首页 > 学术期刊知识库 > 数形结合论文

数形结合论文

发布时间:

数形结合论文

中学数学教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要涉及数学思想的问题。因为数学思想是人类思想文化宝库中的瑰宝,是数学的精髓,它对数学教育具有决定性的指导意义。本文对这个概念的意义及在教学中的作用作一探讨。希望能再引起广大数学教育工作者的关注。一、对中学数学思想的基本认识 “数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。 通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,只要是在充分分析、归纳概括数学材料的基础上来论述数学思想,那么所得的结论总是可能做到并行不悖、互为补充的,总是能在中学数学教材中起到积极的促进作用的。 关于这个概念的外延,从量的方面讲有宏观、中观和微观之分。 属于宏观的,有数学观(数学的起源与发展、数学的本能和特征、数学与现实世界的关系),数学在科学中的文化地位,数学方法的认识论、方法论价值等;属于中观的,有关于数学内部各个部门之间的分流的原因与结果,各个分支发展过程中积淀下来的内容上的对立与统一的相克相生的关系等;属于微观结构的,则包含着对各个分支及各种体系结构中特定内容和方法的认识,包括对所创立的新概念、新模型、新方法和新理论的认识。 从质的方面说,还可分成表层认识与深层认识、片面认识与完全认识、局部认识与全面认识、孤立认识与整体认识、静态认识与动态认识、唯心认识与唯物认识、谬误认识和正确认识等。二、数学思想的特性和作用 数学思想是在数学的发展史上形成和发展的,它是人类对数学及其研究对象,对数学知识(主要指概念、定理、法则和范例)以及数学方法的本质性的认识。它表现在对数学对象的开拓之中,表现在对数学概念、命题和数学模型的分析与概括之中,还表现在新的数学方法的产生过程中。它具有如下的突出特性和作用。 (一)数学思想凝聚成数学概念和命题,原则和方法 我们知道,不同层次的思想,凝聚成不同层次的数学模型和数学结构,从而构成数学的知识系统与结构。在这个系统与结构中,数学思想起着统帅的作用。 (二)数学思想深刻而概括,富有哲理性 各种各样的具体的数学思想,是从众多的具体的个性中抽取出来且对个性具有普遍指导意义的共性。它比某个具体的数学问题(定理法则等)更具有一般性,其概括程度相对较高。现实生活中普遍存在的运动和变化、相辅相成、对立统一等“事实”,都可作为数学思想进行哲学概括的材料,这样的概括能促使人们形成科学的世界观和方法论。 (三)数学思想富有创造性� 借助于分析与归纳、类比与联想、猜想与验证等手段,可以使本来较抽象的结构获得相对直观的形象的解释,能使一些看似无处着手的问题转化成极具规律的数学模型。从而将一种关系结构变成或映射成另一种关系结构,又可反演回来,于是复杂问题被简单化了,不能解的问题的解找到了。如将著名的哥尼斯堡七桥问题转化成一笔画问题,便是典型的一例。当时,数学家们在作这些探讨时是很难的,是零零碎碎的,有时为了一个模型的建立,一种思想的概括,要付出毕生精力才能得到,这使后人能从中得到真知灼见,体会到创造的艰辛,发展顽强奋战的个性,培养创造的精神。三、数学思想的教学功能 我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。 (一)数学思想是教材体系的灵魂� 从教材的构成体系来看,整个初中数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。教师在教学中如能抓住数学思想这一主线,便能高屋建瓴,提挈教材进行再创造,才能使教学见效快,收益大。 (二)数学思想是我们进行教学设计的指导思想 笔者认为,数学课堂教学设计应分三个层次进行,这便是宏观设计、微观设计和情境设计。无论哪个层次上的设计,其目的都在于为了让学生“参与”到获得和发展真理性认识的数学活动过程中去。这种设计不能只是数学认识过程中的“还原”,一定要有数学思想的飞跃和创造。这就是说,一个好的教学设计,应当是历史上数学思想发生、发展过程的模拟和简缩。例如初中阶段的函数概念,便是概括了变量之间关系的简缩,也应当是渗透现代数学思想、使用现代手段实现的新的认识过程。又如高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。这样的教学设计,才能适应瞬息万变的技术革命的要求。靠一贯如此设计的课堂教学培养出来的人才,方能在21世纪的激烈竞争中立于不败之地。 (三)数学思想是课堂教学质量的重要保证 数学思想性高的教学设计,是高质量进行教学的基本保证。在数学课堂教学中,教师面对的是几十个学生,这几十个智慧的头脑会提出各种各样的问题。随着新技术手段的现代化,学生知识面的拓宽,他们提出的许多问题是教师难以解答的。面对这些活泼肯钻研的学生所提的问题,教师只有达到一定的思想深度,才能保证准确辨别各种各样问题的症结,给出中肯的分析;才能恰当适时地运用类比联想,给出生动的陈述,把抽象的问题形象化,复杂的问题简单化;才能敏锐地发现学生的思想火花,找到闪光点并及时加以提炼升华,鼓励学生大胆地进行创造,把众多学生牢牢地吸引住,并能积极主动地参与到教学活动中来,真正成为教学过程的主体;也才能使有一定思想的教学设计,真正变成高质量的数学教学活动过程。 有人把数学课堂教学质量理解为学生思维活动的质和量,就是学生知识结构,思维方法形成的清晰程度和他们参与思维活动的深度和广度。我们可以从“新、高、深”三个方面来衡量一堂数学课的教学效果。“新”指学生的思维活动要有新意,“高”指学生通过学习能形成一定高度的数学思想,“深”则指学生参与到教学活动的程度。 有思想深度的课,能给学生留下长久的思想激动和对知识的深刻理解,在以后的学习和工作中,他们可能把具体的数学知识忘了,但数学地思考问题的方法将永存。我们进行数学教学的根本目的,是通过数学知识和观念的培养,通过一些数学思想的传授,要让学生形成一种“数学头脑”,使他们在观察问题和提出问题、解决问题的每一个过程中,都带有鲜明的“数学色彩”,这样的数学一定会有真正的实效和长效,真正提高人的素质。 数学课堂教学是教师“主体表演”的过程,是语言、动作、板书演示、语言交流、情感交流等融于一体的过程。在这种过程中,往往既能反映出教师专业基础知识的情况,又能反映出教师对教学理论的掌握情况,同时还可反映出教师的数学思想的有关情况。实践证明,在数学教学中,数学思想、方法已经越来越多地得到人们的重视,特别是在数学教学中,如何使学生较快地理解和掌握数学思想、方法,更是我们广大中学数学教师所关心的问题。一、创设自由、宽松、民主、和谐的课堂氛围,激发学习兴趣平等、和谐、信任的师生关系,自由、宽松、民主、融洽的课堂气氛是唤起学生学习兴趣并促其主动学习的基础,也是实现主体性参与教学的前提。在课堂教学中,努力创造自由、宽松、民主、平等、和谐、乐学、互相信任、心情愉悦的课堂氛围,使学生的个性潜能得到释放,学生才能把精力放在学习上,愉快的学习,积极主动地探索。对学困生和潜能生更要关注,多与他们沟通,不挖苦、不歧视,用真情关心、爱护他们,使他们真正感受到老师的爱,减少他们因学业成绩不理想而造成精神上的沉重压力,善于发现他们的闪光点,以促其建立自信,变“要我学”为“我要学”,积极主动的参与学习。二、创设问题情境,引发学习兴趣学生探究的主动性往往来自一个好的问题情境,一个好的问题情境,也常常有“一石激起千层浪”的效果,使学生感到心奋,能主动地参与,自主地探究。所以在以问题为中心的小学数学课堂教学模式的研究中,人们已经有了“创设情境”是学生提出数学问题的前提的研究,而且模式的问世指日可待。思维总是由问题引起的,学生学习的过程就是发现问题、分析问题、解决问题的过程,有价值的问题才能使学生的思维处于主动积极、愉快地获取知识的活跃状态。因此,我们可以根据学生的心理特点和学科的知识特点,采取恰当的方法创设问题情境,使学习变被动为主动。使教学内容更具有真实性、趣味性、问题性、开放性,让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到学习数学的乐趣。三、情境的创设要为新旧知识的衔接创造条件认知心理学认为,学生在学习某一新的数学知识之前应该有一个相对稳定的认知结构,这个结构往往距新知还有一段距离,即或就是一步之差,教学也要要求找准新旧知识的衔接点,设计恰当的内容,充当新旧知识链结的“亚目标”,前苏联心理学家维果茨基把这个“亚目标”叫做学生学习的“最近发展区”。这样,不仅可以为学生知识的有效链结创造条件,为实现新知的内化打下坚实的基础,同时还可以,为知识的过渡给人以自然顺利的美感。数学知识前后连接紧密,无理方程要去掉根号化为有理方程;有理方程中的分式方程要去掉分母化为整式方程;整式方程中的高次方程要降次为一次方程或二次方程;多元方程要消元化为一元方程。四、根据耳聋学生年级和年龄特点,唤起学习兴趣高年级的聋生注意时间长,耐力较持久,自控力也较好,思维呈连续性,学习积极性高,许多有攻坚、显示自己聪明才智的心理。在教学中要有技巧,在教学中充分利用学生的好奇心。在教学中善于制造悬念,适当的沉默或等待,恰当的比喻,敏锐的洞察力都将聋生的注意力吸引到教学中来,并有益于学生思维的动化。运用直观教具教学。聋哑学生的思维还处于形象思维阶段,抽象逻辑思维能力差。以感性材料为起点,贯彻抽象与具体相结合的原则,充分利用图片模具、多媒体、声、光、灯等直观教具进行生动形象具体的演示,丰富学生的感性认识,使学生在观察、分析、判断联想的过程中开拓思路,加深理解。活泼好动是聋生的特点,教师在教学中应尽可能。超级秘书网创造条件,让学生动手操作,使枯燥的学习变为具体有趣的东西,在实践活动中尝到探索知识的乐趣。五、创设竞争性情境,调动学习兴趣国内外的大量研究表明,在学生学习知识的过程中,适当开展一些合理的学习竞赛活动是必要的,也是有益的。布鲁纳就在他的发现学习理论中强调,学习的最好动机是对所学材料的兴趣,是奖励、竞争之类的外在刺激。因此,教学中,我们可适当创设竞争情境,引入竞争教学模式,为学生创造展示自我、表现自我的机会,激发学习兴趣。如在做练习时,我们可以设计形式多样的竞争:把竞争带入课堂,利用学生自尊心、自我表现欲、荣誉感强,好胜不服输的心理特点,在教师的引导调动下便可为课堂教学创设一种适合学生的竞争气氛,有效地提高学生的学习兴趣。学生在竞争中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。学生在学习中重要的心理特征就是希望老师发现自己的优点并得到激励与肯定。在教学中,我们应多给学生一些成功的体验:如课堂上让他们提出一个问题,或是解决一个问题,或会做一道计算题时等对他们做出适当的表扬和鼓励,或是作业批语中多一些鼓励,多一些喝彩这样帮助学生认识自我,建立自信,让他们在积极参与中体验成功带来的喜悦,增强自信心。一、良好的心理素养、痴迷的学习兴趣——学好数学的前提喜爱也就是做一件事的理由和把事情坚持下去的最强动力。良好的心理素养、近乎痴迷的兴趣是高效率学习数学的前提,也是在最后的考试中取胜的必要条件。大多数同学都会觉得繁重的数学学习几乎让人喘不过气来,遇到一道难解的题,或者期末考试考砸了,更是郁闷至极;也许,此时的我们,都会有一种很不舒服的压抑感——这是由繁重的学习任务,紧张的竞争氛围,沉重的学习压力造成的;可是,我们能逃避吗?难道就这样被动的忍受吗?不,既然不能逃避,那唯一的办法,就是去正视他,化解它!心情不愉快的时候总会有的,怎么办呢?遇到这种情形,可以找一个自己信任的人,把自己的不快倾诉出来,寻求他人的理解,这样,就能很快收回烦恼的心,专心学习,也才能保证学习的效率。此外,由于学习太紧张,再加上学习中难免会有这样那样不顺心的事情,我建议,我们每天都要找一个时间,最好是在傍晚的时候,走出教室、走出家门,在安静的地方走一走,放松一下,回顾一下一天的学习和生活,表面上看起来这样做耽误了一些时间,但其实是有了一个轻松愉快的心境,提高了学习效率。除此之外,对自己还要有十足的自信,自信的学习,自信的走入考场,就能自信的取得成功,如果做不到这一点,精神太紧张,特别是在考试的时候,就很难将自己的水平发挥出来,更不要说超水平发挥了。??那么,数学学习中、考场上,什么是心理的最高境界呢?一句话,“宠辱不惊“!也就是说,不管遇到什么样的情况,都能兴趣不减,心静如水,沉稳对付;不管遇到什么样的情形,都要不受其影响,按照预定的计划和步骤学习和考试,发挥出自己的最好水平。当然,真能做到这一点,也非常不易,但是,只要我们有意识的去锻炼,去努力,就一定会有收获!二、持之以恒、百折不挠的毅力——学好数学的保障学习是要吃苦的,是要能忍得住板凳上、台灯前的寂寞。学习就是学习,学习不是娱乐,没有哪一种学习方法能让你象看美国大片似的学到博士。这是自然规律。三、事半功倍的方法——学好数学的手段1.做一个个人错题集。我给同学们一个公式:少错=多对。如果做错了题目,不管发现什么错误,不管是多么简单的错误,都收录进来;我相信,一旦你真的做起来,你就会吃惊的发现,你的错误并不是更正一次就可以改掉的,相反,有很多错误都是第二次、第三次犯了,甚至于更多次!看着自己的错体集,哎呀,太触目惊心了。这真是一个自我反省的好地方,更是一个提高成绩的好方法。复习越往后,在知识上取得突破的可能性就越小,而能纠正自己的错误,实在是一个不小的增长空间。如果你还没有这个习惯,那么,就去准备一个吧,收集自己的错误,分门别类,然后没事的时候就翻一翻,看一看,自警一番,肯定会有很大的收获。2.参考书有一本足矣。我想说有一本主要的参考书就足够了。我发现了一个很奇怪的现象,现在市场上很多参考书卖得很好,都挂着某某名校名师的牌子,鼓吹的有多么多么好,结果,不少同学在眼花缭乱中拿了一本又一本。其实,我们在学习、复习中时间很有限,可供自己支配的时间更有限,在这些有限的时间,朝三暮四,一会儿看这一本参考书,一会儿看那一本参考书,还不如不看。把课本的知识结构知识要点烂熟于心,能够在很少的时间里把一科知识全部回顾一遍。能做到这点,要比看一些参考书要重要的多。总之,一句话,抓住最根本,最主要的,不要盲目的看参考书,特别是不要看很多参考书。3.遇到疑难该怎么办呢?首先是要尽可能的通过自己的努力去解决,如果不能解决,也要弄明白自己不会的原因是什么,问题出在那里。我经常说的一句话是:决不奢望不遇到难题,但是,也决不允许自己不明白难题难在那里。自己不能解决的时候,就可以采取讨论以及向老师请教等方式,最终解决那些难题;解决绝不是你原来不会做的通过别人的帮助会作了,而是,在会作之后,回过头来比较一下原来不会的原因是什么,一定要把这个原因找出来,否则,就失去了一次提高的机会,作题也失去了意义。4.怎么跳出题海?我想大家一定非常关心这个题目,因为物理难懂、化学难记、数学有做不完的题。但题目是数学的心脏,不做题是万万不行的。而摆在我们面前的题目太多了,好像永远也做不完。试试下面的方法,第一,在完成作业的基础上分析一下每到题目都是怎么考察的,考察了什么知识点,这个知识点的考察还有没有其他的方式;第二,继续做题时,完全不必要每道题目都详细的解出来了,只要看过之后,可以归入我们上面分析过的题型,知道解题思路就可以跳过去了!这样,对每个知识点,都能把握其考试方式,这才是真正的提高。如果意识不到这一点,做一道题只是做了一道题,“就题论题”,不能跳出题外,看到本质,遇到新的题目,稍有一些不同就没有办法了,还谈什么提高呢?又怎能摆脱让你烦恼的题海呢?5.学习考场制胜的法宝。首先,要摆脱心理上的恐惧,可以这样提醒自己,“害怕什么呢,不管有多难,大家都和我一样。”这样自我心理暗示一段时间之后,心里就坦然平静多了。其实学习和考试中最重要的不是要学或考的怎么怎么样,而是能把自己的水平发挥出来,这也是超水平发挥的前提。大家不妨试一试,也许效果很好呢!其次,就是要有正确的学习和考试策略,做到“宠辱不惊”,特别是,遇到难题的时候,不要紧张。考试中有这样一种现象,一旦遇到一个题目,作了好长时间还无法解决,就焦躁不安,严重影响后面的作题,进而也影响考试的成绩。6.正确认识考试。其实,这里,我只是提醒大家注意一个事实而已了。那就是,如果不是竞赛,那么考试卷中,超过80%的内容都是我们在平时的学习中已经练习过的内容的翻版,也就是说,80%多的题目都是非常基础的,80%多的分值通过努力,我们每个人都是可以拿到的,如果大家不相信,可以自己去看一看是不是这样。想想看,抓住了这些基础的题目,是什么水平呢?所以每一个同学都要看到这个事实,让自己自信起来。

