首页 > 学术期刊知识库 > 石墨烯与二氧化钛毕业论文实验

石墨烯与二氧化钛毕业论文实验

发布时间:

石墨烯与二氧化钛毕业论文实验

使用传统硅胶会产生的问题:使用石墨膜的优势:a、发生硅油分离、污染周围器件 a、可靠性提高b、产生硅氧烷导致电子器件的接触不良 b、不会发生硅氧烷、不污染周围器件、环保石墨膜易于加工,便于安装。人工石墨膜以其高导热高可靠性、轻薄、易于加工、环保等优良特性广泛的应用于新能源、节能改造等重要新兴行业,如光伏逆变器、风力变流器、变频器,并且在LED等电力电子技术领域中有巨大的应用前景。当然,该类产品最广泛用于智能手机,如苹果手机、三星手机中。同时在笔记本、手持设备、通信基地站设备得到商业应用。(1)以天然鳞片石墨为原料,采用Hummers法制备氧化石墨,并用热剥离成石墨烯,或者利用超声波分散剥离为氧化石墨烯,再化学还原成石墨烯。采用SEM、TEM、HRTEM、XRD和Raman系统考察石墨烯的形貌和结构等性能。(2)以石墨烯为基体,钛酸四丁酯为钛源,首先采用溶胶-水热法制备了二氧化钛/石墨烯纳米复合材料。利用XRD、SEM、TEM和Raman对二氧化钛/石墨烯纳米复合材料的晶体结构、颗粒形貌和化学组成进行了表征,结果显示合成的二氧化钛纳米晶为锐钛矿结构,结晶状况良好,二氧化钛和石墨烯复合效果较好。研究了纳米晶体的光催化性能,结果表明二氧化钛/石墨烯催化性能较高。(3)以氧化石墨烯为基体,醋酸锌为锌源,采用溶胶法制备了氧化锌/石墨烯纳米复合材料。结果显示合成的氧化锌纳米晶为六边纤锌矿结构,且是单晶结构,氧化锌和石墨烯复合效果比较理想。并研究了其光催化性能,结果表明石墨烯/氧化锌有较高的催化效率,测定了复合材料的荧光效应,讨论了石墨烯/氧化锌催化效率提高的机理。(4)以氧化石墨烯为基体,醋酸镉为镉源,硫脲为硫源,采用溶胶法制备了硫化镉/石墨烯纳米复合材料。结果显示合成的硫化镉纳米晶为结构,硫化镉和石墨烯复合效果很好。并研究了其光催化性能,结果表明复合材料有较高的催化效率。修饰电极能够推广应用于其它生物分子的测定中具体研究内容包括以下三个部分:1、采用氧化还原法合成石墨烯,制备石墨烯修饰电极检测DNA四个碱基,电化学研究发现,石墨烯修饰玻碳电极能够实现对DNA四个碱基的同时检测。将石墨烯与碳纳米管、β-环糊精复合,碳纳米管有效的降低了石墨烯的的聚集,研究了石墨烯/碳纳米管/β-环糊精修饰电极的电化学性能,可以用于鸟嘌呤核苷的高灵敏检测,该修饰电极能够推广应用于其它生物分子的测定中。2、将生物大分子单链DNA(ssDNA)与石墨烯功能化组装,制备的具有生物相容性的ssDNA-石墨烯复合材料在水溶液中能够长期保存不发生沉降,提高了石墨烯在水溶液中的稳定性。ssDNA-石墨烯复合材料比表面积大、生物相容性好,是优异的氧化还原酶固定化材料。将ssDNA-石墨烯复合材料固定葡萄糖氧化酶制备葡萄糖传感器,葡萄糖氧化酶实现了直接电化学并且保持生物活性,电子转移速率为,对葡萄糖检测具有较好的抗干扰性和稳定性。3、采用原位合成法制备石墨烯-四氧化三铁纳米复合材料,四氧化三铁增加了石墨烯在水中的分散性和稳定性,分别用磁铁和磁强计测试表明石墨烯-四氧化三铁纳米复合材料具有磁性。制备石墨烯-四氧化三铁修饰电极,电化学研究表明,石墨烯-四氧化三铁复合材料对过氧化氢具有催化作用,最低检测限为μmol·L-1,对抗坏血酸和尿酸具有抗干扰性。石墨烯-四氧化三铁纳米复合材料在电化学领域具有潜在的应用前景。

二氧化钛和氧化石墨烯复合物对可见光有没有响应紫外光普遍大于可见光。这个大概可以归因于紫外光波长短,能量较高。但影响光催化剂在紫外光和可见光下的光催化活性趋势, 可能的原因很多, 1) 如果紫外下的活性不如可见下的活性, 那可能是由于紫外下达到光过包和, 使催化剂分解等原因所致; 如果是紫外下活性大于可见活性, 那你可以从材料的吸光性能考虑.2) 如果催化剂在紫外和可见下都稳定, 而二者反应趋势不同,那 还得从催化剂结构、反应的微观机理去考虑。

导热石墨片是一种全新的导热散热材料,沿两个方均匀导热,屏蔽热源与组件的同时改进消费电子产品的性能。颜色一般是黑色,材质是天然石墨经过精致加工,导热系数在水平方向高达1500W/M-K。使用IC、CPU、MOS、LED、散热片、LCD-TV、笔记本电脑、通讯设备、无线交换机、DVD、手持设备等。

氧化石墨烯的制备研究论文

氧化石墨烯一般由石墨经强酸氧化而得。

主要有三种制备氧化石墨的方法:Brodie法,Staudenmaier法和Hummers法。其中Hummers法的制备过程的时效性相对较好而且制备过程中也比较安全,是最常用的一种。

