首页 > 学术期刊知识库 > 光学研究论文

光学研究论文

发布时间:

光学研究论文

引言 光全息学是在现代激光的发现之后才迅速发展起来的,本文将就光全息学的一些主要的研究课题进行探讨,并针对一些应用课题进行研究。现代光全息学的起源,发展和人物,新型应用,本文将告诉你. 利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,这样记录下来的干涉条纹图样称为“全息图”,而当用光波照射全息图时,由于衍射原理能重现出原始物光波,从而形成与原物体逼真的三维象,这个波前记录和重现过程称为“全息术”或“全息照相” 光束全息照相由盖伯于1948年提出的,而当时没有足够强的相干辐射源全息研究处于萌芽时期。当时的全息照相采用汞灯为光源,且是同轴全息图,它的+/-1级衍射波是分不开的,即存在所谓的“孪生像”问题,不能获得很好的全息像。这是第一代全息图。1960年激光的出现,1962年美国科学家利思和乌帕特尼克斯将通信理论中的射频概念推广到空域中,提出离轴全息术,他用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光,第一代全息图的两大难题因此得以解决,产生了激光记录,激光再现的第二代全息图。当代光全息学发展主要课题有:1. 球面透镜光学系统2. 光源和光学技术3. 平面全息图分析4. 体积全息图衍射5. 脉冲激光全息学6. 非线性记录,散斑和底片颗粒噪声7. 信息储存8. 彩色全息学9. 合成全息图10. 计算机产生全息图11. 复制,电视传输和非相干光全息图而伴随光全息学的发展也产生一些光全息技术应用,比如高分辨率成像,漫射介质成像,空间滤波,特征识别,信息储存与编码,精密干涉测量,振动分析,等高线测量,三维图象显示等方面的用途。本论文将就当代光全息学的研究与应用两大课题进行学术研究一. 当代光全息学研究 球面透镜不仅能形成光振幅分布的影象,而且易形成该分布的傅立叶变换图形。因此,用一个简单透镜可使物光在全息平面上成为某原始图形的傅立叶变换。存储在全息图中的变换所具有的特性,在光学图形识别中有重要的应用。透镜,作为形成影象的器件,可以在全息术中用来构成像面全息图。一个透镜可以形成:a.傅立叶变换和b.输入复振幅分布的影象 由于利用激光光源来制作全息图片,使得全息学开始成为一门实用的学科。对形成全息图所用光源提出的要求取决于由于物体和必要的光学部件的安排所决定的参数。从单一光源取得物波和参考波有如下图所示两种普通方法:A. 分波前法B. 分振幅法 在光源与全息图之间(通过物表面或参考镜的反射)传播的光线的最大光程差必须小于相干长度。激光的相干性与激光器的振荡模式有关,就全息术而论,它要求在任一个横模振荡的激光器的空间相干的辐射,由于高介模的振荡较不稳定,并有以两个或者多个模式同时振荡的倾向,因此最好的振荡模式是最底阶的模式。激光束的输出功率必须分成物体照明波和参考波。若物体要求从不止一个角度(以消除阴影),就需要将激光束分成好几束,一般采用分振幅法,因分振幅法能产生较均匀的照明,而且对光束的展宽要求小,既可以在分配前也可以在分配后展宽。平面全息图分析用非散射光记录的共线全息图上的条纹间隔与感光乳剂的厚度相比为较宽的。照明这张全息图的波前中的一条光线在通过全息图前只和一条记录条纹相互作用。因此全息图的响应近似于一个有聚焦特性的平面衍射光栅。加伯在分析这些特性时是把这样的全息图严格地当作二维的。用对二维模型分析的结果也很符合实验观察。在应用利思与乌帕尼克首先采用的离轴技术所得到的全息图上,其条纹频率则超过共线全息图,超过了量正比于物光束与参考光束之间的夹角。条纹间隔的典型值可以考虑由两平面波的干涉得到。正弦强度分布的周期d可以由下式决定:2dsinθ=λ, θ为波法线与干涉条纹间的夹角,波长λ,条纹间隔d式中当θ=15°,λ=微米(绿光)时,则d=1微米。记录离轴全息图的感光乳剂的厚度通常为15微米,实际上,在这样的乳剂中记录的全息图已不能当作是二维的了。因此重要的是要记录住平面全息图的分析结果只能准确地应用于使用相当薄的介质所形成的全息图。体积全息图衍射基本的体积全息图对相干照明的响应可以用偶合波理论来描述。假设有两个在yz平面传播的并具有单位振幅的平面波,其进入记录介质并进行干涉的情况,按折射定律,有sin /sin =sin /sin =nn为记录介质的折射率; 及 分别表示两个波在空气中与z轴的夹角; 及 则为两个波在介质中与z轴的夹角。布拉格定律可以用空气中的波长 ,全息片介质折射率 写成如下形式: 2dsinθ= / 体积全息图的特性由布拉格定律确定,因此对照明显示出选择响应。 二.光全息学典型应用高分辨率成像当一张全息图用与制作全息图参考光束共轭的光束照明时,在理论上能再现没有像差没有畸变的物波,其投影实象的分辨率仅受全息图边界衍射的限制。由于分辨率将随全息图尺寸的增加而增加。由于全息图可以做的很大,因此可以指望在现场大到5×5厘米时空间频率高到1000线/毫米。显然此种情况下放大率为1,但1:1的高分辨率投影成像,在集成电路的光刻工艺中有重要的潜在应用。将光刻掩模精密成象在半导体薄片上的工作,目前是用接触印象法来完成的。但这方法很快就会使模板损坏。用投影方法将影象转移到薄片上是一理想的可供选择的方法,但要非常优良和非常昂贵的镜头才能使投影的掩模象达到要求的分辨率和视场。当用相干光源照明制作全息图时,摄影乳剂的收缩,表面变形,非线性及洽谈噪声源的影响就更大了。它们可使图象产生斑纹,衬度降低和边缘模糊,这些缺陷又是用光刻法制作集成电路所不允许的。新的,更稳定的材料可能是这些问题的解答。特征识别由空间调制参考波形成的傅立叶变换全息图的许多特性,曾被范德鲁等人用于特征识别。他们采用全息法作成的空间滤波器完成了“匹配滤波”在特征识别中的应用。匹配滤波与概念,形成与应用可由下图说明 当要把形成的空间滤波器作为特征识别时,在输入平面内z轴上方部分是一个由平面波透明的,在不透明背景上包含M个透明字符的透明片。我们将这一组字符阵列的透过率表示为 这里所有字符均围绕 点对称分布, 是阵列中的一个典型字符,其中心在 点。另外,在输入平面内 处,有一光强度为 δ 的明亮的点光源,并在空间频率面εη面上形成一张傅立叶变换全息图。这一全息图可以看作是t 与δ函数形成的平面波干涉的记录。但是当全息图完成识别功能时,仅由透过t的一小部分,即通过入射平面内的一个或几个字符的光所照明,我们将会看到,在输出平面上我们所关心的再现,是表示识别结果的一个明亮的象点。信息储存与编码全息图既可以存储二维信息也可以存储三维信息。信息可以是彩色的或者编码的,图象的或者字母数字的;可以存储在全息图的表面,或存储在整个体积中;可以为空间上分离的,或者重叠的;可以是永久记录或者是可以消象的。记录的内容可以是彼此无关的或者相互成对的;可以是可辨认的影象或似乎是无意义的图形。现代光全息学的发展前景十分广阔,而其实用技术必然会实现普及,有识之士当携手共同研究以促进社会进步.

