连在一起。如果没有这根丝带,世界将会是怎样呢?其实,数学的美丽还远远不只这些。它带给人们独立性,带给人们成功的喜悦,带给人们探索与发现的精神,它将自己的“美”献给每一位热爱数学的人。数学是春天的第一滴春雨,滋润大地;数学是夏日的太阳,充满激情;数学是深秋丰收的田野,带给人无限喜悦;数学是寒冬的一片雪花,洁白无暇。它是智慧与汗水的结晶,它是送给奋斗者最好的礼物,它是千古文化不朽的功臣。啊,朋友,爱上数学,播下智慧的种子,洒下辛勤的汗水,收获成功的喜悦吧!

从数学学习的过程上来分析,我们往往会看到这样的现象,一个孩子的数学学习较好,他的思维灵活性就比较强,在这种情况下,他的热情和积极性就很高,善于表达自己的思想与方法,这样这个孩子的交往能力就会得到一定程度的锻炼,他的自信心也必然会逐步得到加强。

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。给你 选了几篇

  • 索引序列
  • 高数研究性论文
  • 高中研究性论文1800字数
  • 高中数学研究性课题论文范文
  • 提高小学数学课堂有效性研究论文
  • 数学研究性论文1000
  • 返回顶部