首页 > 学术期刊知识库 > 向量法研究三角形的性质的论文

向量法研究三角形的性质的论文

发布时间:

向量法研究三角形的性质的论文

证法1先做图,做出过b,c的两条中线,分别交ac于m,交ab于n,所以m,n是ac,ab的中点.连接mn设向量bp=λ向量pm,向量cp=μ向量pn(λ,μ为不等于0的实数)向量bc=向量pc-向量pb=向量bp-向量cp=λ向量pm-μ向量pn,向量nm=向量pm-向量pn,而向量bc=2向量nm所以,λ向量pm-μ向量pn=2向量pm-2向量pn即(λ-2)向量pm-(μ-2)向量pn=o向量因为向量pm与向量pn不共线,所以λ=2,μ=2所以向量bp=2向量pm由此证得两中线交点把bm分成2:1.同理可证另一条中线与bm的交点也有此性质,故三角形的三条中线交于一点,并平分每条比为1:2得证.证法2作出一个三角形abc,设d,e,f分别是bc,ca,ab的中点,在平面上任取一点o,设向量oa=a,向量ob=b,向量oc=c则向量od=1/2(b+c),向量of=1/2(a+b),向量oe=1/2(c+a).再设p为ad上的三等分点,满足向量ap=2向量pd,则向量op=1/3向量oa+2/3od=1/2a+2/3*1/2(a+b)=1/3(a+b+c)同理可证,p也是be,cf的三等分点,因此三条中线交于点p。三角形的3中线交于一点,并平分每条比为1:2 --------------------°.●丫è。为您解答!满意的话请采纳,谢谢o(∩_∩)o...希望带上好评哦~~ ★x5~谢谢~!!