1、基于MODTRAN的双查找表法反演高光谱数据的水汽含量 陶东兴;赵慧洁;贾国瑞; 9-142、小入射角条件下气动光学成像偏移 张士杰;李俊山;孙李辉;胡双演; 15-213、PV型HgCdTe线阵探测器对强光反常响应机制研究 邱伟成;王睿;江天;许中杰;程湘爱; 22-284、运动状态对卫星多谱段光学特性的影响分析 王付刚;张伟;汪洪源;侯晴宇; 29-365、用于彩色屏显的双层耦合光栅设计 尤勐;黄战华;蔡怀宇; 37-426、基于光纤拉锥模场匹配技术的光子晶体光纤低损耗熔接 杨清;施解龙;孙伟胜;黄图斌; 43-487、多层光纤布拉格光栅的理论与实验研究 郑晶晶;闻映红;祁春慧;裴丽;魏淮;宁提纲;简水生; 49-558、空间激光通信组网光学原理研究 姜会林;胡源;丁莹;付强;赵义武;董科研;宋延嵩;娄岩; 56-609、高速相干光通信系统中的自适应步长恒模算法 邸雪静;童程;张霞;张晓光;席丽霞; 61-6510、基于光纤参量环形镜的光毫米波副载波产生 李恒文;江阳;徐静;周竹雅;王顺艳; 66-7111、啁啾长周期光纤光栅的超宽带滤波特性及其切趾优化 杨颖;顾铮; 72-7912、基于干涉原理的虚拟光学加密系统 秦怡;张帅;巩琼;李根全;吕晓东; 80-8513、双波长数字全息相位解包裹方法研究 王羽佳;江竹青;高志瑞;蔡文苑;伍江涛; 86-9114、方孔微通道板结构缺陷对成像质量的影响 李旭;何飞;李达;陈波; 92-10115、零视距地物长波红外特征场景仿真研究 胡海鹤;白廷柱;郭长庚;韩强;孙玉杰;崔建平;张罗莎; 102-11016、高分辨率开环液晶自适应光学视网膜成像系统 齐岳;孔宁宁;李大禹;夏明亮;宣丽; 111-11817、基于正弦波磁光调制的方位失调角精确测量方法 杨志勇;周召发;黄先祥;张志利; 119-12318、眼镜式立体显示中的串扰分析及消除方法研究 夏振平;李晓华;崔渊;陈磊; 124-13119、基于概率假设密度滤波平滑器的检测前跟踪算法 林再平;周一宇;安玮;徐洋; 132-139

大学物理波动光学论文如下:

大学物理是研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的学科。

物理学的研究对象是非常广泛的,它的基本理论渗透到自然科学的很多领域,应用于生产技术的各个部门,它是自然科学和工程技术的基础。

它包含经典物理、近代物理和物理学在科学技术方面的应用等基本内容,这些内容都是各专业进一步学习的基础和今后从事各种工作所需要的必备知识。因此,它是各个专业学生必修的一门重要基础课。

在农科类各专业开设大学物理课的作用,一方面在于为学生较系统地打好必要的物理基础,另一方面是使学生学会初步的科学的思维和研究问题的方法。

这对开阔学生的思路、激发探索和创新精神、增强适应能力、提高人才的素质都将起到非常重要的作用。同时,也为学生今后在工作中进一步学习新的知识、新的理论、新的技术等产生深远的影响。

21世纪是科学技术飞速发展的时代,对人才的要求将更高、更全面,这对我们的大学物理教学也提出了更高的要求,必须跟上时代的步伐。但是,目前以农科类大学物理教学为例存在以下问题:(1)大学物理教材的内容中,以经典物理为主,分为力学、热学、光学、电磁学和近代物理,内容各自独立,彼此之间缺乏联系,没有形成统一的物理系统。

教学内容大部分标题与中学类似,学生看到目录后学习热情和兴趣锐减。

(2)经典物理和近代物理的比例极不平衡,经典物理部分占物理教学内容的80%以上,而且基本上都是20世纪以前的成果,没有站在近代物理学发展的高度,用现代的观点审视、选择和组织传统的教学内容。