数 形 结 合江苏省阜宁中学 黄爱华 224400数形结合是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的一种数学思想。通常情况下,在应用数形结合思想方法解决问题时,往往偏重于"形"对"数"的作用,也就是经常地利用图形的直观性来解决某些数学问题。数形结合思想方法是近些年来高考重点考查的思想方法之一,每年的高考试题(特别是客观题)能够用此方法解决者均占相当的比例。其特点是形象、直观、快捷,因此是高考备考中应予重视的重要数学解题方法。例1 (1995年全国理)已知I为全集,集合M、NI,若M∩N=N,则( )A、 B、M C、 D、分析:集合M、N比较抽象,欲具体考察其关系有困难,若能借助集合的图示(文氏图),就能化抽象为具体,故可作出文氏图加以解决。可作出文氏图加以解决:解:用文氏图来表示M、N(如图1),显然CIMCIN ,故选C评注:对于抽象集合问题,只须按题设作出文氏图即可解决。例2、(2003年新课程理)设函数f(x)=,若f(x)>1,则x0的取值范围是A.(-1,1) B.(-1,+∞) C.(-∞,-2)∪ (0,+∞) D.(-∞,-1)∪ (1,+∞)分析:常规思路:分段函数进行分段处理,因为f(x0)>1,当x0≤0时,2-x0-1>1,2-x0>2,∴x0<-1;当x0>0时,∴x0>1综上,x0的取值范围是(-∞,-1)∪(1,+∞)本题若作出函数图象,就能回避分类讨论。解:首先画出函数y=f(x)与y=1的图象(图2),结合图象,关注选项特征,易得f(x)>1时,所对应的x的取值范围,选D。评注:对于与分段函数相联系的相关问题(如不等式,最值),均可借助图象法优化解题,另外,对于一些简单不等式,特别是解无理不等式,抽象不等式,均可考虑数形结合法,请看例3 。例3、(1)已知奇函数f(x)的定义域为{x|x≠0,x∈R},且在(0,+∞)上单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是_________。(2)解不等式>x+1分析(1):函数f(x)比较抽象,欲化归为具体目标不等式困难,注意到x·f(x)<0表明自变量与函数值异号,故可作出函数f(x)的图象加以解决。解:作出符合条件的一个函数图象(示意图)如图3,观察图象易知,满足x·f(x)<0的x的取值范围是(-1,0)∪(0,1)。分析(2):令y1=的图象为C1,y2=x+1的图象为C2,则解不等式就归结为寻求C1在C2上方时x的取值范围。解:在同一坐标系内分别作出y1=和y2=x+1的图象(图4),由=x+1解得A(2,3),观察图象易得原不等式的解集{x|- ≤x<2}。例4、(2004年上海)若函数f(x)=a|x-b|+2在[0,+∞)上为增函数, 则实数a,b的取值范围是______。分析:①当a>0时,需x-b恒为非负数,满足题意,即a>0,b≤0。②当a<0时,x-b恒为非正数,又∵x∈(0.+∞),∴不成立。综合①②知a>0且b≤0。这是给出的参考答案,本题若能从函数f(x)的图象考虑,不难迅速确定答案。解:先作出函数f(x)的图象,由图象变换理论,只须将O(0,0)移至O'(b,0),在新系下,只须作出y=a|x|+2图象,若b>0,结合图象知,f(x)在[0,+∞)不单调。∴b≤0,此时要使f(x)在[0,+∞)递增,结合图象分析得a>0。评注:图象法是解决函数单调性问题的最基本方法。例5、(2004年上海)已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间的距离为8,f(x)=f1(x)+f2(x)(1)求函数f(x)的表达式。(2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解。分析:由(1) ∴方程f(x)=f(a)即为,若去分母则得到关于x的三次方程,从“数”上处理较难,若能从“形”上考虑,“数形结合”问题可找到解决的方案。解(2):由f(x)=f(a)得,在同一坐标系内作出f2(x)=和f3(x)=+的大致图象(图5),易知f2(x)与f3(x)在第三象限只有一个交点,即f(x)=f(a)有一个负数解。又f2(2)=4,f3(2)=+-4当a>3时,∴当a>3时,在第 一象限f3(x)的图象上存在点(2,f3 (2))在f2(x)图象的上方。∴f2(x)与f3(x)在第一象限有两个交点,即f(x)=f(a)有两个正数解。因此,方程f(x)=f(a),有三个实数解。评注:关于方程根的个数问题,使用数形结合处理比较方便、直观。综上,从内容上讲,可以用数形结合思想方法解决的问题,主要有以下几类:(1)集合的图示;(2)与函数性质有关的问题;(3)与方程、不等式有关的问题;(4)最值问题;(5)与解析几何有关的问题。在使用数形结合方法时,要注意以下两点:(1)数形结合常用来解选择题,填空题,属简缩思维模式,若用来处理解答题,要特别注意说理的严密性,如例5中两函数在第 一象限的交点的说明。(2)在数形结合时,要注意对函数的优化选择,达到简洁、容易的目的,如将函数转化为=+处理。