它采用浓硫酸中的高锰酸钾与石墨粉末经氧化反应之后,得到棕色的在边缘有衍生羧酸基及在平面上主要为酚羟基和环氧基团的石墨薄片,此石墨薄片层可以经超声或高剪切剧烈搅拌剥离为氧化石墨烯,并在水中形成稳定、浅棕黄色的单层氧化石墨烯悬浮液。

应用

作为石墨烯基材料一类重要的衍生物,尽管氧化过程破坏了石墨烯高度共轭结构,但是仍保持着特殊的表面性能与层状结构。含氧基团的引入不仅使得氧化石墨烯具有化学稳定性,而且为合成石墨烯基/氧化石墨烯基材料提供表面修饰活性位置和较大的比表面积。

氧化石墨烯作为合成石墨烯基复合材料的前驱物与支撑载体,易功能化与可控性高。在与金属,金属氧化物,高分子聚合物等材料复合过程中,可以提供大的比表面积有效分散附着材料,防止团聚。

氧化石墨烯也显示出自身优异的物理、化学、光学、电学性质,并且由于石墨烯片层骨架的基面和边缘上有多种含氧官能团共存的结构,使得氧化石墨烯可以通过调控所含含氧官能团的种类及数量,来调制其导电性和带隙.材料应用范围很广。

以上内容参考 百度百科-氧化石墨烯

Hummers法制备氧化石墨烯,各种试剂的作用都是怎样的更好的用于防腐涂料、防火涂料和导电涂料。鳞片石墨粉:天然晶质石墨,其形似鱼磷状,属六方晶系,呈层状结构,具有良好的耐高温、导电、导热、润滑、可塑及耐酸碱等性能。鳞片石墨广泛用于冶金工业的高级耐火材料与涂料。如镁碳砖、坩埚等。军事工业火工材料安定剂、治炼工业脱硫增速剂、轻工业的铅笔芯、电气工业的碳刷、电池工业的电极、化肥工业的催化剂等。鳞片石墨经过深入加工,又可以生产出石墨乳,用于润滑剂、脱模剂、拉丝剂、导电涂料等。

还可以生产膨胀石墨,用于柔性石墨制品原料,如柔性石墨密封件及柔性石墨复材料制品等。

鳞片石墨:300目,青岛大和石墨有限公司;NaNO3:分析纯,成都科龙化工试剂厂;浓H2SO4:98%(质量分数,下同),四川西陇化工有限公司;KMnO4:分析纯,成都科龙化工试剂厂;H2O2:30%,成都科龙化工试剂厂;水合肼:分析纯,成都科龙化工试剂厂。