同时近代物理的内容非常少,特别是没有反映20世纪后半个世纪以来物理学飞速发展的现代物理思想,使学生对近代物理知识知之甚少,与现代物理严重脱节,因此大学物理教学改革势在必行。

分光计在光学中的研究的论文

物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然科学认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。随着科学技术的发展,社会的进步,物理已渗透到人类生活的各个领域。 在汽车上驾驶室外面的观后镜是一个凸镜利用凸镜对光线的发散作用和成正立、缩小的虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 汽车头灯里的反射镜是一个凹镜。 它是利用凹透镜能把放在其焦点上的光源发出的光反射成平行光射出的性质做的。 轿车上装有太阳膜,行人很难看清车中人的面孔,太阳膜能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔放射足够的光头到玻璃外面。由于车内光线较弱,没有足够的光透出来,所以很难看清乘客的面孔。 当汽车的前窗玻璃倾斜时,反射成的像在过的前上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,及时前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度上,所以司机也不会将乘客在窗外的相遇路上的行人相混。 现在,人类所有令人惊叹的科学技术成就,如克隆羊、因特网、核电站、航天技术等,无不是建立在早期的科学家们对身边琐事进行观察并研究的基础上的,在学习中,同学们要树立科学意识,大处着眼、小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的甚或打下坚实的基础。

分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral observations. As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement : spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置  ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 2. 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角  如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成.在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题.设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行.在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。

给你一个网址,上面有部分的原始数据哦~ 如果你满意的话,望君采纳,谢谢~

我也是广大的

光纤光束可靠性研究论文

去万方知网维普找啊。

发一篇给你,结合你自己的实际情况适当加工一下即可。光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。随着计算机网络,特别是互联网的发展,数据信息的传送量越来越大,客户信号中基于分组交换的分组信号的比例逐步增加。分组信号与连续码流的特点完全不同,它具有随机性、突发性,因此如何传送这一类信号,就成为光通信技术要解决的重点。 另外,传送数据信号的光收发模块及设备系统与传统的传送连续码流的光收发模块及设备系统是有很大区别的。在接入网中,所实现的系统即为ATM-PON、EPON或GPON等。在核心网,实现IP等数据信号在光层(包括在波分复用系统)的直接承载,就是大家熟知的IP over Optical的技术。 由于SDH系统的良好特性及已有的大量资源,可充分利用原有的SDH系统来传送数据信号。起初只考虑了对ATM的承载,后来,通过SDH网络承载的数据信号的类型越来越多,例如FR、ATM、IP、10M-baseT、FE、GE、10GE、DDN、FDDI、Fiber Channel、FICON、ESCON等。 于是,人们提出了许多将IP等信号送进SDH虚容器VC的方法,起初是先将IP或Ethernet装进ATM,然后再映射进SDH传输,即IP/Ethernet over ATM,再over SDH。后来,又把中间过程省去,直接将IP或Ethernet送到SDH,如PPP、LAPS、SDL、GFP等,即IP over SDH、POS或EOS。 不断增加的信道容量 光通信系统能从PDH发展到SDH,从155Mb/s发展到10Gb/s,近来,40GB/s已实现商品化。同时,还正在探讨更大容量的系统,如160Gb/s(单波道)系统已在实验室研制开发成功,正在考虑为其制定标准。此外,利用波分复用等信道复用技术,还可以将系统容量进一步提高。目前32×10Gb/s(即320Gb/s)的DWDM系统已普遍应用,160×10Gb/s(即)的系统也投入了商用,实验室中超过10Tb/s的系统已在多家公司开发出来。光时分复用OTDM、孤子技术等已有很大进展。毫无疑问,这些对于骨干网的传输是非常有利的。 信号超长距离的传输 从宏观来说,对光纤传输的要求当然是传输距离越远越好,所有研究光纤通信技术的机构,都在这方面下了很大工夫。特别是在光纤放大器出现以后,这方面的记录接连不断。不仅每个跨距的长度不断增加,例如,由当初的20km、40km,最多为80km,增加到120km、160km。而且,总的无再生中继距离也在不断增加,如从600km左右增加到3000km、4000km。 从技术的角度看,光纤放大器其在拉曼光纤放大器的出现,为增大无再生中继距离创造了条件。同时,采用有利于长距离传送的线路编码,如RZ或CS-RZ码;采用FEC、EFEC或SFEC等技术提高接收灵敏度;用色散补偿和PMD补偿技术解决光通道代价和选用合适的光纤及光器件等措施,已经可以实现超过STM-64或基于10Gb/s的DWDM系统,4000km无电再生中继器的超长距离传输。 光传输与交换技术的融合 随着对光通信的需求由骨干网逐步向城域网转移,光传输逐渐靠近业务节点。在应用中人们觉得光通信仅仅作为一种传输手段尚未能完全适应城域网的需要。作为业务节点,比较靠近用户,特别对于数据业务的用户,希望光通信既能提供传输功能,又能提供多种业务的接入功能。这样的光通信技术实际上可以看作是传输与交换的融合。目前已广泛使用的基于SDH的多业务传送平台MSTP,就是一个典型的实例。 基于SDH的MSTP是指在SDH的平台上,同时实现TDM、ATM、以太网等业务的接入处理和传送,提供统一网管的多业务节点设备。实际上,有些MSTP设备除了提供上述业务外,还可以提供FR、FDDI、Fiber Channel、FICON、ESCON等众多类型的业务。 除了基于SDH的MSTP之外,还可以有基于WDM的MSTP。实际上是将WDM的每个波道分别用作各个业务的通道,即可以用透传的方式,也可以支持各种业务的接入处理,如在FE、GE等端口中嵌入以太网2层甚至3层交换功能等,使WDM系统不仅仅具有传送能力,而且具有业务提供能力。 进一步在光层网络中,将传输与交换功能相结合的结果,则导出了自动交换光网络ASON的概念。ASON除了原有的光传送平面和管理平面之外,还增加了控制平面,除了能实现原来光传送网的固定型连接(硬连接)外,在信令的控制下,还可以实现交换的连接(软连接)和混合连接。即除了传送功能外,还有交换功能。 互联网发展需求与下一代全光网络发展趋势 近年来,随着互联网的迅猛发展,IP业务呈现爆炸式增长。预测表明,IP将承载包括语音、图像、数据等在内的多种业务,构成未来信息网络的基础;同时以WDM为核心、以智能化光网络(ION)为目标的光传送网进一步将控制信令引入光层,满足未来网络对多粒度信息交换的需求,提高资源利用率和组网应用的灵活性。因此如何构建能够有效支持IP业务的下一代光网络已成为人们广泛关注的热点之一。 对承载业务的光网络而言,下一步面临的主要问题不仅仅是要求超大容量和宽带接入等明显需求,还需要光层能够提供更高的智能性和在光节点上实现光交换,其目的是通过光层和IP层的适配与融合,建立一个经济高效、灵活扩展和支持业务QoS等的光网络,满足IP业务对信息传输与交换系统的要求。 智能化光网络吸取了IP网的智能化特点,在现有的光传送网上增加了一层控制平面,这层控制平面不仅用来为用户建立连接、提供服务和对底层网络进行控制,而且具有高可靠性、可扩展性和高有效性等突出特点,并支持不同的技术方案和不同的业务需求,代表了下一代光网络建设的发展方向。 研究表明,随着IP业务的爆发性增长,电信业和IT业正处于融合与冲突的“洗牌”阶段,新技术呼之欲出。尤其是随着软件控制(“软光”技术)的使用,使得今天的光网络将逐步演进为智能化的光网络,它允许运营者更加有效地自动配置业务和管理业务量,同时还将提供良好的恢复机制,以支持带有不同QoS需求的业务,从而使运营者可以建设并灵活管理的光网络,并开展一些新的应用,包括带宽租赁、波长业务、光层组网、光虚拟专用网(OVPN)等新业务。 综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术已构成了今天的光纤通信研究热点,在未来的一段时间里,人们将继续研究和建设各种先进的光网络,并在验证有关新概念和新方案的同时,对下一代光传送网的关键技术进行更全面、更深入地研究。 从技术发展趋势角度来看,WDM技术将朝着更多的信道数、更高的信道速率和更密的信道间隔的方向发展。从应用角度看,光网络则朝着面向IP互联网、能融入更多业务、能进行灵活的资源配置和生存性更强的方向发展,尤其是为了与近期需求相适应,光通信技术在基本实现了超高速、长距离、大容量的传送功能的基础上,将朝着智能化的传送功能发展。