(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。

数形结合研究论文

中学数学中的数形结合比较明显的地方当然是函数这一块了,函数中的值域,最值,单调性以及函数的工具导数这几方面比较具体,你可以找些具体的题目,在高三总复习资料上对应的部分一定有的。希望可以帮到你。

中学数学教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要涉及数学思想的问题。因为数学思想是人类思想文化宝库中的瑰宝,是数学的精髓,它对数学教育具有决定性的指导意义。本文对这个概念的意义及在教学中的作用作一探讨。希望能再引起广大数学教育工作者的关注。一、对中学数学思想的基本认识 “数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。 通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,只要是在充分分析、归纳概括数学材料的基础上来论述数学思想,那么所得的结论总是可能做到并行不悖、互为补充的,总是能在中学数学教材中起到积极的促进作用的。 关于这个概念的外延,从量的方面讲有宏观、中观和微观之分。 属于宏观的,有数学观(数学的起源与发展、数学的本能和特征、数学与现实世界的关系),数学在科学中的文化地位,数学方法的认识论、方法论价值等;属于中观的,有关于数学内部各个部门之间的分流的原因与结果,各个分支发展过程中积淀下来的内容上的对立与统一的相克相生的关系等;属于微观结构的,则包含着对各个分支及各种体系结构中特定内容和方法的认识,包括对所创立的新概念、新模型、新方法和新理论的认识。 从质的方面说,还可分成表层认识与深层认识、片面认识与完全认识、局部认识与全面认识、孤立认识与整体认识、静态认识与动态认识、唯心认识与唯物认识、谬误认识和正确认识等。二、数学思想的特性和作用 数学思想是在数学的发展史上形成和发展的,它是人类对数学及其研究对象,对数学知识(主要指概念、定理、法则和范例)以及数学方法的本质性的认识。它表现在对数学对象的开拓之中,表现在对数学概念、命题和数学模型的分析与概括之中,还表现在新的数学方法的产生过程中。它具有如下的突出特性和作用。 (一)数学思想凝聚成数学概念和命题,原则和方法 我们知道,不同层次的思想,凝聚成不同层次的数学模型和数学结构,从而构成数学的知识系统与结构。在这个系统与结构中,数学思想起着统帅的作用。 (二)数学思想深刻而概括,富有哲理性 各种各样的具体的数学思想,是从众多的具体的个性中抽取出来且对个性具有普遍指导意义的共性。它比某个具体的数学问题(定理法则等)更具有一般性,其概括程度相对较高。现实生活中普遍存在的运动和变化、相辅相成、对立统一等“事实”,都可作为数学思想进行哲学概括的材料,这样的概括能促使人们形成科学的世界观和方法论。 (三)数学思想富有创造性� 借助于分析与归纳、类比与联想、猜想与验证等手段,可以使本来较抽象的结构获得相对直观的形象的解释,能使一些看似无处着手的问题转化成极具规律的数学模型。从而将一种关系结构变成或映射成另一种关系结构,又可反演回来,于是复杂问题被简单化了,不能解的问题的解找到了。如将著名的哥尼斯堡七桥问题转化成一笔画问题,便是典型的一例。当时,数学家们在作这些探讨时是很难的,是零零碎碎的,有时为了一个模型的建立,一种思想的概括,要付出毕生精力才能得到,这使后人能从中得到真知灼见,体会到创造的艰辛,发展顽强奋战的个性,培养创造的精神。三、数学思想的教学功能 我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。 (一)数学思想是教材体系的灵魂� 从教材的构成体系来看,整个初中数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。教师在教学中如能抓住数学思想这一主线,便能高屋建瓴,提挈教材进行再创造,才能使教学见效快,收益大。 (二)数学思想是我们进行教学设计的指导思想 笔者认为,数学课堂教学设计应分三个层次进行,这便是宏观设计、微观设计和情境设计。无论哪个层次上的设计,其目的都在于为了让学生“参与”到获得和发展真理性认识的数学活动过程中去。这种设计不能只是数学认识过程中的“还原”,一定要有数学思想的飞跃和创造。这就是说,一个好的教学设计,应当是历史上数学思想发生、发展过程的模拟和简缩。例如初中阶段的函数概念,便是概括了变量之间关系的简缩,也应当是渗透现代数学思想、使用现代手段实现的新的认识过程。又如高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。这样的教学设计,才能适应瞬息万变的技术革命的要求。靠一贯如此设计的课堂教学培养出来的人才,方能在21世纪的激烈竞争中立于不败之地。 (三)数学思想是课堂教学质量的重要保证 数学思想性高的教学设计,是高质量进行教学的基本保证。在数学课堂教学中,教师面对的是几十个学生,这几十个智慧的头脑会提出各种各样的问题。随着新技术手段的现代化,学生知识面的拓宽,他们提出的许多问题是教师难以解答的。面对这些活泼肯钻研的学生所提的问题,教师只有达到一定的思想深度,才能保证准确辨别各种各样问题的症结,给出中肯的分析;才能恰当适时地运用类比联想,给出生动的陈述,把抽象的问题形象化,复杂的问题简单化;才能敏锐地发现学生的思想火花,找到闪光点并及时加以提炼升华,鼓励学生大胆地进行创造,把众多学生牢牢地吸引住,并能积极主动地参与到教学活动中来,真正成为教学过程的主体;也才能使有一定思想的教学设计,真正变成高质量的数学教学活动过程。 有人把数学课堂教学质量理解为学生思维活动的质和量,就是学生知识结构,思维方法形成的清晰程度和他们参与思维活动的深度和广度。我们可以从“新、高、深”三个方面来衡量一堂数学课的教学效果。“新”指学生的思维活动要有新意,“高”指学生通过学习能形成一定高度的数学思想,“深”则指学生参与到教学活动的程度。 有思想深度的课,能给学生留下长久的思想激动和对知识的深刻理解,在以后的学习和工作中,他们可能把具体的数学知识忘了,但数学地思考问题的方法将永存。我们进行数学教学的根本目的,是通过数学知识和观念的培养,通过一些数学思想的传授,要让学生形成一种“数学头脑”,使他们在观察问题和提出问题、解决问题的每一个过程中,都带有鲜明的“数学色彩”,这样的数学一定会有真正的实效和长效,真正提高人的素质。 数学课堂教学是教师“主体表演”的过程,是语言、动作、板书演示、语言交流、情感交流等融于一体的过程。在这种过程中,往往既能反映出教师专业基础知识的情况,又能反映出教师对教学理论的掌握情况,同时还可反映出教师的数学思想的有关情况。实践证明,在数学教学中,数学思想、方法已经越来越多地得到人们的重视,特别是在数学教学中,如何使学生较快地理解和掌握数学思想、方法,更是我们广大中学数学教师所关心的问题。一、创设自由、宽松、民主、和谐的课堂氛围,激发学习兴趣平等、和谐、信任的师生关系,自由、宽松、民主、融洽的课堂气氛是唤起学生学习兴趣并促其主动学习的基础,也是实现主体性参与教学的前提。在课堂教学中,努力创造自由、宽松、民主、平等、和谐、乐学、互相信任、心情愉悦的课堂氛围,使学生的个性潜能得到释放,学生才能把精力放在学习上,愉快的学习,积极主动地探索。对学困生和潜能生更要关注,多与他们沟通,不挖苦、不歧视,用真情关心、爱护他们,使他们真正感受到老师的爱,减少他们因学业成绩不理想而造成精神上的沉重压力,善于发现他们的闪光点,以促其建立自信,变“要我学”为“我要学”,积极主动的参与学习。二、创设问题情境,引发学习兴趣学生探究的主动性往往来自一个好的问题情境,一个好的问题情境,也常常有“一石激起千层浪”的效果,使学生感到心奋,能主动地参与,自主地探究。所以在以问题为中心的小学数学课堂教学模式的研究中,人们已经有了“创设情境”是学生提出数学问题的前提的研究,而且模式的问世指日可待。思维总是由问题引起的,学生学习的过程就是发现问题、分析问题、解决问题的过程,有价值的问题才能使学生的思维处于主动积极、愉快地获取知识的活跃状态。因此,我们可以根据学生的心理特点和学科的知识特点,采取恰当的方法创设问题情境,使学习变被动为主动。使教学内容更具有真实性、趣味性、问题性、开放性,让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到学习数学的乐趣。三、情境的创设要为新旧知识的衔接创造条件认知心理学认为,学生在学习某一新的数学知识之前应该有一个相对稳定的认知结构,这个结构往往距新知还有一段距离,即或就是一步之差,教学也要要求找准新旧知识的衔接点,设计恰当的内容,充当新旧知识链结的“亚目标”,前苏联心理学家维果茨基把这个“亚目标”叫做学生学习的“最近发展区”。这样,不仅可以为学生知识的有效链结创造条件,为实现新知的内化打下坚实的基础,同时还可以,为知识的过渡给人以自然顺利的美感。数学知识前后连接紧密,无理方程要去掉根号化为有理方程;有理方程中的分式方程要去掉分母化为整式方程;整式方程中的高次方程要降次为一次方程或二次方程;多元方程要消元化为一元方程。四、根据耳聋学生年级和年龄特点,唤起学习兴趣高年级的聋生注意时间长,耐力较持久,自控力也较好,思维呈连续性,学习积极性高,许多有攻坚、显示自己聪明才智的心理。在教学中要有技巧,在教学中充分利用学生的好奇心。在教学中善于制造悬念,适当的沉默或等待,恰当的比喻,敏锐的洞察力都将聋生的注意力吸引到教学中来,并有益于学生思维的动化。运用直观教具教学。聋哑学生的思维还处于形象思维阶段,抽象逻辑思维能力差。以感性材料为起点,贯彻抽象与具体相结合的原则,充分利用图片模具、多媒体、声、光、灯等直观教具进行生动形象具体的演示,丰富学生的感性认识,使学生在观察、分析、判断联想的过程中开拓思路,加深理解。活泼好动是聋生的特点,教师在教学中应尽可能。超级秘书网创造条件,让学生动手操作,使枯燥的学习变为具体有趣的东西,在实践活动中尝到探索知识的乐趣。五、创设竞争性情境,调动学习兴趣国内外的大量研究表明,在学生学习知识的过程中,适当开展一些合理的学习竞赛活动是必要的,也是有益的。布鲁纳就在他的发现学习理论中强调,学习的最好动机是对所学材料的兴趣,是奖励、竞争之类的外在刺激。因此,教学中,我们可适当创设竞争情境,引入竞争教学模式,为学生创造展示自我、表现自我的机会,激发学习兴趣。如在做练习时,我们可以设计形式多样的竞争:把竞争带入课堂,利用学生自尊心、自我表现欲、荣誉感强,好胜不服输的心理特点,在教师的引导调动下便可为课堂教学创设一种适合学生的竞争气氛,有效地提高学生的学习兴趣。学生在竞争中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。学生在学习中重要的心理特征就是希望老师发现自己的优点并得到激励与肯定。在教学中,我们应多给学生一些成功的体验:如课堂上让他们提出一个问题,或是解决一个问题,或会做一道计算题时等对他们做出适当的表扬和鼓励,或是作业批语中多一些鼓励,多一些喝彩这样帮助学生认识自我,建立自信,让他们在积极参与中体验成功带来的喜悦,增强自信心。一、良好的心理素养、痴迷的学习兴趣——学好数学的前提喜爱也就是做一件事的理由和把事情坚持下去的最强动力。良好的心理素养、近乎痴迷的兴趣是高效率学习数学的前提,也是在最后的考试中取胜的必要条件。大多数同学都会觉得繁重的数学学习几乎让人喘不过气来,遇到一道难解的题,或者期末考试考砸了,更是郁闷至极;也许,此时的我们,都会有一种很不舒服的压抑感——这是由繁重的学习任务,紧张的竞争氛围,沉重的学习压力造成的;可是,我们能逃避吗?难道就这样被动的忍受吗?不,既然不能逃避,那唯一的办法,就是去正视他,化解它!心情不愉快的时候总会有的,怎么办呢?遇到这种情形,可以找一个自己信任的人,把自己的不快倾诉出来,寻求他人的理解,这样,就能很快收回烦恼的心,专心学习,也才能保证学习的效率。此外,由于学习太紧张,再加上学习中难免会有这样那样不顺心的事情,我建议,我们每天都要找一个时间,最好是在傍晚的时候,走出教室、走出家门,在安静的地方走一走,放松一下,回顾一下一天的学习和生活,表面上看起来这样做耽误了一些时间,但其实是有了一个轻松愉快的心境,提高了学习效率。除此之外,对自己还要有十足的自信,自信的学习,自信的走入考场,就能自信的取得成功,如果做不到这一点,精神太紧张,特别是在考试的时候,就很难将自己的水平发挥出来,更不要说超水平发挥了。??那么,数学学习中、考场上,什么是心理的最高境界呢?一句话,“宠辱不惊“!也就是说,不管遇到什么样的情况,都能兴趣不减,心静如水,沉稳对付;不管遇到什么样的情形,都要不受其影响,按照预定的计划和步骤学习和考试,发挥出自己的最好水平。当然,真能做到这一点,也非常不易,但是,只要我们有意识的去锻炼,去努力,就一定会有收获!二、持之以恒、百折不挠的毅力——学好数学的保障学习是要吃苦的,是要能忍得住板凳上、台灯前的寂寞。学习就是学习,学习不是娱乐,没有哪一种学习方法能让你象看美国大片似的学到博士。这是自然规律。三、事半功倍的方法——学好数学的手段1.做一个个人错题集。我给同学们一个公式:少错=多对。如果做错了题目,不管发现什么错误,不管是多么简单的错误,都收录进来;我相信,一旦你真的做起来,你就会吃惊的发现,你的错误并不是更正一次就可以改掉的,相反,有很多错误都是第二次、第三次犯了,甚至于更多次!看着自己的错体集,哎呀,太触目惊心了。这真是一个自我反省的好地方,更是一个提高成绩的好方法。复习越往后,在知识上取得突破的可能性就越小,而能纠正自己的错误,实在是一个不小的增长空间。如果你还没有这个习惯,那么,就去准备一个吧,收集自己的错误,分门别类,然后没事的时候就翻一翻,看一看,自警一番,肯定会有很大的收获。2.参考书有一本足矣。我想说有一本主要的参考书就足够了。我发现了一个很奇怪的现象,现在市场上很多参考书卖得很好,都挂着某某名校名师的牌子,鼓吹的有多么多么好,结果,不少同学在眼花缭乱中拿了一本又一本。其实,我们在学习、复习中时间很有限,可供自己支配的时间更有限,在这些有限的时间,朝三暮四,一会儿看这一本参考书,一会儿看那一本参考书,还不如不看。把课本的知识结构知识要点烂熟于心,能够在很少的时间里把一科知识全部回顾一遍。能做到这点,要比看一些参考书要重要的多。总之,一句话,抓住最根本,最主要的,不要盲目的看参考书,特别是不要看很多参考书。3.遇到疑难该怎么办呢?首先是要尽可能的通过自己的努力去解决,如果不能解决,也要弄明白自己不会的原因是什么,问题出在那里。我经常说的一句话是:决不奢望不遇到难题,但是,也决不允许自己不明白难题难在那里。自己不能解决的时候,就可以采取讨论以及向老师请教等方式,最终解决那些难题;解决绝不是你原来不会做的通过别人的帮助会作了,而是,在会作之后,回过头来比较一下原来不会的原因是什么,一定要把这个原因找出来,否则,就失去了一次提高的机会,作题也失去了意义。4.怎么跳出题海?我想大家一定非常关心这个题目,因为物理难懂、化学难记、数学有做不完的题。但题目是数学的心脏,不做题是万万不行的。而摆在我们面前的题目太多了,好像永远也做不完。试试下面的方法,第一,在完成作业的基础上分析一下每到题目都是怎么考察的,考察了什么知识点,这个知识点的考察还有没有其他的方式;第二,继续做题时,完全不必要每道题目都详细的解出来了,只要看过之后,可以归入我们上面分析过的题型,知道解题思路就可以跳过去了!这样,对每个知识点,都能把握其考试方式,这才是真正的提高。如果意识不到这一点,做一道题只是做了一道题,“就题论题”,不能跳出题外,看到本质,遇到新的题目,稍有一些不同就没有办法了,还谈什么提高呢?又怎能摆脱让你烦恼的题海呢?5.学习考场制胜的法宝。首先,要摆脱心理上的恐惧,可以这样提醒自己,“害怕什么呢,不管有多难,大家都和我一样。”这样自我心理暗示一段时间之后,心里就坦然平静多了。其实学习和考试中最重要的不是要学或考的怎么怎么样,而是能把自己的水平发挥出来,这也是超水平发挥的前提。大家不妨试一试,也许效果很好呢!其次,就是要有正确的学习和考试策略,做到“宠辱不惊”,特别是,遇到难题的时候,不要紧张。考试中有这样一种现象,一旦遇到一个题目,作了好长时间还无法解决,就焦躁不安,严重影响后面的作题,进而也影响考试的成绩。6.正确认识考试。其实,这里,我只是提醒大家注意一个事实而已了。那就是,如果不是竞赛,那么考试卷中,超过80%的内容都是我们在平时的学习中已经练习过的内容的翻版,也就是说,80%多的题目都是非常基础的,80%多的分值通过努力,我们每个人都是可以拿到的,如果大家不相信,可以自己去看一看是不是这样。想想看,抓住了这些基础的题目,是什么水平呢?所以每一个同学都要看到这个事实,让自己自信起来。