三个向量相乘小于零是钝角三角形 大于零是锐角三角形 等于零 是直角三角形 a ?是不是?我说的对马?如果打对就采纳我得吧 ,我想升级啊?求求你了?——一位小弟弟

对数量积性质的新认识 【摘 要】:教学活动要遵循内在规律,只有当一切外在事实(知识)通过教师的主导作用,最后被主体(学生)认识之后,这外在东西才会为主体真正占有,这种转化只有在参与实践中才能体会并重新构建、形成知识体系。我们的教材中的好多知识表面上是孤立的,若我们的的教师在引领学生认知这些内容的同时,有“意识”的揭示这种“知识链”,内化我们学生的理解,让学生对知识的构建“水到渠成”!这不失为一种有效教学的好途径。【关键词】:数量积 向量 角度 距离作为新课程改革,高中数学教材的两个显著变化就是“向量和导数”的引入。其目的也很明确:为研究函数、空间图形,提供新的研究手段,即充分体现它们的工具性。但这种“工具性”,只有在深刻理解的基础上才能用好,而要想用活,这又需要我们在实践中不断“开发”新的认识,丰富知识网络,形成较完善的“认知模块”、“知识体系”。例如全日制普通高级中学教科书《数学•第二册(下B)》P33¬中,关于空间向量的数量积有这样三条性质:(1) ,(2) ,(3) 。作为“工具性”,性质(2)(3)比较明显,会立即得到充分的应用。可是对于性质(1),当时,在上新授课时我总认为:这条性质没有什么“本质上”的用处,有点像“房间里的摆设”——配角。但是随着时间的推移,笔者发现了她的奥妙之处:在后继的有关空间问题中的“三大角度”和“三大基本距离”的坐标法的研究中有着奇妙无穷的用途,并带来意想不到的“知识链”反应,极大地丰富了关于空间向量的“数量积”这一运算的“认知模块”的内涵。本文便梳理和佐证这一认知,以飨读者。(一)性质的产生与内含已知向量 和轴l, 是l上与l同方向的单位向量,作点A在l上的射影 ,作点B在l上的射影 则 叫向量 在轴l上或在 方向上的正射影,简称射影。 可以证明得, (证明略,图如下所示。)此性质的内含理解有四点:①结果是一个数量(本身含正负号);②其正负号由向量 所成角的范围决定;③加上绝对值 便是一条线段长度(这里 刚好组成一个直角三角形的两条直角边);④可以推广为求一条线段在另一条直线上的正射影(此线段所在直线与已知直线的位置关系可以异面直线)。(二)性质的“知识链”对教材引进空间向量的“坐标法”来解决空间中“三大角”问题,我们的学生可以说是欣喜若狂啊,因为学生觉得这种方法好!可操作性强!(只要能建系,有坐标就行!)但在实际应用中,学生觉得这些结论不易理解,加上这些结论只能逐步形成和完善,靠死记硬背吧,今天记了明天又忘了!等到用时,仍是“生硬、呆板”,甚至张冠李戴。如何突破这一问题?我认为其根本原因是:在学生的认知结构里,这一性质未能如愿地形成“知识链”。那么,这一性质是怎样与相关问题产生“对接或联系”的呢?(1)它是空间三大角(即线线角、线面角、二面角的平面角)用向量法求解的“对接点”。1.1线线角 的求法的新认识:我们把这两条线赋予恰当的两个向量,问题就化归为两个向量的夹角(两个向量所成的角的范围为 ),即 ,我们能否加以重新认识这个公式呢?如图,,此时OB1可以看作是 与 方向上的单位向量 的数量积 ,这就是由数量积这条性质滋生而成的;故此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。1.2线面角 的求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,此时OP又可以看作是 在 上的投影,即 与 方向上的单位向量 的数量积 , ,故 (这里刚好满足三角函数中正弦的定义:对边比斜边)。1.3二面角的平面角 的求法的新认识: = (其中 是两二面角所在平面的各一个法向量)此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。★三大角的统一理解: 、 、 、其从上述梳理完全可以看出其本质特征:这里的“空间角”的求法,完全与直角三角形中的三角函数的“正弦或余弦的定义”发生了对接——对边或邻边就是斜边的向量在此边向量上的投影,即斜边向量与对边或邻边方向上的单位向量的数量积,而理解与掌握这里的“空间角”的直角三角形的构图,学生完全可以达到“系统化”和“自主化”,因为直角三角形中的三角函数定义,他们太熟悉了!即将知识的“生长点”建立在学生认知水平的“最近发展区”,那学习就会水到渠成! (2)它又是空间三大距离(即点线距、点面距、异面直线间距离)用向量法求解的“联系点”。