光纤通信在配电网自动化上的应用 论文 1前言随着国家经济的发展和人民生活水平的提高,人们对电力的需求日益增长,同时对供电的可靠性和供电质量提出了更高的要求。配网馈线自动化是配网系统提高供电可靠性最直接有效的技术手段之一。在近几年国家加大了对城网和农网的改造,国内各大供电局对配电网自动化的投入也在加大。在配网自动化实现的过程中,我们发现通信问题是一个难点问题。在此,仅就光纤通信在配网自动化方面的应用谈一点认识和体会。 2配电网自动化对通信的要求 同调度SCADA系统一样,配电自动化系统也需要一个有效的通信网,同时他有自己的特点:终端数量极多。配网系统拥有众多的开闭所、配电变压器、柱上断路器,要对这些设备进行监控就需要许多FTU和TTU,同时这些FTU随配电设备安装,地域分布广,通讯节点分散。 配网自动化系统的规模、复杂程度和自动化程度决定了通信系统应满足下述要求: (1)可靠性: 配网系统的通信设备有很多暴露在室外,环境恶劣,因此必须能够抵御高温、低温、日晒、雨淋、风雪、冰雹和雷电等自然环境的侵袭。同时,尽量避免各种电磁干扰,保证长期稳定可靠地工作,并要求在线路停电时,通信系统仍能正常工作。 (2)经济性: 考虑到配电网系统的总体经济效益,通信系统的投资不应过大,力争充分利用现有的主网通信资源,进行主、配网整体规划,避免重复投资。 (3)寻址量大: 通信系统不仅要考虑目前及未来的数据传输的需要,还要考虑系统升级的要求。 (4)双向通信: 配网自动化要实现遥测、遥信、遥控功能,就必须要求具有双向通信能力。 (5)容易操作和免维护。 根据以上的要求,伴随着光纤价格的下降,目前,光纤通信正广泛地应用于电力系统。 3光纤通信 自激光器和低损耗光纤问世以来,光纤通信系统以其技术、经济上无可比拟的优越性而迅速崛起,并风靡全球。该系统是以光纤为传输介质,以光为载波信号传递信息的通信系统,应用的光波波长为~1.μm靘,整个系统由电端机、光端机、光缆和中继器构成。光纤可分为单模光纤(SMF)、多模光纤(MMF)、长波长低射散光纤(LMF)、保偏光纤(PMF)及塑料光纤(POF)等很多种;常用的为单模和多模光纤,多模光纤就是传输多个光波模式,而单模光纤只传输一个光波模式。单模光纤比多模光纤传输距离长,目前一般地,光信号在多模光纤内可传6km左右,在单模光纤内可传30km。因此,单模光设备的价格要高于多模光设备。实用的光纤通常都是由多根光纤、加强芯、保护材料、固定材料等组合成光缆构成的传输线。 光纤MODEM可完成光信号与数字信号之间的相互转换。光纤MODEM一般有一个以上的数据口用以传递同步或异步信号。通信速率可达到2Mbps或更高,配网常用的通信速率一般为同步N×64K或异步19200bps以下。故足以满足配网通信的需要,光纤MODEM的连接示意图如下:另外,还有一种光纤MODEM具有双环自愈功能。这一功能使通信的可靠性大大增强。其功能示意图如图2所示:图2(I)中,A,B,C三点是通过自愈光MODEM实现的双环网,若在D点发生故障,则如图2(II)所示,光路在A站和C站愈合(环回),使通信不受影响,同时向主站发出相应的告警及定位信号,使维修人员及时修复故障段光缆。4光纤通信的特点 光纤通信具有通信容量大,衰减小,不怕雷击,抗电磁干扰、抗腐蚀、保密性好、可靠性高、敷设方便等优点,不过投资费用相对较高,尤其对于城区内直埋式电缆线路的光纤敷设,施工费用将更大。 5光纤通信在配电网上的实现方案 光纤通信的组网方式非常灵活,可以构架成星型、链型、树状、网状、单纤网、双纤网、环上多分支、多环相交、多环相切等各种拓扑结构的网络。 根据配电自动化系统的特点,光纤网通常需组成环型网,并与计算机局域网连接,实现数据共享。常用的组网方式如图3所示。图3中:“S”表示网络服务器,“W1、W2、Wn”表示工作站,“b”表示变电所,“k”表示开闭所,“T”表示配电变压器。 实际工程设计中,充分考虑到电力通信专网拓扑结构的复杂性,SDH传输系统可以采用多达126个E1(2M口)全交叉连接和双主光环+多光分支的设计思想。基本构架为1~3个SDH/STM-1双纤自愈环相交或相切,而且在需要时,可通过更换光卡的方式在线升级为SDH/STM-4。如果局调度中心局域网位于网络地理中心,建议设计为相切环,以调度中心为切点,如图4所示;如果局调度中心局域网偏离网络地理中心,建议设计为相交环,由于调度中心不在交点,为了环间可靠转接,各环相交至少两点,互为保护路由,如图5所示。6结束语 在实际的配网自动化的通信系统,必须构建一个成本低、收效高的双向通信系统,用可以接受的费用在可靠性和信息流量方面提供非常高的性能。同时,由于配电网自动化系统所要完成的功能太多而系统复杂,采用单一的通信系统来满足所有的功能需要是不现实的,也是不经济的。因此,在配电网自动化系统中,要应用多种通信方式,按综合的经济技术指标而选取其中最优的组合。在电力系统中较常用的通信方式还有一点多址数字微波、数传电台、无线扩频、专线电缆、邮电本地网、载波、扩频载波等,可供组网时选择。