函数图像的教学研究论文

摘要: 数形结合的思想是数学中一种重要的思想方法,而在函数的教学中把刻画数量关系的数和具体直观的图形有机结合,用代数的语言揭示几何要素及其关系,同时将几何问题转化为代数问题,扬数之长,取数之优,使抽象思维与形象思维珠联璧合,不但可以提高学生对图形世界的直观感知而且可以使学生更好地理解函数,更加快捷准确的求解答案。

关键词: 函数图像 研究

从以往的教学经验来看,学习函数这部分内容要求学生进行数与形相结合的运算,即要求使符号语言、图形语言结合起来,使抽象思维和形象思维结合起来。学生会遇到很多需要“数”与“形”并举或转换的情形。因此,函数的学习是困扰很多学生的难点。作为教师,我们面临的突出问题是:如何在教学中针对学生的思维特点,制定有效的教学策略高质量地完成函数教学任务。笔者从一个数学教师的角度出发浅谈一下自己对函数教学方面的研究以及心得体会。

1加强学生对函数概念的理解

初中课本上运用“变量说”将函数描述为:设在一个变化过程中有两个变量x与y,如果变量y随着x的变化而变化,并对于x在某个变化范围内的每一个值,按照某个对应规则,都有唯一确定的y值和它对应,那么y就是x的函数,x称为自变量,x的取值范围称为函数的定义域,和x的值对应的y值称为函数值,函数值的全体称为函数的值域。高中阶段,运用“对应说”函数被定义为:设A,B是两个非空的数集,如果按某种对应法则f对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫做从A到B的一个函数记作:y=f(x),x∈A。

以上两种函数的定义,各有各的不同特点。“变量说”是最朴素、最根本的,便于和实际相结合,初学者更容易接受。“对应说”抽象化的`程度较高,对于研究函数的精细性质具有一定的优势。适合在高中阶段介绍给学生。

讲述函数概念时,我们需要注意以下细节问题。

1。1实现由静到动的转变

学生由于长期在常量范围内计算、思维,因此以为变量一直是变,常量永远是不变。在引入函数概念之前,需要完成从常量到变量的转变,这是函数教学的一个重点。

例如“一架飞机每小时飞行1000千米,问5小时此架飞机飞行的距离是多少?”小学生只能给出正确的答案,但很少能够注意到路程S和时间t的关系。对于初中生我们要能引导他得出S=1000t的函数公式。在高中的实际教学中,我们可以把S表示为数轴上的一个定点,而把t看成是一个动点。取自变量t的一系列特定值,列出相应的另一个变量S(t)的对应值,在坐标系上描绘出这些点,这样会使学生能够比较容易地感受到变量的真实意义。