通过巧妙设计,浙江大学高分子系高超教授团队研发出一种新型石墨烯组装膜:它是目前导热率最高的宏观材料,同时具有超柔性,能被反复折叠6000次,承受弯曲十万次。这一进展解决了宏观材料高导热和高柔性不能兼顾的世界性难题,有望广泛应用于高效热管理、新一代柔性电子器件及航空航天等领域。 高超教授 浙江大学高分子系纳米高分子课题组,由国家杰出青年基金获得者高超教授领衔,目前课题组共有教授1名、助理1名、博士后3名、博士生11名、硕士生5名、企业联合培养博士后1名。建有石墨烯、新能源材料、高分子化学3个实验室及1个“浙江大学-碳谷上希”联合研究中心。 团队长期致力于单层氧化石墨烯的规模化制备及其宏观组装研究,发现了氧化石墨烯的液晶性,发明了石墨烯纤维、石墨烯无纺布、石墨烯连续组装薄膜及最轻材料石墨烯气凝胶四种纯石墨烯宏观材料(简称F4),开发了低成本高质量单层氧化石墨烯、多功能石墨烯复合纤维、石墨烯高效电热布、石墨烯超级电容器、石墨烯-铝离子电池、石墨烯纳滤膜等六大核心技术,这些成果产业化前景广阔,部分已实现生产和中试。 高超,1973年1月出生,土家族,浙江大学求是特聘教授、博士生导师、高分子科学研究所所长。 1995年在湖南大学获得学士学位、1998年获硕士学位,2001年获上海交通大学博士学位。博士毕业后留上海交大任教,于2003年到2006年先后在英国Sussex大学和德国Bayreuth大学做访问学者和博士后研究。2008年被引进浙江大学,被评为教授、博士生导师。 共同主编Wiley出版的英文专著1本《Hyperbranched Polymers: Synthesis, Properties, and Applications》,为英文专著撰写6章,获中国发明专利授权23项。 担任国际期刊Colloid and Polymer Science地区主编。 曾入选或获得科技部“中青年科技创新领军人才计划”(2014)、国家杰出青年基金(2013)、浙江省“钱江人才计划”(2010)、上海市“浦江人才计划”(2007)、教育部“新世纪优秀人才计划”(2005)、第九届“霍英东基金”(2004)、上海市“青年科技启明星”(2003)等人才计划,获得浙江省青年科技奖(2013)、1项国家自然科学二等奖(排名第3)、1项上海市科学技术一等奖(排名第3)及全国优秀博士学位论文等奖励。 主要成果:(1)发现了氧化石墨烯液晶及二维胶粒的手性液晶相,提出并实现了连续石墨烯纤维; (2)实现了高性能石墨烯纤维超级电容器和石墨烯基纳滤膜; (3)采用非模板协同组装策略制备了超轻弹性气凝胶; (4)发明了绿色、超快、安全的铁基法,可大量制备单层氧化石墨烯,突破了自1958年以来的高污染、易爆炸、长时间的传统制备方法。 铁基法1小时内就可制备单层石墨烯。有望实现大规模工业应用 现在,成果里面又要加上这一心形的石墨烯组装膜。这一研究成果被Nature, Nature News, Scientific American等亮点评论,认为“实现了石墨烯在现实器件应用的关键一步”、“开辟了碳纤维制备的新途径”,被美、法、澳、中国等多个课题组跟进研究。 2017年4月,材料科学的世界旗舰级期刊《Advanced Materials》编辑部邀请浙江大学高新材料相关各研究组撰稿,以校庆专辑形式展示浙江大学在材料化学领域的研究成果,献礼浙江大学120周年校庆。 石墨烯纤维结入选Nature 2011 年度图片,为2005年以来唯一入选的中国科技成果。超轻气凝胶被Nature 两次高度评论。 获最轻固态材料吉尼斯世界纪录认证,授予世界创新论坛“金袋鼠”创新奖,入选两院院士评选2013年中国十大科技进展新闻。 用最新高导热超柔性石墨烯膜折叠的千纸鹤 彭蠡,高分子科学与工程学系博士,曾以科学论文《快速规模化绿色制备氧化石墨烯》获得“启真杯”浙江大学2016年度学生十大学术新成果奖项 近日,浙大新闻办,钱江晚报等媒体记者采访了浙江大学高分子系高超教授团队。面对记者,高超教授介绍,电子电器工作时会发热,需要高效热管理来保证其正常运行。新一代器件还要求可弯折性。因此,研究高导热高柔性材料至关重要。但现有宏观材料的高导热和高柔性是一对鱼和熊掌难以兼得的矛盾。 石墨烯的出现为解决这一矛盾提供了理论上的可能。它是一种由碳原子以sp2杂化方式形成的蜂窝状平面单层二维大分子。原子质量轻、简单而又强力的键接结构赋予了它超高的导热性;同时,单原子层厚度又使得其具有较好的柔性。遗憾的是,目前已有的剥离型石墨烯片小、缺陷多,其组装而成的宏观材料导热率和柔性都欠佳,还比不上商业化的聚酰亚胺石墨化膜(GPI)。比如,我们手机里的散热膜,就是用GPI制成的。 发现石墨烯的诺奖得主安德烈·海姆,浙大名誉教授,石墨烯的发现就值一个诺贝尔奖,新型石墨烯组装膜未来上到航空航天,下到智能手机都可应用,其价值就更是大的不可估量了 在高超教授的办公室,记者见到了一片20厘米边长的石墨烯组装膜,看上去很像一片大大的即食海苔。高超介绍,这10微米厚的“海苔”,是由数千层单片石墨烯交叠而成的。实验测试表明,石墨烯膜可以耐受10万余次的弯曲,而不影响其导热导电性能,而且,在反复折叠6000次后仍没有断裂。此前性能最好的GPI最多只能反复折叠3次。同时这种石墨烯膜的导热率最高达到2053W/mK(瓦/米·度),接近理想单层石墨烯导热率的40%,创造了宏观材料导热率的新纪录。 图1. a) 市售智能手机背面;b) 手机处于待机状态;c) 用聚酰亚胺石墨化膜(GPI)作为手机散热膜;d) 同一部手机用新型石墨烯膜作为散热膜;e, f) 在(b), (c), (d) 三种状态下,手机的水平和垂直温度线的比较,表明石墨烯膜具有更好的散热降温效果。 柔软而高导热的性能,赋予我们无限的想象空间,比如,可折叠的手机、笔记本电脑,甚至卫星和航天器。课题组将这种石墨烯膜替代商用GPI膜,应用于手机散热膜上,发现手机CPU处的温度可以控制在33℃以下,相对商用GPI膜降低了6℃。如果把这层膜用到人造卫星上,就能很好地解决卫星的“向光背光”温差大的问题。 彭蠡说,电子元器件的散热是器件开发一项很重要的课题。它们“怕热”,是因为这些功率器件都有稳定工作的温度区间。随着温度的升高,器件工作的稳定性会下降,噪音升高,并且寿命降低。一般来说,温度提高8—10度,器件寿命会下降一半。据统计,电子产品失效的原因中,温度占比达到50%以上。 科学家是如何让石墨烯膜由“脆”变“柔”,并兼顾了良好的导热性能呢?高超说,团队提出了一种“大片微褶皱”的设计思路,在制备石墨烯膜的过程中引入了许多微小的褶皱,让石墨烯膜成为一种“能屈能伸”的材料。就像女孩们的百褶裙,裙摆可以展开很大。如此细小的褶皱怎么制造?高超团队想出了一种新颖的方法:将石墨烯膜高温加热,膜中的含氧官能团在高温下分解释放出气体,使石墨烯膜内部形成微气囊;再经过机械辊压成膜,微气囊的气体被排出,形成微褶皱。“就这么简单”,高超说。 图2. 石墨烯微褶皱的引入过程:高温加热还原形成微气囊,机械辊压形成微褶皱 论文截图,褶皱在折叠过程中极大增强了膜承受弯曲的能力 Advanced Science News评论认为,这项成果使得很多大面积多功能的二维材料能够应用到现实世界的柔性器件中,从航空航天到智能手机,不一而足。 Advanced Science News认为,这样的设计理念和实验策略能够拓展至其他二维纳米材料中。