光纤激光器研究进展论文

2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。2004年12月3日,烽火通信继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。2012年,国内首台拥有自主知识产权的1000W工业级光纤激光器在西安诞生。这一科研成果的产业化,不仅将满足我国工业加工领域对高功率光纤激光器的市场需求,同时也将打破国外高功率光纤激光器的市场垄断局面,推动我国光纤激光加工产业进一步发展。2012年11月,华工科技旗下华工激光与锐科公司共同研制的4千瓦光纤激光器,通过了省级科技成果鉴定。鉴定专家组主任委员、中国光学学会理事长周炳琨院士指出,这项技术填补了国内空白,达到国际先进水平,获得4项国家发明专利。[5]光纤激光器作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。不过,我们认为,在短期内,光纤激光器将主要聚焦在高端用途上随光纤激光器的普及,成本的降低以及产能的提高,最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分YAG激光器。

光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设等等。 2.光纤激光器的优势 光纤激光器作为第三代激光技术的代表,具有以下优势: (1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势; (2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故; (3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低; (4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多; (5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。 (6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。 (7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。 (8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。 (9)不需热电制冷和水冷,只需简单的风冷。 (10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。 (11)高功率,目前商用化的光纤激光器是六千瓦。 3.高功率的光纤激光器及其包层泵浦技术 双包层光纤的出现无疑是光纤领域的一大突破,它使得高功率的光纤激光器和高功率的光放大器的制作成为现实。自1988年E Snitzer首次描述包层泵浦光纤激光器以来,包层泵浦技术已被广泛地应用到光纤激光器和光纤放大器等领域,成为制作高功率光纤激光器首选途径。 包层泵浦技术,由四个层次组成:①光纤芯;②内包层;③外包层;④保护层。如图(1)所示,将泵光耦合到内包层(内包层一般采用异形结构,有椭圆形、方形、梅花形、D形及其六边形等等),光在内包层和外包层(一般设计为圆形) 之间来回反射,多次穿过单模纤芯被其吸收。这种结构的光纤不要求泵光是单模激光,而且可对光纤的全长度泵浦,因此可选用大功率的多模激光二极管阵列作泵源,将约70%以上的泵浦能量间接地耦合到纤芯内,大大提高了泵浦效率。 包层泵浦技术特性决定了该类激光器有以下几方面的突出性能。 1、高功率 一个多模泵浦二极管模块组可辐射出100瓦的光功率,多个多模泵浦二极管并行设置,即可允许设计出很高功率输出的光纤激光器。 2、无需热电冷却器 这种大功率的宽面多模二极管可在很高的温度下工作,只须简单的风冷,成本低。 3、很宽的泵浦波长范围 高功率的光纤激光器内的活性包层光纤掺杂了铒/镱稀土元素,有一个宽且又平坦的光波吸收区(930-970nm),因此,泵浦二极管不需任何类型的波长稳定装置 4、效率高 泵浦光多次横穿过单模光纤纤芯,因此其利用率高。 5、高可靠性 多模泵浦二极管比起单模泵浦二极管来其稳定性要高出很多。其几何上的宽面就使得激光器的断面上的光功率密度很低且通过活性面的电流密度亦很低。这样一来,泵浦二极管其可靠运转寿命超过100万小时。 目前实现包层泵浦光纤激光器的技术概括起来可分为线形腔单端泵浦、线形腔双端泵浦、全光纤环形腔双包层光纤激光器三大类,不同特色的双包层光纤激光器可由该三种基本类型拓展得到。 OFC-2002的一篇文献采用如图2所示腔体结构,实现了输出功率为、阈值为,倾斜效率高达85%的新型包层泵浦光纤激光器[1]。在产品技术方面,美国IPG公司异军突起,已开发出700W的掺镱双包层光纤激光器,并宣称将推出2000W的光纤激光器。 4.新型的光纤激光器技术 早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光二极管等技术均见报道。 5.我国光纤激光器目前研究进展 2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。 2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。 2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与目前已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替现在的油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。 2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。 2004年12月3日,烽火通信报道,继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。这是烽火通信在特种光纤领域迈出的重要一步,同时也是我国在高功率激光器用光纤领域的重大突破。掺镱双包层光纤激光器是国际上新近发展的一种新型高功率激光器件,由于其具有光束质量好、效率高、易于散热和易于实现高功率等特点,近年来发展迅速,并已成为高精度激光加工、激光雷达系统、光通信及目标指示等领域中相干光源的重要候选者。双包层掺镱激光器的主要激光增益介质是双包层掺镱光纤,因此双包层掺镱光纤的性能直接决定了该类激光器的转换效率和输出功率。烽火通信作为国内唯一一家进行双包层掺镱光纤研究的单位,在成功推出输出功率达100W以上的完全可商用的双包层掺镱光纤产品后,又加大的研发力度,使得其输出功率实现440W以上,达到国际领先水平。 6.结论 光纤激光器作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。不过,我们认为,在短期内,光纤激光器将主要聚焦在高端用途上随光纤激光器的普及,成本的降低以及产能的提高,最终将可能会替代掉全球大部分高功率 CO2激光器和绝大部分YAG激光器。