1。2突出变量之间的依赖关系

自变量和因变量之间的依赖关系是函数。通常表示为y=f(x),f表示x和y之间的对应关系。对于定义域内的任意一个x,通过对应关系f,对应唯一的一个y值。我们可以例举生活中的例子,让学生找出自变量x,然后再找出依赖此变量x的变化而变化的因变量y,最后设法找出它们之间的对应关系。从实际事例中寻找函数关系,构造事物变化过程中的具体函数关系,有利于加强学生对函数的理解。

2加强学生对函数图像的应用

在函数的教学中,我们不但要让学生深刻的理解函数的概念。还要不断帮助学生归纳各种初等函数的图形性质,并且教会学生快速画出初等函数的图形,这样在其今后的解题中将会发挥重大的作用。函数一般分为一次函数、二次函数、指数函数、对数函数和幂函数,下面以二次函数为例,来谈一下函数教学的研究体会。

在教学中,我们要引导学生对函数的图像特征进行归纳总结。可以先介绍特殊的二次函数的表达式y=ax2(a≠0),通过赋予x特殊的数值来对其图像进行描绘,进而归纳图像特征:图像形状为抛物线;顶点为原点;对称轴为y轴;a决定其开口方向,a>0时开口向上,a<0时开口向下。进而通过将y=ax2(a≠0)的图像向上下左右平移,引出二次函数的一般表达式y=ax2+bx+c(a≠0),并将其配方为y=a(x+b a="">0时开口向上,a<0时开口向下;(2)函数的对称轴为x=—b c="">0时,图像与y轴交在正半轴,c<0,图像与y轴交在负半轴,c=0,图像与y轴交在原点;(5)△=b2—4ac决定图像与x轴的交点个数,△>0时,图像与x轴有两个交点,△<0时,图像与x轴无交点,△=0时,图像与x轴无交点。

掌握了函数的基本特征后,学生就能对任一个二次函数进行绘制了,进而在一些有关函数的解题过程中就可以通过数形结合进行求解,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其尤为重要,因此我们要引导学生加强对函数图形的掌握,培养数形结合的这种思想意识,做到胸中有图,见数想图,以开拓自己的思维视野。

参考文献

[1]吴志鹃。二次函数图像的教学设计[J]。希望月刊(上半月),2007(11):108。

[2]梁小瑜。加强函数图像教学,衔接初高中数学教学[J]。师道·教研,2010(6):27~28。

[3]付尚英。浅谈利用函数的图像特征解题[J]。金色年华(教学参考),2010(12):113。

数学数形结合论文范文

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

初中数学是为之后的数学学习打下基础的,学好初中的知识点很重要,下面我为你整理了几篇初中数学教学论文范文,希望对你有帮助。

数学教学论文篇一

一、引进有效的教学方法

科学有效的教学方法对提高整体教学的有效性有很大的帮助。以初中函数的教学为例,初中三年级就开始引入了函数的相关概念。一般而言,学生会根据教科书中给出的函数方程进行简单的计算,教师也只是把一些公式教给学生,让学生进行一味的数据计算。在这种情况中,学生只能认识到函数是一个抽象的概念,根本不知道函数到底是怎么来的,也不知道对称轴、截距到底是什么。所以,教师要改进方法,进行有效的初中数学教学。

而数形结合则是一种很好的、能实现有效教学的方法之一。数形结合也就是教师要根据函数题画出相应的函数图形,以便于学生能更加清晰、明了地理解数学函数的相关概念和性质,能快速理解那些抽象难懂的问题。当然,这也就能有效地为接下来的高中函数的学习打下坚实的基础,把抽象知识变为了具体的知识。综上所述,教师应在初中函数的教学过程中改进、并利用科学有效的教学方法,以不断提高初中数学的教学质量。

二、进行激励性教育

在学习的过程中,每个学生都会希望得到教师的表扬和称赞,因为在学生眼里,教师的嘉奖是教师对自己的肯定。在这种动力的驱使下,学生的学习热情得到了激发,就会将学习当做是一件幸福的事。这也就从侧面激发了学生学习的热情,是快乐学习的具体表现形式之一。“鼓励别人一句强于指责别人百句”,这是一句英国的谚语。

每个人都希望自己无时无刻不得到别人的肯定与认可,谁都不希望自己总是被别人指责。在初中数学教学过程中,每位教师也应该多鼓励自己的学生,提升学生的学习热情,增进师生之间的交流,使学生能够毫无顾虑地向教师提问,这样就不会出现因为畏惧而不敢提问的情况。反之,学生学习的热情降低,学生消极对抗教师,师生之间的距离也拉远了。这样的做法既不利于学生初中数学的学习,也对教师的工作产生了极大的威胁。

三、寓教于乐的教学

在平时的学习中,教师要采取寓教于乐的教学方式,在教学中适当地加入相对应的数学游戏,让学生劳逸结合,实现既在娱乐中学习,又在学习中娱乐的教学和学习效果。通过这种方式,学生认识到学习是一件有趣快乐的事,并不是一件枯燥无味的事情。例如,针对初中数学书中的几何问题,教师就可以举办一个叫做“辅助线”的游戏。

游戏大致内容是教师将学生分组,并且给出一个几何的图形,让小组思考该如何做辅助线,并且思考一下假若加入这条辅助线,会对解题有什么样的帮助,随后再继续深化,讨论一下加入一条辅助线后,会不会产生另一个新的问题,从而使所有学生都参与到这个活动中来。这种教学模式可以采取举手抢答的方式,抢答成功就会得到相应的分数,在游戏活动最后,累计分数,得分最高的小组会获得奖励。这种游戏的方式,能让学生在愉快的学习中加深对函数知识的理解,有利于调动学生学习的积极性。这也是提高初中教学有效性的方式方法之一。

四、总结

总体来说,初中数学的学习是学生逻辑思维开发的最初阶段,是高中数学教育的基础。所以,教师有必要加强初中数学教育的有效性研究。以上笔者针对如何提高初中数学教学有效性的方式方法做了初步探讨,希望能够给今后初中数学的有效性教学的发展做出一定的贡献。

数学教学论文篇二

一、差别性教学的作用

(一)通过差别性教学,学生更好地成长

由于学生处于不同的知识水平,他们对知识的运用并非相同,特别在数学领域,人们在应用推理、判断方面程度是不一样的,有较强推理、判断能力的学生常常不用花费太多的时间就掌握了,但是那些应用推理、判断能力较差的学生就要花费很久。因此,教师要是根据课本上的知识来教,那么好的学生没办法得到更长远的发展,而差的学生也没办法得到提高,显而易见,这样的教学办法是不可取的。所以差别性教学教学有利于改善这一点,从每个学生的突出点出发,根据他们的突出点来制定符合他们成长的教学手段与内容,学生才可以得到更好的发展。

(二)使学生更加自信

推理、判断能力比较强的学生常常热衷于深入地研究难以解决的方面,这些学生在深入研究时能得到自信,要是直接采取同一种教育方式去教育所有的学生,那样就很难使学生获得自信,会使学生不愿意深入探究难以解决的方面。另一方面,那些应用推理、判断的程度比较浅的学生就因为太多的失败而不再相信自己了,产生放弃的念头,从而使他们渐渐地落后于其他人。因此,通过依据学生水平不同进行教学的方式,能使好的学生深入研究难以解决的方面,使落后的学生从自身实际出发,一步一个脚印,踏踏实实地进步,这样所有的学生就可以更好地完成自己的学业,更加相信自己。

二、初中数学教学中差别性教学的实施办法

(一)从学生的水平出发,有序地分组

通常,学生可以分为三种层次:第一层次的学生是起点高,有好的方法和技巧,应用推理、判断程度高的;第二层次的学生是起点一般,但有较好的方法和技巧,应用推理、判断程度较高的;第三层次的学生是起点低的。我们应进行有序分组。有序分组的过程中应关注下面三个方面:首先,必须清楚地知道学生的突出点是什么,教师与学生,教师与家长,学生与家长应好好交流。其次,有序分组应理解学生的内在想法,不可只依据卷面测试结果来区分学生,分组应该是具有伸缩性的而不是硬性的。卷面测试结果属于有序分组的一部分,学生了解自身的状况,有自己的目标,所以我们应理解他们,不能忽略他们的内在想法,这样他们才会相信自己。待分组结束后,我们要进行差别性教学。最后,教师在看待不同组的学生时,应一视同仁,付出自己的最大努力。

(二)依据分组后学生的情况,采取不同的教学方式

我们要考虑到所有的学生,将差别性教学深入应用在课堂上。1.引入新的内容。数学的内在关系是紧密相连的,教师可以回忆学过的内容来引入新的内容,此时则通过第三水平学生去回忆学过的内容,使其加深印象。第二层次的学生则解决新的内容的引出,第一层次的学生则完善第二层次的学生的内容。2.解说新的内容。解说新的内容时要考虑到第三层次的学生,循序渐进。3.课上操练。结束新的内容时,教师要对学生进行操练,第一层次的学生比较得心应手,教师则让学生操练转变形式的习题,可以给第二层次的学生比较有难度的习题进行操练。另外教师要认真对待第三层次的学生,提供难度小的习题有助于他们加深记忆。

(三)依据分组后学生的情况,安排的任务有所不同

安排的任务要使学生可以在其力所能及的范围内,从而有助于他们的成长。第一层次的学生可以多安排统合性较高的习题,加强他们的处理数学问题的规则和程序,使他们挖掘习题中那些数学处理的规则和程序。第二层次的学生,主要学会普通的题目和一部分难题的思考方向。第三层次的学生则重复做题,做很多的习题来巩固基础。

(四)依据分组后学生的情况,评估的方面有所不同

因为学生的核心目的有所不同,所以要使用不同的评估方法。举个例子,教师依据水平不同的学生,应把考试题目进行区分,让不同水平的学生做不同的题目。第一层次的学生重点做难题;第二层次的学生重点则是中等题目,外加小部分难题;第三层次的学生重点放在基本的题目上,外加一小部分中等题目。那么,所有的学生都可以在自己的范围内得到进步。

三、总结

差别性教学是根据从实际出发来解决问题的哲学思路来进行的,该方式可以一对一地处理学生遇到的困境,让所有学生都可以发挥自己的优点,弥补自己的不足,鼓励学生学习,使学生对自己有信心,有助于学生的各个方面的协调与进步。