空间中有七大距离(除球面上两点间的距离外)基本上可转化为点点距、点线距、点面距,而点线距和点面距又是重中之重!另外两异面直线间的距离,高考考纲中明确要求:对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。因此对异面直线间的距离的考查有着特殊的身份。教材按排中引进了向量法来解决距离问题,也给问题的解决带来新的活力!不用作出(或找出)所求的距离了。2.1点面距求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,即 在 上的投影,即 与 方向上的单位向量 的数量积 。2.2点线距求法的新认识:1)新认识之一:如图,若存在有一条与l相交的直线时,就可以先求出由这两条相交直线确定的平面的一个法向量 ,则点P到l的距离 。2)新认识之二:若不存在有一条与l相交的直线时,我们可以先取l上的一个向量 ,再利用 来解,即: ,而数量OB可以理解为 在l上的向量 的投影,也即为: 。2.3异面直线间距离求法的新认识: 从这几年的高考《考纲说明》观察,我们不难发现,对异面直线间距离的考查本意不能太难,但若出现难一点的考题,命题者又能自圆其说的新情况。实际上,这种自圆其说法归根到底在于高考考纲中的说法:只要求会计算已给出公垂线或在坐标表示下的距离。那也就是说,在不要作出公垂线(也许学生作不出!)的情况下,也可以求出它们的距离的!那就是用向量法!如图所示:若直线l1与直线l2是两异面直线,求两异面直线的距离。 略解:在两直线上分别任取两点A、C、B、D,构造三个向量 ,记与两直线的公垂线共线的向量为 ,则由 ,得 ,则它们的距离就可以理解为: 在 上的投影的绝对值,即: 。 ★三大距离的统一理解: (点面距)、 (异面距)、 (点线距之一)、 且 (点线距之二)、其本质特征是:一个向量在其所求的距离所在直线的一个向量上的投影,也即数量积此性质的直接应用。由上述的剖析过程不难再看出:空间中的三大角与三大基本距离的计算,都隐藏于这个“特定”的数量积的性质之中,体现在这个公式结构的“统一美”之中,把问题的本质揭示得“淋漓尽致”,而又不失自然!这给“立体几何” 中向量的工具性的体现,增色了几分美感与统一感!(三)性质的应用例1、(2005年山东省(理科)高考第20题)如图,已知长方体 直线 与平面 所成的角为 , 垂直 于 , 为 的中点.(I)求异面直线 与 所成的角;(II)求平面 与平面 所成的二面角;(III)求点 到平面 的距离.解:在长方体 中,以 所在的直线为 轴,以 所在的直线为 轴, 所在的直线为 轴建立如图示空间直角坐标系;由已知 可得 , ,又 平面 ,从而 与平面 所成的角为 ,又 , , ,从而易得 (I) 因为 所以 ,易知异面直线 所成的角为 (II) 易知平面 的一个法向量 ,设 是平面 的一个法向量, 由 即 所以 即平面 与平面 所成的二面角的大小(锐角)为 (III)点 到平面 的距离,即 在平面 的法向量 上的投影的绝对值,所以距离 = 所以点 到平面 的距离为 例2、(2005年重庆(理科)高考第20题)如图,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1,已知AB= ,BB1=2,BC=1,∠BCC1= ,求:(Ⅰ)异面直线AB与EB1的距离;(Ⅱ)二面角A—EB1—A1的平面角的正切值. 解:(I)以B为原点, 、 分别为y、z轴建立空间直角坐标系.由于BC=1,BB1=2,AB= ,∠BCC1= ,在三棱柱ABC—A1B1C1中有B(0,0,0),A(0,0, ),B1(0,2,0),A1(0,2, ) ,设 ; ,则 得, (令y=1),故 =1(II)由已知有 故二面角A—EB1—A1的两个半平面的法向量为 。 。通过上述几个高考题的分析,我们不难看出:立体几何中的几何法的“难在找(或作)所求的角度或距离”,通过这个数量积的性质的转化(方法的转化与知识之间的转化),其“难”渐渐地溶解于“转换与化归”之中及学生的细心地“计算”之中,从而也焕发了数量积这条性质的奥妙之处,也就更体现了“向量”这个工具在立体几何中应用的优越性、工具性。因为”程序化”的计算使我们的学生的“信心”倍增!同时让我们的学生也懂得了“知其所以然”,再也不用为记这一个“好结论”而烦恼了!参考文献:1、2005年普通高等学校招生全国统一考试大纲 (高等教育出版社)2、《浙江省高考命题解析——数学》 (浙江省高考命题咨询委员们编著)3、基础教育课程改革教师通识培训书系第二辑《课程改革发展》(中央民族大学出版社 周宏主编)