在经济学的论文中引用参考文献,具有重要的标志功能、评价功能、保护功能和链接功能,可以反映经济学论文的研究基础和科学依据,可供进一步检索有关资料,共享资源。下面我将为你推荐经济学论文参考文献的内容,希望能够帮到你!

[1]刘思华.生态马克思主义经济学原理[M].北京:人民出版社.2006

[2]叶耀丹.马克思主义生态自然观对中国生态文明建设的启示[D].成都:成都理工大学.2012

[3]陆畅.我国生态文明建设中的政府职能与责任研究[D].长春:东北师范大学.2012

[4]俞可平.科学发展观与生态文明[M].上海:华东师范大学出版社.2007:18

[5]朴光诛等.环境法与环境执法[M].北京:中国环境科学出版社.2004:23

[6]罗能生.非正式制度与中国经济改革和发展[M].北京:中国财政经济出版社.2002: 19

[7]党国英.制度、环境与人类文明一关于环境文明的观察与思考[N].新京报.2005-2-13

[8]张婷婷.生态文明建设的科技需求及政策研究[D].锦州:渤海大学.2012

[9]秦书生.生态文明视野中的绿色技术[J].科技与经济.2010(3): 82-85

[10]陈池波.论生态经济的持续协调发展[J].长江大学学报(社会科学版)2004(1):97-102

[11]张首先.社会主义与生态文明[J].理论与现代化.2010(1): 23-26

[12]黄光宇.陈勇.生态城市理论与规划设计 方法 [M].北京:科学出版社.2002

[13]张首先.生态文明研究[D].成都:西南交通大学.2010

[14]马仁忠.地理环境对种族、民族特征的影响[J].宿州 教育 学院学报.2002(4):

[15]冒佩华.王宝珠.市场制度与生态逻辑[J].教学与研究.2014(8):37-43.

[1]陈凌.应丽芬.代际传承:家族企业继任管理和创新〔J〕.管理世界.2003 ( 6): 89-9

[2]伯纳德‘萨拉尼着.陈新平、王瑞泽、陈宝明、周宗华译.税收经济学〔M〕.北京:中国人民大学出版社.2009:143-144.

[3]彼德·德鲁克.大变革时代的管理〔M〕.上海:上海译文出版社.1999版.

[4]陈凌.信息特征、交易成本和家族式组织〔J〕.经济研究.1998(7):27-33.

[5]. Toward an Economic Theory of Income Distribution〔 C〕.Cambridge, MA: MITPress, 1974,123:137-139.

[6]. The Wealth of Nations ( 1776 )〔M〕.Chicago: University of Chicago Press,1976(reprint): 391.

[7]沈建法.城市化与人口管理[M].北京:科学出版社.1999

[8]张志强.徐中民.程国栋.生态足迹的概念及计算模型[J].生态经济.2000(10) : 8-10

[9]张恒义.刘卫东.林育欣.等.基于改进生态足迹模型的浙江省域生态足迹分析[J].生态学报.2009(5):2738-2748

[10]贺成龙.吴建华.刘文莉.改进投入产出法在生态足迹中的应用[J].资源科学.2008 (12) : 1933-1939,2008 (2) : 261-266

[11]郭军华.幸学俊.中国城市化与生态足迹的动态计量分析[J].华东交通大学学报.2009 (5) : 131-134.