数学教学论文篇三

一、课堂上进行有针对性的有效提问

1.问题必须要有思维容量。

不能够激发学生思考的提问是失败的,只有促进了学生的思维发展,拓宽了他们的思路,才能够提升其探究能力,引起他们对数学的热情。即使学生回答问题偏颇,即便是并非尽善尽美,教师也要表扬其优点,给予赞美,加以挖掘。面积求出来之后,斜边AB上的高如何得出?此时教师利用多媒体,展示求直线y=2x+3、y=-2x-1及y轴围成的三角形的面积。这样就把问题由一条直线转化为两条直线与坐标轴围成的面积。

2.锻炼提问的技巧。

问题的提出也有优劣,掌握提问方式,提高问题的质量,抓住学生的兴趣,创造良好的学习氛围,学生的积极性能够充分地被调动起来,学生就会顺利地成为课堂的主体、学习的主人。

二、让学生“想学”,教学语言风趣

美国心理学家调查发现,学生都喜欢幽默的教师,这样学习氛围轻松愉快,这一点是促使学生“想学”的主要因素,什么学科概莫能外。这就要求教师具有很高的综合修养。其中一点,要语言幽默:幽默是伟大的智慧,是教学的润滑剂。比如,我向学生提出分析这个“数”字,由“米女攵”构成,什么意思呢?也就是说,你只有学好了数学,你毕业以后才可能找到好的工作,才可能有钱买米吃,才可能找到女朋友,那么这个“攵”是什么意思呢?这个更凸显数学的重要了,就是以手持杖或执鞭责打学不好数学的人……这些生动形象的解说,不胜枚举,当然还需要教师表情、语调等的配合。

三、对学生进行正确的思维训练

对学生进行正确的思维训练要充分唤起学生的主动性。讲例题,让学生自主审题,题目给了学生就可以,然后读题、审题、解题一系列的思维活动让学生自己完成;学生有了问题,反复推敲“个体参悟”,不行则“同伴互导”,再不行,“教师解难”,即使是“教师解难”,一样不要急于递给答案,教师应对学生逐步启发:问题里涉及什么概念?用什么公式才能表达这一规律?问题解决了,还有没有别的解题方法?学生养成思维训练的习惯,随着综合能力的提高,课堂上随时就会有智慧熠熠生辉了。

四、总结

总之,数学是培养人的创造性素质的最佳途径,成功非一日之功,我们教师要为教育竭尽微忱,为学生终生的数学学习奠定良好的发展基础。

恰当及时反馈,优化初中数学课堂教学

论文摘要: 教学是一个有目的、有方向的、完整有序的复杂信息传递系统,在这一系统中,教师起主导作用,既是教学信息的传输者,又是反馈信息的接受者,如学生的作业、试卷、行为、表情、语言乃至课堂气氛都是一种教学反馈。教学反馈是教学系统有效发展的关键环节,优化教学反馈是改革和优化数学教学、提高教学质量的前提和保证。本文对恰当及时反馈,优化初中数学课堂教学进行了研究。

关键词: 初中数学 ; 教学反馈 ; 优化

教与学是交往、互动的,师生双方相互启发、相互交流、相互沟通、相互补充,在这个过程中老师与学生分享彼此的思考、经验和知识,交流情感,体验观念,从而达到共识,实现教学相长和共同发展。

作为起到主导作用的初中数学教师,一定要通过各种方式发现并及时关注教学中的信息反馈,恰当处理和调整教学思路、教学进程以及教学节奏,从而有效优化初中数学课堂教学。教学中常采用以下不同的反馈方式对学生进行评价,可以记录效果,总结归纳数据,评定反馈方式的使用效果。

一、课堂提问

课堂提问是教学过程中常用的反馈手段,有效的提问要做到以下几方面:

1.必须充分备教材和备学生

老师首先要吃透教材,才能活用教材,不同的课型提问的侧面也不尽相同,要灵活设问,引导学生思考,有难度或综合性强的题目要学会把问题分解,对学生进行分层提问,做到提问及时,问在有疑问处,有疑问处才有争论,有争论才能辩是非。

2.提问要适当,不能太难也不能太易

根据前苏联心理学家维果茨基的“最近发展区”理论,要让学生“跳一跳能把果子摘下来”,这就是说,要让学生经过思考,努力,交流合作基础上把问题解决,特别是基础差的学生,提问一些较简单的题目,增强他们学习的信心,也许比学会知识更重要。

二、小组合作学习在课堂教学中的反馈作用

安排课堂训练或操作练习,教师行间巡视,深入到小组中去,了解学生合作的效果,讨论的焦点,避免盲目合作,发现问题,了解个体差异,以便因材施教,有针对性地进行个别指导。

三、课堂检测与矫正对课堂教学的优化作用

教师要重视过程反馈的设计,选准反馈时机,制定恰当的反馈方式,辩准反馈信息,迅速采取相应的教学措施,调整教学进程,甚至不惜临时改变教学内容和计划,求得理想的教学调节效应。

教师要善于提出问题,巧设难局,启发思维,使学生经常面临反馈的情景,提高学生分析、解决问题的能力。指导学生经常进行自我反馈训练,掌握自我评价、自我调节、自我调整的方法,为学生自我反馈创造必要的条件。

1.教学反馈的优化原则

(1)明确性原则。教师对学生学习的评价应明确、具体、简洁、精辟、深刻,初中数学论文网切忌笼统、含糊、模棱两可。例如课堂提问,学生回答后教师应重视对其回答作出恰如其分的评价,如果不加可否或讲几句含糊其词的意见,学生从教师处得到的反馈信息就是糊涂的、有害的,就会因结果不明而导致学习效率低下。

(2)及时性原则。根据心理学的有关实验表明:及时反馈的教学效果,要大大优于隔日反馈。很多学习成绩差的学生,就是因为教师忽视了教学反馈,未能及时发现学生学习中出现的偏差并进行矫正和补救,以至给以后的学习造成了困难。

(3)针对性原则。即教师针对学生的个体差异,从所面对的学生的特定情况出发,充分考虑到他们身心发展的特点和实际的接受能力,给予其客观而恰当的评价。

2.教学反馈的优化功能

(1)激发功能。教学反馈对教和学双方都具有激发新动机的作用。

一方面,教师依据教学目标,对照学生的学习状态,向学生传递评价、启发、指导等反馈信息;学生接受后,会从中受到教益和激励,增强学习信心和兴趣,从而强化所学知识的巩固性,激发起学生进一步获得成功的新动机;或因得到的评价不高,自尊心受到影响而调整、改进学习活动。

另一方面,学生的学习效果以及对教学内容的理解或疑惑,对教师的肯定或否定、接受或拒绝等反馈信息,也能激发教师的教学积极性,或激起教师对自己的教作出调整、改进。

(2)检测功能。教师通过学生的反馈信息,了解到学生学习过程中遇到的疑点、难点,诊断出其思维障碍的具体症结,在教学中做到有的放矢,因势利导。

在检测功能中不可忽视的是前馈的作用。前馈是在没有出现偏差之前进行判断和调控,即教师根据以往教学中获得的反馈信息,在教学前就已了解到学生的已有水平和准备状态,估计到学生可能出现的反馈情况,从而可加强教学的针对性,提高教学效率。

(3)调控功能。维纳认为,世界上任何系统只有通过反馈信息才能实现控制。教学反馈是对教学系统实现动态的目标控制最优化的根本条件,其中学生学习行为活动和结果的反馈,是教师自我调控和对整个教学过程进行有效调控的依据;而学生也根据教学的反馈,进行自我判定、自我调控,以应对下一步的学习活动。只有教学双方的相互适应、积极调控,教学系统才能正常、高效地运行和发展。

四、反馈教学的优化途径

1.充分备课,及时预测

在开放式教学中,课堂教学过程是动态发展的,是适时变化的,学生的课堂表现、课堂需求应成为调整教学活动进程的基本依据。开放式教学在课堂上没有固定不变的教学内容和教学过程。

除了教材内容外,往往会因解决问题的需要而加以调整;教师事先拟就的教学计划被打乱、教学进度或者加快或者减慢的情况也时有发生。经验丰富的教师在备课时能预测到学生在课堂上对知识的理解、技能的掌握、方法的运用所出现的问题,并有针对性地设计教法。

2.立足课堂,勤于捕捉

课堂是获取信息的主渠道。教师仅凭过去的经验或主观愿望去估计是不行的,必须在课堂上认真观察学生反应,及时调整教法。有的教师讲授时不注意观察学生的神态,也不去听取学生的反映,等到批改作业或阅卷时才发现问题一大堆,这样就不利于及时反馈与矫正。

3.课后反思,及时小结

讲课后反思、小结并非被大多数教师所重视,其实讲课后立即回顾本堂课的成功之处和值得改进的地方,以及学生中出现的主要问题和产生这些问题的原因,及时分析应采取的矫正措施,并简明地记在本节课教案后面,这样既可作为下节课的矫正内容,又可作为下一次再教时的重要参考资料。若能长期坚持,注意积累和整理,便是切合实际的难得的教学经验。

初中数学教学要养成反思的习惯

论文关键词:初中数学教学 反思 习惯

随着新课改的不断深入,教学反思已经成为了教师自我教学行为反省、自我教学方式矫正和不断提高知识素养、教学水平的重要过程。教学反思即是教师通过对自己教学活动过程的理性观察和教学结果的宏观判断,查漏补缺,及时矫正,从而提高其教学能力及课堂效率的活动。

从事初中数学教育多年,认为要想提高教学质量,教师就必须在每一节课,或是每一段时间的教育和学习后,针对教学现象和教学结果,对自己的教学过程进行深刻的自我反思,提高对教学问题的敏感度,从而养成自觉反思的行为习惯,挣脱束缚,常教常新,从操作型教师走向学者型教师,提高教学能力和教学质量。

一、反思教学设计

教学设计是指在该节课学生需要理解的概念、掌握的方法、熟悉的技巧、领会的数学思想等,是教师进一步教学的基础和前提,是学生提高自身综合能力的必具条件。

教师反思教学目标,实际就是要通过反思教学过程真正弄清楚学生到底有没有理解概念的内涵和外延、定理的前提和结论;会不会灵活运用定理解题,定理本身包含的思想方法、定理的适用范围如何、本节课所要掌握的基本方法是否已经掌握等。要知道这一切,首先我们必须留意学生在课堂上的一举一动。

如果上课学生精力集中、反映积极、动作迅速、心情愉快等,则意味着学生态度热情、主动参与、学有所得、学有所乐。如果上课学生无精打采、置若罔闻、拖拉疲塌、焦头烂额等则意味着课堂气氛沉闷、学生积极性不高、学习很吃力,效果欠佳。

其次检查学生做课堂练习的情况。若多数同学能在规定的时间里正确完成规定的题目,则教学目标可以说基本达到;若多数同学迟迟动不了笔或只能做题目的某些步骤或即使做了也存在这样那样的问题,则说明学生对本节内容没有真正弄懂,知识技能没有过关。