二氧化钛毕业论文

沈 阳 工 程 学 院毕业设计(论文)开题报告锐钛型纳米二氧化钛粉体制备方法系 部: 能源与动力工程系 专 业: 应用化学 学生姓名: 张雨 指导教师: 马姗姗 开题时间: 年 月 日 一、总体说明在开题报告中要求给出你对课题的理解,类似的研究在国内外的进展情况,你对系统设计的初步设想,主要需要解决的技术难题和解决思路,同时应给出课题的时间安排。二、开题报告内容1.毕业设计(论文)课题的目的、意义、国内外现状及发展趋势2.课题主要工作(设计思想、拟采用的方法及手段)3.完成课题的实验条件、预计设计过程中可能遇到的问题以及解决的方法和措施4. 毕业设计(论文)实施计划(进度安排)5. 参考文献三、撰写要求1.报告字数不少于3000字2.报告内容一律用A4纸打印3. 上交时间为毕业设计第三周周末。一、毕业设计(论文)课题的意义、国内外现状及发展趋势(可加附页)1.意义纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外线材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、制造工业、造纸工业、航天工业中、锂电池、光隔离器和光环行器中。纳米二氧化钛是具有屏蔽紫外线屏蔽功能和产生颜色效应的一种透明物质。由于它透明性和防紫外线功能的高度统一,似的它一经问世,便在防晒护肤、塑料薄膜制品。木器保护、透明耐用面漆、精细陶瓷等多方面获得了广泛应用。特别是在80年代末期,这种能产生诱人的“随角异色”效应的效应颜料被成功地用于豪华型高级轿车后面漆之后,引起了世界范围的普遍关注,发达国家如美、日、欧、等国对此研究工作十分活跃,相继投入了大量人力、物力,并定制了长远规划,在国际市场竞争激烈迄今,他们已取得许多令人惊异的成果,并已形成高技术纳米材料产业,生产了这种附加值极高的高功能精细无机材料,收到良好的经济效益和社会效益,纳米氧化物材料也正式为中国产业世界关注的热点。随着纳米材料研究的深入,纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,这意味着纳米材料的研究已可以按照人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性,技术上的飞跃,为纳米材料的应用进一步打开市场的大门,在广泛的领域形成了一大批高技术产品。如信息与通讯方面的磁性存储器、光学存储器、液晶显示、光学方面的功能性薄膜;电子方面的原件开发,能源方面的太阳能电源,热敏绝缘体,测量与控制技术方面的传感器;陶瓷方面的结构陶瓷,功能陶瓷以及其他方面的抗老化橡胶、功能油漆、光催化降解剂、保洁抗菌材料、超高磁能衡土水磁体等。又纳米材料集成度高的特点,在光信号的发射、放大、传输、路由等方面有应用前景,具有科学研究意义和应用价值。 2.国内外现状及发展趋势由于纳米TiO2在光隔离器和光环行器等方面具有广阔的应用前景,我国在光隔离器、光环行器和光准直器等方面也有一些进展。光隔离器单级的最小隔离度为30dB最大插入损耗为; 双级的最小隔离度为45dB最大插入损耗为。光环行器的插入损耗≤隔离度≥45dB。光准直器有P级和A级两种典型插入损耗为和回波损耗分别≥65dB和≥60dB。 2. 发展趋势 随着全光通信网络技术的发展对大端口数矩阵光开关的需求会逐渐增加。这种光开关目前在国外的研究也刚刚开始主要是采用光子集成技术的微电子机械开关(MEMS)和热光式开关。这需要光子集成器件、光交换技术以及光纤与波导耦合技术等各方面大力协同努力攻关。同时,在国外技术比较成熟、形成批量生产能力时可以考虑进行技术引进。纳米TiO2是一种新型的无机功能材料,其粒径在1~100nm之间,具有比表面积大、表面活性高、分散性好等特点,表现出独特的物理化学性质[1]。纳米TiO2最初的应用是在精细陶瓷、屏蔽紫外线、半导体材料、光催化材料[2]等方面,由于具有光催化活性高、稳定性好、对人体无毒、价格低廉等优点,其应用领域至今扩展至有机废水降解、重金属离子还原、空气净化、杀菌、防雾等诸多领域[3]。因此,通过控制材料合成条件,开发先进生产工艺,制得纯度高、粒径小、力度分布窄的纳米TiO2已成为当前相关交叉学科研究中最活跃的领域之一。目前,国内外纳米TiO2的合成工艺根据其反应物系的物理形态一般分为气相法、液相法和固相法等三类[4]。本文对目前全世界研究最多、应用最广的纳米TiO2制备技术进行了详细的分析和比较,并展望了该领域今后的发展方向,以期为相关的研究工作提供参考。1气相法气相法一般是通过加热等手段先将金属钛的卤化物、金属有机钛化合物等前体气化,使其在气相条件下发生物理或化学变化,然后在冷却过程中成核、生长,最后形成纳米TiO2。主要包括化学气相沉积法、物理气相沉积法和化学气相水解法。2液相法液相法是以可溶于水或有机溶剂的金属盐类为原料,使金属盐溶解后以离子或分子状态混合均匀,再选择一种合适的沉淀剂或采用蒸发、结晶、升华、水解等过程,将金属离子均匀沉淀或结晶出来,再经过脱水或热分解制得粉体。该法是目前国际上纳米TiO2颗粒制备领域最主要、研究最多的方法,具有原料价格低、来源广、易操作、设备简单等优点,这使得其在实验室研究中被广泛采用。液相法分为溶胶-凝胶法、胶溶法、沉淀法、水热合成法和微乳液法等。3固相法固相法是依靠机械力的作用对固体材料进行研磨粉碎,通过固相到固相的变化来制备TiO2粉体,具有工艺简单,成本低,产率高,可大批量生产等优点[19],但早期存在难制得1μm以下的超细粉体,过程易引入杂质等缺点,限制了该法的发展。