[1] 刘毅. 现代性语境下的正当性与合法性:一个思想史的考察[D]. 中国政法大学 2007

[2] 刘毅. 树突状细胞在兔动脉粥样硬化模型中作用的研究[D]. 南方医科大学 2009

[3] 刘毅. 硅基微环谐振腔光信号处理与布里渊光纤激光器的理论和实验研究[D]. 天津大学 2014

[4] 刘毅. 未来移动通信系统中的协作传输技术研究[D]. 北京邮电大学 2010

[5] 刘毅. 基于图割的交互式图像分割算法研究[D]. 南京理工大学 2013

[6] 刘毅. 基于iTRAQ技术对HBV相关性肝癌血浆差异蛋白的鉴定及功能学研究[D]. 重庆医科大学 2014

[7] 刘毅. 整体性治理视角下的县级政府社会管理体制创新研究[D]. 华中师范大学 2014

[8] 刘毅. 几类切换模糊系统的镇定控制设计[D]. 东北大学 2009

[9] 刘毅. 区域循环经济发展模式评价及其路径演进研究[D]. 天津大学 2012

[10] 刘毅. β-抑制蛋白2对哮喘小鼠CD4~+T细胞表达和产生IL-17的影响及其机制研究[D]. 中南大学 2011

[11] 刘毅. SIRT3在原发性肝癌中的表达及其抑瘤作用的研究[D]. 中南大学 2012

[12] 刘毅. 南中国海与东南极中晚全新世气候环境变化记录与研究方法探索[D]. 中国科学技术大学 2012

[13] 刘毅. 晚期糖基化终产物对心肌微血管内皮细胞及糖尿病心肌缺血再灌注损伤的影响及机制[D]. 第四军医大学 2012

[14] 刘毅. 华喦花鸟画研究[D]. 南京艺术学院 2012

[15] 刘毅. 三甲基芹菜素阻断多种心脏钾通道与增加迟钠电流的作用研究[D]. 华中科技大学 2012

[16] 刘毅. 面向人群的并行多目标疏散模型研究[D]. 武汉理工大学 2012

[17] 刘毅. 采用外周血进行肿瘤分子诊断的转化医学研究[D]. 中国人民解放军军事医学科学院 2012

猜你喜欢:

1. 会计毕业论文参考文献

2. 人力资源会计论文参考文献

3. 国际贸易论文

4. 经济学论文参考文献

5. 有关经济学论文参考文献

光学国外研究现状论文

随着社会的高速发展和全球化的加速推进,各国的学术研究也在不断壮大和深入。中国的学术研究也不例外,各个领域的论文层出不穷,尤其是在一些科技领域,中国的研究成果已经开始受到国际的关注。在国内,学术研究的领域非常广泛,但是,更多的注意力是集中在一些热门的领域,例如人工智能、大数据、物联网、生物基因等,这些都是当前世界范围内研究的热点。同时,随着中国对世界经济和政治的影响力日益增强,一些战略型的研究也受到了高度的重视,例如能源、环境、军事等领域。

针对这些热门领域,国内的论文研究也取得了很多的成果。例如,近年来,智能驾驶、人脸识别、语音识别等人工智能领域的技术不断提高,分别利用深度学习、强化学习等技术,这些研究都为中国智能化制造、智能家居等领域的发展提供了坚实的基础。物联网领域的研究也逐渐成熟,利用无线传感器和云计算等技术,实现了物品之间的互联互通和智能控制。

在国外,学术研究也在不断向前发展。一些国外的研究成果对中国的学术研究也产生了较大的影响。例如在生物医学领域,国外的一些研究成果为中国的医学事业提供了宝贵的参考和启示,中国的生物医学研究也在不断地发展和进步。同时,在能源、环境保护等领域,国外研究成果也为中国提供了许多借鉴,为中国的科技创新提供了必要的支持。

总的来说,中国的学术研究成果在国内外都越来越受到重视,各个领域的学术研究也在不断发展和进步。但是,仍然存在一些问题,例如研究的深度和广度不够,研究方法和手段不够先进,学术交流和合作不够紧密等。因此,我们需要不断加强学术研究的质量和效率,发挥学者的创造力和创新精神,不断推进学术研究的深入发展,为中国的科技创新和经济发展做出更大的贡献。