设两条中线的交点为O,按一定方向设三角形三边的向量为向量a,b,c,三边中点为D,E,F.假如说取的两条中线是AD和BE,那么,就用a,b,c表示向量CO和OF,就可以发现向量CO和OF平行,因为它们共点O,所以CO和OF在同一条直线上,即三角形的中线CF经过O点.证毕.

直角三角形的作用研究论文

你好!设三边分别为a,b,c。a*a+b*b=c*c如果对你有帮助,望采纳。

性质1:直角三角形两直角边的平方和等于斜边的平方。性质2:在直角三角形中,两个锐角互余。性质3:在直角三角形中,斜边上的中线等于斜边的一半。性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)×2=BD·DC,(2)(AB)×2=BD·BC,射影定理图(3)(AC)×2=CD·BC。等积式(4)ABXAC=ADXBC(可用面积来证明)(5)直角三角形的外接圆的半径R=1/2BC,(6)直角三角形的内切圆的半径r=1/2(AB+AC-BC)(公式一);r=AB*AC/(AB+BC+CA)(公式二)

1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子能上去,地也没法用尺子去一段一段丈量,那么如何才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们能清楚地看到,我国古代的人民早在多少千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面多少何饿读者都清楚,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年第一发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则能确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便能得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 来源: 毕达哥拉斯树是一个基本的多少何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 文章来源: 原文链接: 满意请采纳

向量的不合理性质的研究论文

向量可以说源于物理,是从物理学中抽象出来的数学概念,向量在数学中有广泛应用,在物理学、工程技术中也有广泛应用.1.向量是既有大小又有方向的量,物理中有许多量:力、速度、加速度等都是向量.2.用向量研究物理问题的相关知识:(1)力、速度、加速度、位移都是向量;(2)力、速度、加速度、位移的合成与分解就是向量的加减法、运动的叠加亦用到向量的合成;(3)动量m是数乘向量;(4)功定义即力与产生位移的内积.