近年来随着机械工艺的改进,固相法在制备纳米材料领域逐渐引起了大家的关注。纵观国外纳米TiO2的生产,存在着以下特点:生产原料主要为四氯化钛、硫酸氧钛,生产方法主要有气相法和液相法,气相法主要有以四氯化钛为原料的氢氧火焰水解法,而液相法主要是以四氯化钛和硫酸氧钛为原料的化学沉淀法,且多数生产厂家为钛白粉生产厂,充分利用了原有氯化法和硫酸法生产装置的中间产物、生产技术、公用工程和生产管理方面的经验。总之,纳米TiO2因其具有的特殊的物理、化学性质及其广阔的应用前景,必将拥有巨大的市场需求。尽管在我国纳米TiO2的市场刚刚形成,但是随着纳米产品的普及以及人们消费观念的改变,以及纳米技术和对纳米TiO2产品应用的不断深入、市场的不断规范和发展,纳米TiO2必将迎来广阔的市场发展空间并带来巨大的社会和经济效益。二、课题预期目标及主要工作(设计思想、拟采用的方法及手段)(一)预期目标1、撰写毕业论文2、得到二氧化钛试验产品(二)主要工作该设计制备过程是将四氯化钛加入到盐酸溶液中,得到四氯化钛的盐酸溶液;然后将四氯化钛的盐酸溶液加入到碱性物质的水溶液中,控制体系的PH值为7-8,生成白色的氢氧化钛沉淀,过滤,清洗,得到沉淀产物氢氧化钛;再将其转化为有机盐,之后控制煅烧温度及时间得到锐钛型型纳米二氧化钛。本设计涉及溶液的配制与浓度标定、沉淀反应合成、过滤、洗涤、煅烧、分析、表征。训练学生应用化学基本理论进行化学分析、化学合成、化学实验的能力。主要研究内容包括:TiCl4溶液的配制与标定;碱性溶液的配制;沉淀反应合成;过滤、清洗、干燥、煅烧与分析表征。具备实验场所,购买相关药品和器皿;外协分析。(三)主要实验流程:1.步骤钛源(100ml/组)→加到盐酸溶液得到四氯化钛的盐酸溶液,其中四氯化钛为溶质,盐酸为溶剂,得到溶液的浓度为:1mol/L。(原理:四氯化钛遇到水会剧烈水解,加到盐酸溶液中是为了降低反应的剧烈程度,Ticl4+H2O↔Ti(OH)4+Hcl,加入盐酸反应逆向进行,从而减少四氯化钛的水解程度。)→加入碱性物质氨水水解生成氢氧化钛。(若不加碱性物质会使生物颗粒不均一,而且得到的颗粒非常细而无法结晶和过滤,加碱性物质相当于加成核剂,其反应原理: Ticl4+H2O↔Ti(OH)4+Hcl;Ti(OH)4↔Ti4++4OH-,若使Ti4+完全沉淀需要加OH-促进反应反向进行生成沉淀。其浓度可根据氢氧化钛的离子积Ksp=[ Ti4+][ OH-]4来计算,当使氢氧化钛完全沉淀时Ti4+浓度小于或等于10-5mol/dm-3,从而计算出需要加入OH-的浓度,可以确定加入氨水的量。)→洗涤和过滤(加三遍酒精和三遍纯净水交替洗涤。原因:生成Ti(OH)4的溶液中含有大量的cl-和NH4+,结晶后的氯化铵也易在水中溶解,用水和酒精能够清洗掉。)→用硝酸银滴定滤液,检测氯离子是否清洗干。2.实验具体条件(1)溶解四氯化钛所用的盐酸溶液的摩尔浓度为3mol/L。调节pH所用的碱性物质为氨水,氨水与钛的质量比初定为。过滤时先用酒精再用清水交替清洗三遍。煅烧:在600摄氏度下煅烧两个小时得到产品锐钛型型纳米为氧化钛。(2)仪器 100mL烧杯、500mL烧杯、滴管、玻璃棒、移液管、光催化反应器、500mL 容量瓶、25mL容量瓶、研钵、瓷坩埚、马弗炉、烘箱、天平、磁力搅拌器、离心机、722型分光光度计、紫外可见分光光度计、X射线衍射仪、透射电镜。(3)药品钛源(四氯化钛)、盐酸、氨水酒精、硝酸银、有机酸。3.本实验的侧重点是对所用钛源(四氯化钛)提纯后的纯度分析。由XRD来分析样品的晶型与颗粒大小;由光催化实验来确定所制备纳米二氧化钛的催化性能,从而确定出最为合适的制备方法。最后对该制备方法进行差热分析,并对所制备的样品进行透射电镜分析,从而可以深入理解该方法最为优良的原因三、预计设计过程中可能遇到的问题以及解决的方法和措施1.有机酸的选取及其浓度的确定是比较关键的一项,在这里我初步将其定为甲酸,而对于浓度的选取还需在试验中进一步完善2、四氯化钛被氧化。在隔绝空气的条件下将四氯化钛加到盐酸溶液中,可以采用注射器抽取四氯化钛溶液加到盐酸中。3、四氯化钛与盐酸的混合液pH控制不合理。采用不同的碱性试剂来调节。如用氢氧化钠、氨水、碳酸钠或有机碱性试剂。4、得到的氢氧化钛沉淀量较少或得不到沉淀。从新调节pH值,或改变陈化条件观察得到白色沉淀量的变化。5、得到的氢氧化钛沉淀过滤非常困难。采用不同的碱性试剂,或与碱性试剂反应时的温度或者搅拌速度。6、得到锐钛型型二氧化钛粉体不符合产品规格要求。调节控制煅烧温度,和与碱反应的温度,或者增加清洗过滤沉淀的次数。四、进度安排第一周:阅读文献确定实验思路,列出所用器皿和药品明细。第二周:撰写开题报告,翻译英文资料(不少于3000字)。第三~五周:根据实验思路分析资料,进行初步试验,对实验溶液进行配置和标定。第六~十周:制备锐钛型型纳米二氧化钛,对制备工艺和影响因素进行研究和调整。第十一周:准备论文所需要的材料,撰写毕业论文。第十二周:答辩。五、参考文献(1) 钛乙醇盐合成以其水解制备微分的研究,功能材料。, , 278-281(2) 纳米二氧化钛的制备及其表征,纳米技术与精密工程。, (2005), 19-21(3) 溶胶凝胶法合成多孔二氧化钛粉体及光催化性能的研究,化工技术和开发,, (2011), 13-15(4) 液相水解法制备纳米二氧化钛粉体及其工艺研究,应用化工,, (2007), 1-3(5) 相转移法制备二氧化钛粉体的工艺研究,沈阳工程学院院报,, (2012), 362-364(6)张立德,牟季美. 纳米材料和纳米结构[M] . 北京:科学出版社,2001六、指导教师意见指导教师签名:年 月 日