再次是批阅学生课后作业情况。如果学生做题思路清晰、推理有据、定理公式运用得当、计算准确、步骤有详有略,说明学生已掌握了基本的数学知识和思维方法。相反如果学生做题颠三倒四、乱套公式、乱用定理、计算错误不断等说明学生基础知识不过关、技能不过关。

通过以上一系列的方法手段,找出问题所在,思考补救的措施。该补充的就一定要补充,该纠正的错误一定要纠正;该集体强调的一定要集体强调,该个别辅导的就要个别辅导。将当堂课内容补起来,以便进行下面的学习。

二、反思教学方法

教学方法是为完成教学任务、达到教学目标所采取的措施手段及所借助的辅助工具。俗话说:“教学有法,教无定法。”教学方法的选择,取决于学生的实际认知水平。通常根据教学内容的不同,我们可以采用讲授式、启发式、发现式、问题式等教学方法,也可以利用挂图、模型、实物、小黑板、多媒体课件等辅助教学。

教育论文反思教学方法,首先要根据学生在当堂课的表现,从他们学习中最吃力、最不易理解、最不易掌握的地方突破,从他们最无聊、最无味的地方入手,从他们容易忽略却很富有教学价值的地方拓展。其次教师要寻求最利于学生接受、学生也最乐于接受、最利于调动学生学习积极性、最利于培养学生科学的创造性、最利于学生各方面协调发展的最佳教学形式。

如果课题引入得太平淡,激不起学生的学习兴趣,可以给学生讲解数学家的成长历程、新奇的数学问题、身边的数学问题等;如果是定理公式的推导证明仅仅限于教材、学生不好理解,可以挖掘新意改变策略,以充实的内容、浅显易懂、循序渐进的形式满足同学们的求知欲,同时激发其科学知识的创造性。

如果是例题习题的处理缺乏深度,学生不好掌握,可以层层深入、举一反三,在同学们掌握基本方法、基本技能的前提下尽量培养他们的集中思维和发散思维。只要我们善于观察、善于思考,就一定能逐步提高自身的教学水平,教学质量也一定能够提高。

三、 反思自身教育行为

自身教育行为是指教师对自己的教学进行自我观察、自我监控、自我调节、自我评价后提出一系列的问题,以促进自身反思能力的提高。这种方法适用于教学的全过程。

如设计教学方案时,可自我提问:“学生已有哪些生活经验和知识储备”,“怎样依据有关理论和学生实际设计易于为学生理解的教学方案”,“学生在接受新知识时会出现哪些情况”,“出现这些情况后如何处理”等。

备课时,尽管教师会预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。这时,教师要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策略与措施”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。

教学后,教师可以这样自我提问:“我的教学是有效的吗”,“教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么”,“哪些方面还可以进一步改进”,“我从中学会了什么”等。

四、反思教学评估

教学评估是在教师完成教学目标,学生完成学习任务的情况下,教学意义、思维培养、陶冶道德情操的升华,是教育教学的更高境界。有一句教育格言说得好“教育是一项事业,需要我们无私的奉献;教育是一门科学,需要我们刻苦的钻研;教育是一门艺术,需要我们不断的创新。”反思教学价值,就是挖掘该节课富含的认识教育价值、情感教育价值、行为教育价值。

要知道每一种数学思想都包含着一种人生哲理,每一种解题方法都丰富着学生的价值观和世界观,每一点滴的数学知识都净化着学生的心灵。只要我们细心观察、认真分析、深入思考、努力拓展,不放过课堂教学中的蛛丝马迹,不放过教材中的一字一句,我们一定能做到,我们也一定能做好。

如分类讨论的思想教学生辨证地看问题,函数的思想教学生既要注重问题的现象更要认识到问题的本质;数形结合的方法教学生认识什么是数学美、怎样欣赏数学美、如何运用数学美,反证法让学生认识到解决问题不一定要正面出击、有时侧面迂回效果更好;数学家的成长历程可以给学生树立榜样、激励学生刻苦学习;我国悠久灿烂的数学发展史可以让学生产生强烈的民族自豪感,激起同学们的爱国主义热情,从而奋发读书献身祖国的现代化建设。

现代教育不是要教出一群书呆子,不是要教出一群高分低能儿,而是要为学生未来着想,为他们丰富多彩的人生作必要的知识准备和心理准备。知识是死的,不知道是可以从书本上学到,而能力素质却是无形的、是无法教会的。

一个人的素质决定了他的生存能力和发展前景。归根结底,教学的价值在于塑造人,交给学生做人的道理,交给学生科学的思维方式和自我发展的基本素质,让他们都成为对社会有用的人。

数形结合小论文题目

1、谈谈计算教学的改革2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究(一)5、改进教学方法培养创新技能6、21世纪我国小学数学教育改革展望7、面向21世纪的小学数学课程改革与发展8、不拘一格育“鸣凤”使学生真正成为学习的主人9、改革课堂教学的着力点10、谈素质教育在小学数学教学中的实施11、素质教育与小学数学教育改革12、浅谈学生数学思维能力的培养13、浅议表象积累与培养学生的思维能力14、也谈学生创新意识培养15、实施创新教学策略 培养学生创新意识16、10以内加法整理和复习17、改良“有余数除法计算”教法18、给学生创新的时间和空间和谐愉悦19、主动探索——一年级《统计》教学片断评析20、小学数学教育--教师之家--教师培训

数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!

中职数学教学论文题目

1、线性方程的叠加原理及其应用

2、作为函数的含参积分的分析性质研究

3、周期函数初等复合的周期性研究

4、“高等代数”知识在几何中的应用

5、矩阵初等变换的应用

6、“高等代数”中的思想 方法

7、中职数学教学中的数学思想和方法

8、任N个自然数的N级排列的逆序数

9、“高等代数”中多项式的值,根概念及性质的推广

10、线性变换“可对角化”的条件及“对角化”方法

11、数域概念的等价说法及其应用

12、中职数学教学与能力培养

13、数学能力培养的重要性及途径

14、论数学中的基本定理与基本方法

15、论电脑、人脑与数学

16、论数学中的收敛与发散

17、论小概率事件的发生

18、论高等数学与初等数学教学的关系

19、论数学教学中公式的教学

20、数学教学中学生应用能力的培养

21、数学教与学的心理探究

22、论数学思想方法的教与学

23、论数学家与数学

24、对称思想在解题中的应用

25、复数在中学数学中应用

26、复变函数论思想方法在中学数学教学中的应用

27、复变函数论思想方法在中学数学竞赛中的应用

28、代数学基本定理的几种证明

29、复变函数的洛必达法则

30、复函数与实函数的级数理论综述

31、微积分学与哲学

32、实数完备性理论综述

33、微积分学中辅助函数的构造

34、闭区间上连续函数性质的推广

35、培养学生的数学创新能力

36、教师对学生互动性学习的影响

37、学生数学应用意识的培养

38、数学解题中的 逆向思维 的应用

39、数学直觉思维的培养

40、数学教学中对学生心理素质的培养

41、用心理学理论指导数学教学

42、开展数学活动课的理论和实践探索

43、《数学课程标准》解读

44、数学思想在数学教学中的应用,学生思维品质的培养

45、数形结合思想在中学数学中的应用

46、运用化归思想,探索解题途径

47、谈谈构造法解题

48、高等数学在中学数学中的应用

49、解决问题的策略思想--等价与非等价转化

50、挖掘题中的隐含条件解题

51、向量在几何证题中的运用

52、数学概念教学初探

53、数学 教育 中的问题解决及其教学途径

54、分类思想在数学教学中的作用

55、“联想”在数学中的作用研究

56、利用习题变换,培养学生的思维能力

57、中学数学学习中“学习困难生”研究

58、数学概念教学研究

59、反例在数学教学中的作用研究

60、中学生数学问题解决能力培养研究

61、数学教育评价研究

62、传统中学数学教学模式革新研究

63、数学研究性学习设计

64、数学开放题拟以及教学

65、数学课堂 文化 建设研究

66、中职数学教学设计及典型课例分析

67、数学课程标准的新增内容的尝试教学研究

68、数学课堂教学安全采集与研究

69、中职数学选修课教学的实话及效果分析

70、常微分方程与初等数学

71、由递推式求数列的通项及和向量代数在中学中的应用

72、浅谈划归思想在数学中的应用

73、初等函数的极值

74、行列式的计算方法

75、数学竟赛中的不等式问题

76、直觉思维在中学数学中的应用

77、常微分方程各种解的定义,关系及判定方法

78、高等数学在中学数学中的应用

79、常微分方程的发展及应用

80、充分挖掘例题的数学价值和 智力开发 功能

小学数学教学论文题目参考

1、小学数学教师几何知识掌握状况的调查研究

2、小学数学教师教材知识发展情况研究

3、中日小学数学“数与代数”领域比较研究

4、浙江省Y县县域内小学数学教学质量差异研究

5、小学数学教师教科书解读的影响因素及调控策略研究

6、中国、新加坡小学数学新课程的比较研究

7、小学数学探究式教学的实践研究

8、基于教育游戏的小学数学教学设计研究

9、小学数学教学中创设有效问题情境的策略研究

10、小学数学生活化教学的研究

11、数字 故事 在小学数学课堂教学中的应用研究

12、小学数学教师专业发展研究

13、中美小学数学“统计与概率”内容比较研究

14、数学文化在小学数学教学中的价值及其课程论分析

15、小学数学教师培训内容有效性的研究

16、小学数学课堂师生对话的特征分析

17、小学数学优质课堂的特征分析

18、小学数学解决问题方法多样化的研究

19、我国小学数学新教材中例题编写特点研究

20、小学数学问题解决能力培养的研究

21、渗透数学思想方法 提高学生思维素质

22、引导学生参与教学过程 发挥学生的主体作用

23、优化数学课堂练习设计的探索与实践

24、实施“开放性”教学促进学生主体参与

25、数学练习要有趣味性和开放性

26、开发生活资源,体现数学价值

27、对构建简洁数学课堂的几点认识和做法

28、刍议“怎样简便就怎样算”中的“二指技能”现象

29、立足现实起点,提高课堂效率

30、宁缺毋滥--也谈课堂教学中有效情境的创设

31、如何让“生活味”的数学课堂多一点“数学味”