对数量积性质的新认识 【摘 要】:教学活动要遵循内在规律,只有当一切外在事实(知识)通过教师的主导作用,最后被主体(学生)认识之后,这外在东西才会为主体真正占有,这种转化只有在参与实践中才能体会并重新构建、形成知识体系。我们的教材中的好多知识表面上是孤立的,若我们的的教师在引领学生认知这些内容的同时,有“意识”的揭示这种“知识链”,内化我们学生的理解,让学生对知识的构建“水到渠成”!这不失为一种有效教学的好途径。【关键词】:数量积 向量 角度 距离作为新课程改革,高中数学教材的两个显著变化就是“向量和导数”的引入。其目的也很明确:为研究函数、空间图形,提供新的研究手段,即充分体现它们的工具性。但这种“工具性”,只有在深刻理解的基础上才能用好,而要想用活,这又需要我们在实践中不断“开发”新的认识,丰富知识网络,形成较完善的“认知模块”、“知识体系”。例如全日制普通高级中学教科书《数学•第二册(下B)》P33¬中,关于空间向量的数量积有这样三条性质:(1) ,(2) ,(3) 。作为“工具性”,性质(2)(3)比较明显,会立即得到充分的应用。可是对于性质(1),当时,在上新授课时我总认为:这条性质没有什么“本质上”的用处,有点像“房间里的摆设”——配角。但是随着时间的推移,笔者发现了她的奥妙之处:在后继的有关空间问题中的“三大角度”和“三大基本距离”的坐标法的研究中有着奇妙无穷的用途,并带来意想不到的“知识链”反应,极大地丰富了关于空间向量的“数量积”这一运算的“认知模块”的内涵。本文便梳理和佐证这一认知,以飨读者。(一)性质的产生与内含已知向量 和轴l, 是l上与l同方向的单位向量,作点A在l上的射影 ,作点B在l上的射影 则 叫向量 在轴l上或在 方向上的正射影,简称射影。 可以证明得, (证明略,图如下所示。)此性质的内含理解有四点:①结果是一个数量(本身含正负号);②其正负号由向量 所成角的范围决定;③加上绝对值 便是一条线段长度(这里 刚好组成一个直角三角形的两条直角边);④可以推广为求一条线段在另一条直线上的正射影(此线段所在直线与已知直线的位置关系可以异面直线)。(二)性质的“知识链”对教材引进空间向量的“坐标法”来解决空间中“三大角”问题,我们的学生可以说是欣喜若狂啊,因为学生觉得这种方法好!可操作性强!(只要能建系,有坐标就行!)但在实际应用中,学生觉得这些结论不易理解,加上这些结论只能逐步形成和完善,靠死记硬背吧,今天记了明天又忘了!等到用时,仍是“生硬、呆板”,甚至张冠李戴。如何突破这一问题?我认为其根本原因是:在学生的认知结构里,这一性质未能如愿地形成“知识链”。那么,这一性质是怎样与相关问题产生“对接或联系”的呢?(1)它是空间三大角(即线线角、线面角、二面角的平面角)用向量法求解的“对接点”。1.1线线角 的求法的新认识:我们把这两条线赋予恰当的两个向量,问题就化归为两个向量的夹角(两个向量所成的角的范围为 ),即 ,我们能否加以重新认识这个公式呢?如图,,此时OB1可以看作是 与 方向上的单位向量 的数量积 ,这就是由数量积这条性质滋生而成的;故此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。1.2线面角 的求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,此时OP又可以看作是 在 上的投影,即 与 方向上的单位向量 的数量积 , ,故 (这里刚好满足三角函数中正弦的定义:对边比斜边)。1.3二面角的平面角 的求法的新认识: = (其中 是两二面角所在平面的各一个法向量)此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。★三大角的统一理解: 、 、 、其从上述梳理完全可以看出其本质特征:这里的“空间角”的求法,完全与直角三角形中的三角函数的“正弦或余弦的定义”发生了对接——对边或邻边就是斜边的向量在此边向量上的投影,即斜边向量与对边或邻边方向上的单位向量的数量积,而理解与掌握这里的“空间角”的直角三角形的构图,学生完全可以达到“系统化”和“自主化”,因为直角三角形中的三角函数定义,他们太熟悉了!即将知识的“生长点”建立在学生认知水平的“最近发展区”,那学习就会水到渠成! (2)它又是空间三大距离(即点线距、点面距、异面直线间距离)用向量法求解的“联系点”。空间中有七大距离(除球面上两点间的距离外)基本上可转化为点点距、点线距、点面距,而点线距和点面距又是重中之重!另外两异面直线间的距离,高考考纲中明确要求:对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。因此对异面直线间的距离的考查有着特殊的身份。教材按排中引进了向量法来解决距离问题,也给问题的解决带来新的活力!不用作出(或找出)所求的距离了。2.1点面距求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,即 在 上的投影,即 与 方向上的单位向量 的数量积 。2.2点线距求法的新认识:1)新认识之一:如图,若存在有一条与l相交的直线时,就可以先求出由这两条相交直线确定的平面的一个法向量 ,则点P到l的距离 。2)新认识之二:若不存在有一条与l相交的直线时,我们可以先取l上的一个向量 ,再利用 来解,即: ,而数量OB可以理解为 在l上的向量 的投影,也即为: 。2.3异面直线间距离求法的新认识: 从这几年的高考《考纲说明》观察,我们不难发现,对异面直线间距离的考查本意不能太难,但若出现难一点的考题,命题者又能自圆其说的新情况。实际上,这种自圆其说法归根到底在于高考考纲中的说法:只要求会计算已给出公垂线或在坐标表示下的距离。那也就是说,在不要作出公垂线(也许学生作不出!)的情况下,也可以求出它们的距离的!那就是用向量法!如图所示:若直线l1与直线l2是两异面直线,求两异面直线的距离。 略解:在两直线上分别任取两点A、C、B、D,构造三个向量 ,记与两直线的公垂线共线的向量为 ,则由 ,得 ,则它们的距离就可以理解为: 在 上的投影的绝对值,即: 。 ★三大距离的统一理解: (点面距)、 (异面距)、 (点线距之一)、 且 (点线距之二)、其本质特征是:一个向量在其所求的距离所在直线的一个向量上的投影,也即数量积此性质的直接应用。由上述的剖析过程不难再看出:空间中的三大角与三大基本距离的计算,都隐藏于这个“特定”的数量积的性质之中,体现在这个公式结构的“统一美”之中,把问题的本质揭示得“淋漓尽致”,而又不失自然!这给“立体几何” 中向量的工具性的体现,增色了几分美感与统一感!(三)性质的应用例1、(2005年山东省(理科)高考第20题)如图,已知长方体 直线 与平面 所成的角为 , 垂直 于 , 为 的中点.(I)求异面直线 与 所成的角;(II)求平面 与平面 所成的二面角;(III)求点 到平面 的距离.解:在长方体 中,以 所在的直线为 轴,以 所在的直线为 轴, 所在的直线为 轴建立如图示空间直角坐标系;由已知 可得 , ,又 平面 ,从而 与平面 所成的角为 ,又 , , ,从而易得 (I) 因为 所以 ,易知异面直线 所成的角为 (II) 易知平面 的一个法向量 ,设 是平面 的一个法向量, 由 即 所以 即平面 与平面 所成的二面角的大小(锐角)为 (III)点 到平面 的距离,即 在平面 的法向量 上的投影的绝对值,所以距离 = 所以点 到平面 的距离为 例2、(2005年重庆(理科)高考第20题)如图,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1,已知AB= ,BB1=2,BC=1,∠BCC1= ,求:(Ⅰ)异面直线AB与EB1的距离;(Ⅱ)二面角A—EB1—A1的平面角的正切值. 解:(I)以B为原点, 、 分别为y、z轴建立空间直角坐标系.由于BC=1,BB1=2,AB= ,∠BCC1= ,在三棱柱ABC—A1B1C1中有B(0,0,0),A(0,0, ),B1(0,2,0),A1(0,2, ) ,设 ; ,则 得, (令y=1),故 =1(II)由已知有 故二面角A—EB1—A1的两个半平面的法向量为 。 。通过上述几个高考题的分析,我们不难看出:立体几何中的几何法的“难在找(或作)所求的角度或距离”,通过这个数量积的性质的转化(方法的转化与知识之间的转化),其“难”渐渐地溶解于“转换与化归”之中及学生的细心地“计算”之中,从而也焕发了数量积这条性质的奥妙之处,也就更体现了“向量”这个工具在立体几何中应用的优越性、工具性。因为”程序化”的计算使我们的学生的“信心”倍增!同时让我们的学生也懂得了“知其所以然”,再也不用为记这一个“好结论”而烦恼了!参考文献:1、2005年普通高等学校招生全国统一考试大纲 (高等教育出版社)2、《浙江省高考命题解析——数学》 (浙江省高考命题咨询委员们编著)3、基础教育课程改革教师通识培训书系第二辑《课程改革发展》(中央民族大学出版社 周宏主编)