森态美TPX光触媒TPX系列产品是日本森态美窑业技术研究中心研究开发的在可视光条件下具有高性能分解反应的专利产品。在早期的光触媒TiO2水溶液的实际应用中发现,水溶液中的TiO2在与有机材的结合中会产生氧化分解反应,在一周左右会破坏基材并产生脱落,失去光触媒技术的应用效果,给消费者造成损失。于是现在,日本产业综合技术研究所,研制出新一代的高性能的TiO2光触媒水溶液,在二氧化钛纳米粒子表面加工上不具有活性反应的磷灰石等陶瓷成分,作为日本光触媒的高科技含量的核心技术。制造出混合型的复合二氧化钛光触媒水溶液,可以直接喷植在有机基材的表面,喷植在建筑物外壁有机涂料表面,其耐酸性,耐风化,防裂变,防褪色,温度越高其氧化分解反应越强,并具有永久性效果。在保持建筑物价值防污自洁,美化城市环境,净化大气污染方面得到了广泛的应用。

1、溶胶本身就是纳米材料均匀分散在液相里,即,第一步你通过前驱体制备的溶胶就是纳米级的,不过正常情况下都不是真正的二氧化钛,而是水合物;2、凝胶后,只是颗粒之间搭接,仍然是纳米级二氧化钛水合物;3、想得到二氧化钛,正常都需要至少400度的温度煅烧,但在助剂不合适的情况下,粒子之间被烧结,最终得到的不一定是纳米材料。4、希望对楼主有用。

一般来说,溶胶中的颗粒就是纳米级的,胶体嘛。溶胶凝胶(sol-gel)法一般不会改变颗粒的尺度的,所以依旧是纳米级。

石墨烯灭菌毕业论文

天才总是那么瞩目,总是被大家仰望着敬佩着,虽然如此,我并不羡慕天才。

一、天才的要承担的责任往往更加重大

天才有着超越常人的智商,所以天才们都是十分特别的,所以他们总不可能和常人做一样的事情,不可能和普通人从事一样的工作,他们身上承担的责任往往更加重要,比如他们可能要承担改变这个社会的责任,有着改变国家的命运的任务,这些对于我来说实在是遥不可及的事情,我也没有办法想象当自己需要承担这一切的时候会怎么样,应该会失去很多快乐吧!所以,我敬佩天才们,感谢他们的智慧带给了这个时代很多我们普通人想都不敢想的东西,但是我不羡慕他们。二、我十分珍惜现在的拥有的一切

虽然我的智商很一般,完全说不上天才型选手,但是一步一个脚印踏踏实实一路走过来,也从小学读到了大学,身边也有很多支持自己的朋友,我十分珍惜现在所拥有的一切。但是,天才总是孤独的吧!毕竟这个世界上的天才十分稀少,所以和天才有共同语言的人真的很少,天才们只能一个人站在金字塔的,苦心钻研,默默忍受孤独。天才们表面上十分风光,好像毫不费力就可以得到自己想要的一切,但是背后也有很多不为人知的坚信苦楚吧!我是一个十分害怕孤单一人的人,我没有办法离开自己的朋友,一个人一头扎进枯燥的学术研究,所以我并不羡慕天才。三、这个世界需要不仅需要天才也需要普通人

很多父母都希望自己的小孩是天才,这世界上大概没有人不喜欢天才吧!但是既然上天已经决定了不让我以天才的身份出生,没有天才那聪明绝顶的智商,我也要像罗翔老师说的那样,要演好上天给我的剧本,演好属于我的剧本。我始终相信,天生我材必有用,这个世界上不仅需要天才,平凡的人身上的优秀品质也是十分可贵的,清洁工人,食堂阿姨,外卖小哥,菜市场摊主等等,他们都是平凡的人,但是都是社会正常运行不可或缺的人,我也是这样的人,在属于自己的领域兢兢业业,大家都是都是努力生活的人,都是对自己的人生负责的人,并没有闲工夫羡慕天才。你羡慕天才吗?还是和我一样只想当一个普通人,欢迎分享!