引言 光全息学是在现代激光的发现之后才迅速发展起来的,本文将就光全息学的一些主要的研究课题进行探讨,并针对一些应用课题进行研究。现代光全息学的起源,发展和人物,新型应用,本文将告诉你. 利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,这样记录下来的干涉条纹图样称为“全息图”,而当用光波照射全息图时,由于衍射原理能重现出原始物光波,从而形成与原物体逼真的三维象,这个波前记录和重现过程称为“全息术”或“全息照相” 光束全息照相由盖伯于1948年提出的,而当时没有足够强的相干辐射源全息研究处于萌芽时期。当时的全息照相采用汞灯为光源,且是同轴全息图,它的+/-1级衍射波是分不开的,即存在所谓的“孪生像”问题,不能获得很好的全息像。这是第一代全息图。1960年激光的出现,1962年美国科学家利思和乌帕特尼克斯将通信理论中的射频概念推广到空域中,提出离轴全息术,他用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光,第一代全息图的两大难题因此得以解决,产生了激光记录,激光再现的第二代全息图。当代光全息学发展主要课题有:1. 球面透镜光学系统2. 光源和光学技术3. 平面全息图分析4. 体积全息图衍射5. 脉冲激光全息学6. 非线性记录,散斑和底片颗粒噪声7. 信息储存8. 彩色全息学9. 合成全息图10. 计算机产生全息图11. 复制,电视传输和非相干光全息图而伴随光全息学的发展也产生一些光全息技术应用,比如高分辨率成像,漫射介质成像,空间滤波,特征识别,信息储存与编码,精密干涉测量,振动分析,等高线测量,三维图象显示等方面的用途。本论文将就当代光全息学的研究与应用两大课题进行学术研究一. 当代光全息学研究 球面透镜不仅能形成光振幅分布的影象,而且易形成该分布的傅立叶变换图形。因此,用一个简单透镜可使物光在全息平面上成为某原始图形的傅立叶变换。存储在全息图中的变换所具有的特性,在光学图形识别中有重要的应用。透镜,作为形成影象的器件,可以在全息术中用来构成像面全息图。一个透镜可以形成:a.傅立叶变换和b.输入复振幅分布的影象 由于利用激光光源来制作全息图片,使得全息学开始成为一门实用的学科。对形成全息图所用光源提出的要求取决于由于物体和必要的光学部件的安排所决定的参数。从单一光源取得物波和参考波有如下图所示两种普通方法:A. 分波前法B. 分振幅法 在光源与全息图之间(通过物表面或参考镜的反射)传播的光线的最大光程差必须小于相干长度。激光的相干性与激光器的振荡模式有关,就全息术而论,它要求在任一个横模振荡的激光器的空间相干的辐射,由于高介模的振荡较不稳定,并有以两个或者多个模式同时振荡的倾向,因此最好的振荡模式是最底阶的模式。激光束的输出功率必须分成物体照明波和参考波。若物体要求从不止一个角度(以消除阴影),就需要将激光束分成好几束,一般采用分振幅法,因分振幅法能产生较均匀的照明,而且对光束的展宽要求小,既可以在分配前也可以在分配后展宽。平面全息图分析用非散射光记录的共线全息图上的条纹间隔与感光乳剂的厚度相比为较宽的。照明这张全息图的波前中的一条光线在通过全息图前只和一条记录条纹相互作用。因此全息图的响应近似于一个有聚焦特性的平面衍射光栅。加伯在分析这些特性时是把这样的全息图严格地当作二维的。用对二维模型分析的结果也很符合实验观察。在应用利思与乌帕尼克首先采用的离轴技术所得到的全息图上,其条纹频率则超过共线全息图,超过了量正比于物光束与参考光束之间的夹角。条纹间隔的典型值可以考虑由两平面波的干涉得到。正弦强度分布的周期d可以由下式决定:2dsinθ=λ, θ为波法线与干涉条纹间的夹角,波长λ,条纹间隔d式中当θ=15°,λ=微米(绿光)时,则d=1微米。记录离轴全息图的感光乳剂的厚度通常为15微米,实际上,在这样的乳剂中记录的全息图已不能当作是二维的了。因此重要的是要记录住平面全息图的分析结果只能准确地应用于使用相当薄的介质所形成的全息图。体积全息图衍射基本的体积全息图对相干照明的响应可以用偶合波理论来描述。假设有两个在yz平面传播的并具有单位振幅的平面波,其进入记录介质并进行干涉的情况,按折射定律,有sin /sin =sin /sin =nn为记录介质的折射率; 及 分别表示两个波在空气中与z轴的夹角; 及 则为两个波在介质中与z轴的夹角。布拉格定律可以用空气中的波长 ,全息片介质折射率 写成如下形式: 2dsinθ= / 体积全息图的特性由布拉格定律确定,因此对照明显示出选择响应。 二.光全息学典型应用高分辨率成像当一张全息图用与制作全息图参考光束共轭的光束照明时,在理论上能再现没有像差没有畸变的物波,其投影实象的分辨率仅受全息图边界衍射的限制。由于分辨率将随全息图尺寸的增加而增加。由于全息图可以做的很大,因此可以指望在现场大到5×5厘米时空间频率高到1000线/毫米。显然此种情况下放大率为1,但1:1的高分辨率投影成像,在集成电路的光刻工艺中有重要的潜在应用。将光刻掩模精密成象在半导体薄片上的工作,目前是用接触印象法来完成的。但这方法很快就会使模板损坏。用投影方法将影象转移到薄片上是一理想的可供选择的方法,但要非常优良和非常昂贵的镜头才能使投影的掩模象达到要求的分辨率和视场。当用相干光源照明制作全息图时,摄影乳剂的收缩,表面变形,非线性及洽谈噪声源的影响就更大了。它们可使图象产生斑纹,衬度降低和边缘模糊,这些缺陷又是用光刻法制作集成电路所不允许的。新的,更稳定的材料可能是这些问题的解答。特征识别由空间调制参考波形成的傅立叶变换全息图的许多特性,曾被范德鲁等人用于特征识别。他们采用全息法作成的空间滤波器完成了“匹配滤波”在特征识别中的应用。匹配滤波与概念,形成与应用可由下图说明 当要把形成的空间滤波器作为特征识别时,在输入平面内z轴上方部分是一个由平面波透明的,在不透明背景上包含M个透明字符的透明片。我们将这一组字符阵列的透过率表示为 这里所有字符均围绕 点对称分布, 是阵列中的一个典型字符,其中心在 点。另外,在输入平面内 处,有一光强度为 δ 的明亮的点光源,并在空间频率面εη面上形成一张傅立叶变换全息图。这一全息图可以看作是t 与δ函数形成的平面波干涉的记录。但是当全息图完成识别功能时,仅由透过t的一小部分,即通过入射平面内的一个或几个字符的光所照明,我们将会看到,在输出平面上我们所关心的再现,是表示识别结果的一个明亮的象点。信息储存与编码全息图既可以存储二维信息也可以存储三维信息。信息可以是彩色的或者编码的,图象的或者字母数字的;可以存储在全息图的表面,或存储在整个体积中;可以为空间上分离的,或者重叠的;可以是永久记录或者是可以消象的。记录的内容可以是彼此无关的或者相互成对的;可以是可辨认的影象或似乎是无意义的图形。现代光全息学的发展前景十分广阔,而其实用技术必然会实现普及,有识之士当携手共同研究以促进社会进步.

  • 索引序列
  • 光学研究论文
  • 分光计在光学中的研究的论文
  • 光纤光束可靠性研究论文
  • 光纤激光器研究进展论文
  • 光学国外研究现状论文
  • 返回顶部