令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关,若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。

通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的,若向量组的秩小于向量的个数,则该向量组是线性相关的。

定义

若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。

一楼真强.高三了吧?我才高二而己.补充一点东西:受力分析与数学中都有用有向线段表示向量的方式.这其实是用位移向量计算代替其它向量的方法.(就是用演草纸上的笔尖位移模拟其它向量问题.通过可以固定在纸上的图形解决抽象的其它向量问题的方式)

关于三角形的研究论文

在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。

例谈椭圆与三角形相关问题解析几何与三角是高中数学的重要内容,两者结合能体现两主干知识的内在联系和知识之间的综合应用,而在知识网络交汇处设计的试题历来受命题者的青睐,在各级各类考试中频频出现,各省和全国高考卷对此也情有独钟.本文就以椭圆和三角形相关问题作一归例谈解析.粗;一、三角形边长问题例1设只、抓为椭圆兰十丝=1的两个焦点.p为椭圆上一点.已知尸、抓、几是一个直94角三角形的三个顶点,且}PF,l>IP不飞I,求里旦的值.IP不’2l分析:利用定义,求出两焦半径即可将问题解决.但根据直角的位置,分两种情解:(l)若乙尸凡式为直角,则}PFl}2二}PFz}2+l名FzI,,…}PF,}2=(6一IPF,l)’+20,得}PF,l=14.。。.4}尸F,}7—,廿?21=一,…二二丁,=一33}件铆2(2)若乙FIPFz为直角,则IFIFzlz=IPFzlz+IPFI尸,…20:lPF.}2+(6一}PF,l)’,得IPFI}=4,IPFI.二2,故塑二2.!丹U本题还可以根据椭圆的对称性,求出P点的坐标:略解如下(l)若乙PFzFI为直角,P(二,力满足方程组。V了兰+竺=l’’“94拭吓,{),..·器7一2一一扩扩=(2)若乙乙PFz为直角尹(:,力满足方程组x2—十9丝=l4n13V污es1--1—终可亏!5/四l二2.}PFzl说明:本题的直角三角形直角的位置没有确定,要分类讨论,这点不注意就可能导致解题不全,其二是解题利用方程的思想.髻撇鑫全、离心率问题例2已知脆椭圆兰+止=1(a>。>0)上一点.只、兀是左右两焦点在△抓PF,中.若矿乙2乙凡外飞二90“,求椭圆离心率的取值范围.解法一:设P(x。,y0),由椭圆的第二定义可得}PFll=a+ex0,}PFzl=a一:。,丫乙凡PFz=900,:.}PF,lz+IPFz臼几月,,即az+e、;二2c,,则了鉴2c,,.,.:.。·{粤,‘}·二〕卫二又因为0b>0)上一点了bzA、B是长轴的两个端点,如果椭圆上存在一点Q使得乙AQB=1200.求椭圆的离心率。的取值范围.翼纂l戴弃角形面积何题以椭圆为载体考查三角形面积问题,或以三角形面积为载体考查椭圆的问题是考试卷中经常出现的一类问题.例32oo7浙江卷)如图,直线:二k:+b与椭圆吐十4户l交于A,B两点,记△AoB的面积为s.(I)求在k=O,0

关于三角形三条边的论文学生写的谢啦! 5分没人写的。。。在说老师例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的