现在也有很大的成绩,曾经美国给他绿卡被拒绝,他称学成之后就会回国,也希望他能为国家做贡献,他的精神是值得我们敬佩的。

非常好,如今已经全身心得投入了科研工作,也为中国做出了很大贡献,也说明他是一个非常爱国得中国天才。

2018《自然》杂志年度十大人物评选出炉,居十大人物之首的是22岁中国天才科学家曹原。2018年3月5日,《自然》背靠背发布了两篇以曹原为第一作者关于“魔角”石墨烯的重磅论文。这名中科大少年班的毕业生、美国麻省理工学院的博士生发现当两层平行石墨烯堆成约°的微妙角度,就会产生神奇的超导效应。这一发现轰动国际学界,直接开辟了凝聚态物理的一块新领域。如今,正有无数学者试图重复、拓展他的研究。《自然》杂志是全球最顶尖的科学杂志,能在自然发布论文,是很多国内外科学家一生的梦想,而这次2018的年度评选把这位出生在1995年的少年科学家曹原的发现放在年度论文之首,足以想见科学界对这次发现的重视程度。这期《自然》的封面就是以“魔角”石墨烯的概念为原型设计的。“魔角”石墨烯研究最让人兴奋的地方之一,是它对高温超导体的理论意义,虽然它也是在接近绝对0度的状态下做的,但它以极为简单的形式模拟了高温超导体的特性。对高温超导体的研究有里程碑式的意义。高温超导体一般是指超导的临界温度比液氮温度(零下196度)要高的物体,相对的,超导临界温度从绝对0度到零下196度之间的物体,是低温超导体。人们现在对低温超导体的研究比较清楚了,但对高温超导体的超导物理原理以及相关的凝聚态物理,仍然是物理学中不为人知的地带。而“魔角”石墨烯的研究,可能打破这种现状,成为常温超导体的研究的里程碑。1911年荷兰科学家卡末林发现了汞的超导电性,从而发现超导现象,仅仅两年后的1913年就获得了诺贝尔奖。并成为低温物理学的奠基人。“魔角”石墨烯的研究,再次证明了在超导体领域的任何研究,都可能牵动整个自然科学的神经。那常温超导体到底有什么意义呢?简单来说,凡是用到电的地方,它都有划时代的意义,而当超导体实现常温超导,他的应用注意渗入到生活的方方面面。指尖科技说和你一起盘点: 1.超导电器。超导体没有电阻,会极大推动现有电子技术的使用。我们日常的应用电子技术,都是基于有电阻的电路,由于电阻产生的电的消耗是极为巨大的,人们为了电阻产生的散热问题,投入了无数资源。电脑会变成超导计算机,想象你的电脑没有电阻,不再需要散热,电脑可以更轻薄。使用超导晶体管的集成电路,电脑的速度直接可以有几十几百倍的提升;用电的效率更高,家里的用电量就直接降低了,灯泡却更亮了,电动车跑的更快了,电器的使用变得更加方便,更多的精细电元件可以使用到我们的生活中。据说现在已经有很多公司在研究超导计算机和量子计算机。2.量子计算机。现在已经被研制出来的两台量子计算机,一台是基于电磁激光技术,一台是基于超导微波技术。其中IBM公司的基于超导微波技术的量子计算机已经让人们看到了超导体在计算机领域的可行性。3.超导发电。目前,超导发电机有两种含义。一种含义是将普通发电机的铜绕组换成超导体绕组,以提高电流密度和磁场强度,具有发电容量大、体积小、重量轻、电抗小、效率高的优势。 另一种含义是指超导磁流体发电机,磁流体发电机具有效率高、发电容量大等优点,但传统磁体在发电过程中会产生很大的损耗,而超导磁体自身损耗小,可以弥补这一不足。发电损失降到最低,也可能会导致放发电变得更加容易,可能我们身边很多能源都可以用做发电元件提供日常用电,如太阳能、运动能。4.超导输电:由超导材料制作的超导电线和超导变压器,可以把电力几乎无损耗地输送给用户。据统计,用铜或铝导线输电,约有15%的电能损耗在输电线路上,光是在中国,每年的电力损失即达1000多亿度。若改为超导输电,节省的电能相当于新建数十个大型发电厂。5.磁悬浮交通。超导磁悬浮列车:利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。磁悬浮汽车:这种汽车据说已经被发明出来,但如果超导技术成熟,即可进入实用阶段。磁悬浮轮胎,有报道说磁悬浮轮胎的原型已经被一位中国小伙发明,具有现在轮胎所不具有的高性能特性。还有磁悬浮滑板,可能会代替我们日常行走。6.磁悬浮机械。把磁悬浮特性应用到在机械研发上,可使重要元件没有摩擦力,机械的制动效率和速度会大大增加,能够做到现有机械做不到的很多功能。7.磁悬浮建筑。磁悬浮技术可以让人类更加高效的利用空间,也许将来人类生活在空中就不再是梦想。当生活用品用上磁悬浮的技术,我们的生活会变得无比的便利。8.超导医疗。据说医疗行业现在已经有了超导磁力共振仪,可以对很多重要疾病进行诊断。9.核聚变反应堆“磁封闭体”:核聚变反应时,内部温度高达1亿~2亿摄氏度,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。由于核聚变原料的广泛性,能源问题有望就被彻底解决。即使远距离的太空旅行也会变得有可能。10.超导重力模拟。太空飞船中是没有重力的,这导致太空人在太空船中的运动受到很大限制,如果可以在太空船上也如履平地,那对太空人的作业甚至对在太空船上生活,都有非常重要的意义。通过常温超导体的作用力,可能可以模拟这种重力作用。可以遇见一旦常温超导体技术成熟,肯定会有一场超级技术革命,从此整个世界都会改变一个模样。欢迎关注指尖科技说(公众号),如果有其他设想也欢迎您留言评论。