32、有效教学,让数学课堂更精彩

33、提高数学课堂教学效率之我见

34、为学生营造一片探究学习的天地

35、和谐课堂,让预设与生成共精彩

36、走近学生,恰当提问--谈数学课堂提问语的优化策略

37、谈小学数学课堂教学中教师对学生的评价

38、课堂有效提问的初步探究

39、浅谈小学数学研究性学习的途径

40、能说会道,为严谨课堂添彩

41、小学数学教学中的情感教育

42、小学数学学困生的转化策略

43、新课标下提高日常数学课堂效率的探索

44、让学生参与课堂教学

45、浅谈新课程理念下如何优化数学课堂教学

46、数学与生活的和谐之美

47、运用结构观点分析教学小学应用题

48、构建自主探究课堂,促进学生有效发展

49、精心设计课堂结尾巩固提高教学效果

50、浅谈数学课堂提问艺术

51、浅谈发式教学在小学数学教学中的运用

52、浅谈数学课堂中学生问题意识的培养

53、巧用信息技术,优化数学课堂教学

54、新课改下小学复式教学有感

55、让“对话”在数学课堂中焕发生命的精彩

56、小学几何教学的几点做法

初中数学教学论文题目

1、翻转课堂教学模式在初中数学教学中的应用研究

2、数形结合思想在初中数学教学中的实践研究

3、基于翻转课堂教学模式的初中数学教学设计研究

4、初中数学新教材知识结构研究

5、初中数学中的研究性学习案例开发实施研究

6、学案导学教学模式在初中数学教学中的实践与研究

7、从两种初中数学教材的比较看初中数学课程改革

8、信息技术与初中数学教学整合问题研究

9、初中数学学习困难学生学业情绪及其影响因素研究

10、初中数学习题教学研究

11、初中数学教材分析方法的研究

12、初中数学教师课堂教学目标设计的调查研究

13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究

14、初中数学教师数学教学知识的发展研究

15、数学史融入初中数学教科书的现状研究

16、初中数学教师课堂有效教学行为研究

17、数学史与初中数学教学整合的现状研究

18、数学史融入初中数学教育的研究

19、初中数学教材中数学文化内容编排比较研究

20、渗透数学基本思想的初中数学课堂教学实践研究

21、初中数学教师错误分析能力研究

22、初中数学优秀课教学设计研究

23、初中数学课堂教学有效性的研究

24、初中数学数形结合思想教学研究与案例分析

25、新课程下初中数学教科书的习题比较研究

26、中美初中数学教材难度的比较研究

27、数学史融入初中数学教育的实践探索

28、初中数学课堂教学小组合作学习存在的问题及对策研究

29、初中数学教师数学观现状的调查研究

30、初中数学学困生的成因及对策研究

31、“几何画板”在初中数学教学中的应用研究

32、数学素养视角下的初中数学教科书评价

33、北师大版初中数学教材中数形结合思想研究

34、初中数学微课程的设计与应用研究

35、初中数学教学生成性资源利用研究

36、基于问题学习的初中数学情境教学模式探究

37、学案式教学在初中数学教学中的实验研究

38、数学文化视野下的初中数学问题情境研究

39、中美初中数学教材中习题的对比研究

40、基于人教版初中数学教材中数学史专题的教学探索

41、初中数学教学应重视学生直觉思维能力的培养

42、七年级学生学习情况的调研

43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考

44、新课程背景下学生数学学习发展性评价的构建

45、初中数学学生学法辅导之探究

46、合理运用数学情境教学

47、让学生在自信、兴趣和成功的体验中学习数学

48、创设有效问题情景,培养探究合作能力

49、重视数学教学中的生成展示过程,培养学生 创新思维 能力

50、从一道中考题的剖析谈梯形中面积的求解方法

51、浅谈课堂教学中的教学机智

52、从《确定位置》的教学谈体验教学

53、谈主体性数学课堂交流活动实施策略

54、对数学例题教学的一些看法

55、新课程标准下数学教学新方式

56、举反例的两点技巧

57、数学课堂教学中分层教学的实践与探索

58、新课程中数学情境创设的思考

59、数学新课程教学中学生思维的激发与引导

60、新课程初中数学直觉思维培养的研究与实践

2021各阶段数学教学论文题目相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目大全2021

★ 大学生论文题目参考2021

★ 优秀论文题目2021

★ 2021毕业论文题目怎么定

★ 2021教育学专业毕业论文题目

★ 2021优秀数学教研组工作总结5篇

★ 2021数学教学反思案例

★ 2021交通运输方向的论文题目及选题

★ 小学数学教学论文参考(2)

小学数学课题研究最佳题目数学核心素养下农村小学高年级学生运算能力培养的研究小学数学大班额背景下小组合作学习的有效性研究小学数学教学中培养学生动手实践能力及其评价方式的研究以“智慧放手”的教学特色培养小学生合作学习能力的研究基于核心素养下的小学低年级数学评价模式研究小学生空间观念和几何直观的培养与评价研究核心素养背景下小学数学整理和复习课的研究优化小学数学课堂教学方式的实践研究基于读懂学生错误培养学生反思能力的实践研究依托综合与实践活动教学提升小学生数学素养的研究在小学数学“数与代数”领域开展游戏化教学的实践研究小学数学中培养学生几何直观能力的研究小学数学课堂教学与现代教育技术融合实验与研究小学数学教学中建立模型思想的策略与方法研究基于发展学生核心素养的小学数学作业设计有效性的研究小学中年级数学课堂提问有效性的研究小学数学小组合作学习有效性的研究小学数学课堂教学与信息技术整合的研究优化小学数学教学有效性的策略研究

高中数学小论文数形结合

【初中】数形结合思想的初探 数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以“数”化“形”、以“形”变“数”和“数”“形”结合。下面我们就一些数学中的问题谈一下数形结合思想应用。 1、以“数”化“形” 由于“数”和“形”是一种对应,有些数量比较抽象,我们难以把握,而“形”具有形象,直观的优点,能表达较多具体的思维,起着解决问题的定性作用,因此我们可以把“数”的对应——“形”找出来,利用图形来解决问题。我们能够从所给问题的情境中辨认出符合问题目标的某个熟悉的“模式”,这种模式是指数与形的一种特定关系或结构。这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。数量问题图形化是数量问题转化为图形问题的条件,将数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为图形问题。解一个数学问题,一般来讲都是首先对问题的结构进行分析,分解成已知是什么(条件),要求得到的是什么(目标),然后再把条件与目标相互比较,找出它们之间的内在联系。因此,对于“数”转化为“形”这类问题,解决问题的基本思路: 明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,最后利用已经作出或构造出的图形的性质、几何意义等,联系所要求解(求证)的目标去解决问题。 例1:已知:三角形的三边长分别为5、12、13,求此三角形的面积。分析:该题是仅给出了三角形三边长5、12、13,而没有给出其中一边的高,似乎无法求其面积,虽然已知三边求三角形的面积也有一个海伦公式,但太麻烦了。这里如果我们能够分析这组数据,找出5、12、13它们之间的关系,很容易联想起来勾股定理的逆定理---若以a、b、c为三边的三角形满足a2+b2=c2;则此三角形为直角三角形。因为52+122=132,那么我们就能够判断出以5、12、13为三边所构成的三角形是以5、12为直角边、13为斜边的一个直角三角形。这样我们就把这组数据5、12、13通过勾股定理的逆定理变成了以5、12为直角边、13为斜边的一个直角三角形。实现了以“数”变“形”,把以5、12、13为三边所构成的三角形变成了直角三角形。那么这个三角形的面积就很容易求得了。这是一道典型的运用勾股定理的逆定理的数形结合题。2、以“形”变“数” 虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算。解题的基本思路: 明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式表达出来,再根据条件和结论的联系,利用相应的公式或定理等,例3:用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域时面积最大,而小亮认为不一定。你认为如何?(选自华东师大版数学八年级上册P30练习第3题)分析:此题的关键是“周长一定,如何比较正方形面积和矩形面积的大小”即周长相等,怎样用数来表示正方形面积和矩形面积并能比较正方形面积和矩形面积的大小。我们设篱笆长为L=4a,则正方形的边长为a,根据矩形的对边相等则一组对边为a-x,另一组对边为a+x。(x>0)如下图。 a a+xa a-x正方形 矩形由题意得S正方形=a2,S矩形=(a+x)(a-x)=a2-x2。因为x>0,所以x2>0。故a2>a2-x2即S正方形>S矩形。这是一个典型的由形构造数的实际应用题。3、“形”“数”互变“形”“数”互变是指在有些数学问题中不仅仅是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”互相变换,不但要想到由“形”的直观变为“数”的严密还要由“数”的严密联系到“形”的直观。解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的“形”“数”互变。一般方法是看“形”思“数”、见“数”想“形”。实质就是以“数”化“形”、以“形”变“数”的结合。 例5:有一四边形地ABCD(如图),∠ABC=90,AB=4m,BC=3m,CD=12m,DA=13m,求该四边形地ABCD的面积。(选自华东师大版数学八年级上册P63B组第7题) 分析:此题结果是求四边形地ABCD的面积,若该四边 C B形ABCD是特殊四边形――直角梯形,那么我们可以用公式S=(上底+下底)/2.若∠BAD=90°则可用此公式,根据勾股定理的逆定理需BD2=DA2+AB2 A但BD的长度我们求不出来,所以无法求出∠BAD的度数。从已知出发∠ABC=90°, DAB=4m,BC=3m,根据勾股定理可得AC=√AB2+BC2=√42+32=5m.在三角形ACD中,由AC=5m、CD=12m、DA=13m,得52+122=132即AC2+CD2=DA2根据勾股定理的逆定理可得∠∫ACD=90°。这样,我们就可以把求四边形ABCD的面积问题转化为求两个直角三角形ABC和直角三角形ACD的面积的和的问题。由题意我们很容易就解决了。本题经过对结果和已知的分析得出,我们先通过直角三角形ABC运用勾股定理求得斜边AC的长度,这是看“形”思“数”;然后,根据AC=5m,结合已知CD=12m、DA=13m,想到52+122=132即AC2+CD2=DA2由勾股定理的逆定理可得三角形ACD为直角三角形,这属于见“数”想“形”。最终,把四边形ABCD的面积转化为求两个直角三角形ABC和直角三角形ACD的面积的和使问题得以解决。数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。要想提高学生运用数形结合思想的能力,需要教师耐心细致的引导学生学会联系数形结合思想、理解数形结合思想、运用数形结合思想、掌握数形结合思想。

浅谈中学数学中的反证法数学选择题的利和弊浅谈计算机辅助数学教学论研究性学习浅谈发展数学思维的学习方法关于整系数多项式有理根的几个定理及求解方法

可以通过线性关系,计算生活中手机充话费,什么样的人群使用什么样的套餐比较划算。希望能帮到你

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

  • 索引序列
  • 数形结合论文
  • 数形结合研究论文
  • 数学数形结合论文范文
  • 数形结合小论文题目
  • 高中数学小论文数形结合
  • 返回顶部