三点确定平面,三点测距法,多了……

三角函数中的数形结合研究性论文

对初中数学锐角三角函数教学的几点思考论文

锐角三角函数作为初中数学中重点教学内容,掌握好该知识点不但有助于学生取得良好成绩,同时更重要的是能够为其今后更高层次几何学习奠定坚实基础,为此这就要求广大教师必须做好该方面教学。然而结合笔者实践来看,由于受到诸多因素所影响,当前锐角三角函数教学效果普遍不佳,如此一来不但严重地影响教学质量,同时更会对后续三角函数教学任务有效开展造成极大的阻碍,对此教师必须认清该知识点的重难点,紧抓学生常见认识误区和思维障碍,采取有效策略进行教学。

一、锐角三角函数与学生常见认识误区和思维障碍分析

锐角三角函数是中学阶段几何学基础知识,是在学生学习了相似三角形和勾股定理之后进一步学习,通过对其开展研究能够使得学生可以后续其他知识学习奠定基础,该知识点呈现正弦函数概念上遵循“从特殊到一般,从实践探索到证明”的方式,让学生体会实验、观察、归纳、猜想、证明的求知过程,有利于学生角度与数值之间对应关系的建立,深化函数思想;在解决实际问题时,强调数学模型的构建,凸现数学建模的思想;重视分析图形特点,强化数形结合思想。对于锐角三角函数知识,学生常见的认知误区和思维障碍主要有以下几方面:(1)不能准确理解锐角三角函数的概念;(2)容易混淆正弦函数、余弦函数和正切函数;(3)过分依赖计算器,对于常用的30°、45°、60°等函数值不能熟记;(4)解直角三角形,特别在解圆中的直角三角形时,易把直角边当做斜边;(5)在解决实际问题中,学生很难通过身体建模来解决问题;(6)容易把坡度与正弦函数混淆。

二、初中数学锐角三角函数教学策略思考与探讨

1.揭示三角函数相关概念产生的思维过程

在传统的教学模式下,许多教师对于三角函数的教学都是采用平铺直叙、照本宣科的方式进行教授,通过让学生反复朗读、书写的方式对概念进行记忆,而很少运用实践操作或探究活动等形式让学生理解相关概念。这种教学方式虽然也能让学生牢牢地记住三角函数的概念,但是这种方式是呆板的,非常影响学生创新思维的发展,因此,教师在教学过程中应该采用通过向学生揭示三角函数概念产生的思维过程的方式加深学生对概念内涵的理解与掌握。

2.重视对直角三角形的讲解

学生掌握好直角三角形的边角关系对于锐角三角函数的学习和掌握有很大促进作用,因而这就要求广大教师必须重视并做好对其教学。直角三角形除直角外的5个元素之间关系:

(1)三边之间的关系:a2+b2=c2(勾股定理);

(2)两锐角之间的关系:∠A+∠B=90°。

利用这些关系,首先要理解好对边与角的关系,这5个元素中,如果知道2个(其中至少有一个是边),就可以求出其余3个。即“在直角三角形中,角定边的比值也确定了,反之,边的比值确定了,角的大小也确定”,并通过在解题过程中不断强调,对学生进行强化理解。数形结合思想对于锐角三角函数的学习与运用也非常的重要,在理解概念、推理论证、计算化简的过程中,通过画图分析,可以让学生在具体、直观中理解直角三角形边与角之间的关系。

3.结合实际生活,促进学生对三角函数相关知识的`理解与掌握

在教学中,教师应尽量选用贴近学生生活的素材来加深学生对三角函数的理解与掌握。结合生活实际不仅可以让学生体会锐角三角函数和解三角形的理论来源于实际,是实际的需要,还可以让学生看到它们在解决实际问题中所起的作用,感受由实际问题抽象出数学问题,通过解决数学问题得到答案,再将数学问题的答案回归到实际问题的这种“实践-理论-再实践”的认识过程。这过程符合人的认知规律,又利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。直角三角形的学习为学生学习锐角三角函数做好了充分的准备。教师在讲解直角三角形的过程中,就可以利用确定台阶的倾斜程度问题引出正切函数,也可以例举学生熟悉的跷跷板问题等等。

4.对锐角范围内同角或等角的三角函数值相等的内涵和外延进行明晰

明晰锐角范围内同角或等角的三角函数值相等对于学生理解和灵活运用三角函数解决问题显得尤为重要。但是在实际教学过程中,部分教师对此重视不够,在求解某个锐角的相应三角函数值时,该锐角往往置于直角三角形中,学生易形成惯性思维,当需求三角函数值的锐角置于一般三角形时,部分学生缺乏对锐角范围内同角或等角的三角函数值相等的理解。

例如图1所示,点E(0,4),O(0,0),C(6,0)在⊙A上,BE是⊙A中的一条弦,则tan∠OBE=。

许多学生遇到这类题时,很容易出错或者无从下手,教师经过与学生交流、了解做错的原因,就会发现其实很多学生在解答过程中已经意识到要先连接EC(如图2所示),然后由同弧所对的圆周角相等推知∠OBE=∠OCE,但到这一步,学生就陷入了困惑,因为△EOC是直角三角形,而△OBE不是直角三角形。由此可见,学生对于这类题型无法解答或出错的根本原因就在于对同角或等角的三角函数值相等内涵的实质的理解不够透彻。

5.引导学生形成规范的解题过程

引导学生形成规范解题过程有利于他们理清思路,从而达到有效提升其能力与成绩之目的。数学学科一个突出的特点就是逻辑性比较强,对逻辑思维的要求也较高。因此,在解决锐角三角函数问题时,学生通过规范解题过程,按照步骤来进行解题就更加能够便利地找到相应的解题思路,从而掌握相应的数学知识。同时,对于解题思路的梳理很重要,首先要明确具体的问题是什么;其次,针对问题寻找解题突破点,并作出解答的计划;最后,按照计划一步步进行解题,并整理回顾。总之,解题过程规范了,步骤明确了,解题思路也就清晰了。

数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了

基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。关键词:教学 数学 网络 新课标传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。 一、基于网络环境下的数学教学的含义 基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。 二、基于网络环境下数学教学与评价的应用 基于网络环境下数学教学与评价有两大优点: 1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。 2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。 二、基于网络环境下数学教学突破教学难点 高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。 如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。 三、基于网络环境下的数学教学与评价形式多样化,即时化。 传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求, 四、基于网络环境下数学教学应处理好的关系 (1)网络与学生的关系 和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。 (2)网络与教师的关系 基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发挥网络和教师的优势。 (3)教师与学生的关系 教为主导,学为主体,这是在任何教学模式中都应遵循的原则,要体现学生的主体发展与教师的主导相互作用的关系。专题教学网站和网络教学资源库的形成,即将教师从繁杂的重复劳动中解放出来了,但教师的主导作用不是减弱了而是加强了,网络环境下的教学,对教师提出了更高的要求,教师必须挤出大量的时间学习Windows,Authorwear,3Dmax,Flash等方面的知识,还要学会搜索,筛选,创新信息的能力,甚至包括各种电教媒体的操作技能和技巧,只有这样,才能使自己在网络环境下的学科教学中获得自由,掌握主动,充分发挥网络教学的优势,提高我国的教育教学质量。

摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。关键词: Q值法 公平席位问题的重述:三个系部学生共200名,(甲系100.乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为.(1) 问20席该如何分配。(2) 若增加21席又如何分配。问题的分析:一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数 = 某单位总人数比例′总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为 系名 甲 乙 丙 总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20学生转系情况,各系学生人数及学生代表席位变为 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 20 按惯例席位分配 10 6 4 20(1)20席应该甲系10席、乙系6席,丙系4席这样分配二、学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。要怎样才能公平呢,这时就要用数学建模要解决。模型的建立:假设由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数单位A p1 n1 单位B p2 n2 要公平,应该有 = , 但这一般不成立。注意到等式不成立时有 若 > ,则说明单位A 吃亏(即对单位A不公平 ) 若 < ,则说明单位B 吃亏 (即对单位B不公平 )因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得 p=2另两个单位的人数和席位为 n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:若 则称 为对A的相对不公平值, 记为 若 则称 为对B的相对不公平值 ,记为 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。确定分配方案: 使用不公平值的大小来确定分配方案,不妨设 > ,即对单位A不公平,再分配一个席位时,关于 , 的关系可能有 1. > ,说明此一席给A后,对A还不公平;2. < ,说明此一席给A后,对B还不公平,不公平值为 3. > ,说明此一席给B后,对A不公平,不公平值为 4. < ,不可能 上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有 则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2)

  • 索引序列
  • 向量法研究三角形的性质的论文
  • 直角三角形的作用研究论文
  • 向量的不合理性质的研究论文
  • 关于三角形的研究论文
  • 三角函数中的数形结合研究性论文
  • 返回顶部