流化床论文题目石墨烯

关于中小型循环流化床锅炉飞灰含碳量偏高问题的讨论论文

摘要:本文介绍了循环流化床锅炉的发展历史,并针对现阶段中小型循环流化床锅炉运行中突出的飞灰含碳量高的问题展开讨论,提出一些降低飞灰含碳量的措施。

关 键 字:中小型循环流化床锅炉 飞灰含碳量偏高

0 循环流化床锅炉发展概况

循环流化床燃烧技术是国内外公认的一种洁净煤燃烧技术。循环流化床锅炉具有煤种适应性广、燃烧效率高、环境性能好、符合调节范围大和灰渣综合利用等优点,近十年来在工业锅炉、电站锅炉、旧锅炉改造和燃烧各种固体废弃物等领域得到迅速的发展。我国是以煤为主要一次能源的国家,燃用的煤种最为齐全。近十几年来,我国循环流化床技术发展迅速。

1981年国家计委下达了“煤的流化床燃烧技术研究”课题,清华大学与中国科学院工程热物理研究所分别率先开展了循环流化床燃烧技术的研究,标志着我国循环流化床锅炉的研究和产品开发技术正式启动。到2005年4月为止,我国运行的循环流化床锅炉CFBB已超过100台,已经投运的最大机组是安装在四川内江、从奥斯龙公司进口的410t/h(100WM)循环流化床高压电站锅炉,由于运行台数较少,各方面的经验还有待积累。

另外,我国正在引进一台Alstom公司的1025t/h的常压循环流化床锅炉及相应的关键配套设备,在四川白马电厂建立300MW循环流化床示范工程;国家电力公司热工研究院夜设计了300MW循环流化床锅炉方案标志着我国循环流化床锅炉将朝着大型化方向发展。现在,我国已成为世界上CFB机组数量最多、总装机容量最大和发展速度最快的国家。

1 循环流化床锅炉目前存在的问题

但是这种超常规的循环流化床锅炉的发展速度使循环流化床锅炉运行出现了一些问题。诸如:①炉膛、分离器以及回送装置及其之间的膨胀和密封问题。特别是锅炉经过一段时间运行后,由于选型不当和材质不合格,加上锅炉的频繁起停,导致一些部位出现颗粒向炉外泄漏现象。②由于设计和施工工艺不当导致的磨损问题。炉膛、分离器以及返料装置内由于大量颗粒的循环流动,容易出现材料的磨损、破坏问题。一些施工单位对循环流化床内某些局部部位处理不当,出现凸台、接缝等,导致从这些部位开始磨损,然后磨损扩大,导致炉墙损坏。③炉膛温度偏高以及石灰石选择不合理导致的脱硫效率降低问题。早期设计及运行的循环流化床锅炉片面追求锅炉出力,对脱硫问题重视不够,炉膛温度居高不下,石灰石种类和粒度的选择没有经过仔细的试验研究,导致现有循环流化床锅炉脱硫效率不高,许多锅炉脱硫系统没有投入运行,缺乏实践经验的积累。④灰渣综合利用率低的问题。一般认为,循环流化床锅炉的灰渣利于综合利用,而且利用价值很高,但由于各种原因,我国循环流化床锅炉的灰渣未能得到充分利用,或者只进行了一些低值,需要进一步做工作。⑤飞灰含碳量高的问题。这些问题的存在影响了循环流化床锅炉的连续、安全、经济运行,还带来了维修工作量大、运行费用高等问题。就中小型循环流化床锅炉来说,飞灰含碳量高是一个比较普遍的问题。

2 飞灰含碳量的影响因素及应采取的措施

影响循环流化床锅炉飞灰含碳量的主要因素如下:

1、 燃料特性的影响。循环流化床锅炉煤种适应性广,但对于已经设计成型的循环流化床锅炉,只能燃烧特定的煤种(即设计煤种)时才能达到较高的燃烧效率。由于煤的结构特性、挥发份含量、发热量、水分、灰份的影响,循环流化床锅炉的燃烧效率有很大差别。我国主要按煤的干燥无灰基挥发分含量对煤进行分类,按照挥发分含量由低到高的顺序将煤分成无烟煤、贫煤、烟煤和褐煤等。挥发分含量的大小实际上反映了煤形成过程中碳化程度的高低,与煤的年龄密切相关。不同煤种本身的物理组成和化学特性决定了它们在燃烧后的飞灰具有不同的形态和特性。东南大学收集了山西大同烟煤、广西合山劣质烟煤和福建龙岩无烟煤等几种典型煤种在电站锅炉中燃烧生成的飞灰,制成样品,用扫描电镜进行了微结构分析。收到基灰发分含量为10%的广西合山劣质烟煤所生成的飞灰大部分是较密实的灰块,表面不光滑,没有熔融的玻璃体形态存在,大部分粒子的孔隙率都较小,仅有少数球状空心煤胞出现,但孔隙率也不大,壁面较厚,表面粗糙。该飞灰形态表明,该煤种燃尽率不高,取样分析其飞灰含碳量为10%左右。福建龙岩无烟煤挥发分含量较低,只有4%左右,属典型难燃煤种,表现为着火延迟、燃尽困难。虽然发热值高,燃烧时火焰温度可达1500℃以上,但燃尽率低,生成的球状煤胞中绝大多数为无孔或少孔,虽然也出现多孔薄壁球状煤胞,但数量极少。无孔或少孔的球状煤胞表面很光滑,有熔融的玻璃体形态存在,对燃尽是极为不利的。从煤粉锅炉种采取飞灰样,分析其含碳量在10%以上。山西大同烟煤飞灰中虽然也发现有极少部分少孔的密实球状煤胞,但绝大部分为多孔的疏松空心煤胞和骨质状疏松结构煤胞,这两种煤胞的孔隙率很大,这样就形成了很大的反映表面积,对煤粉的燃尽十分有利,因而这种烟煤的飞灰含碳量很低。

2、 入炉煤的粒径和水分的影响。颗粒过大,一方面床层流化不好,另一方面,碳粒总表面积减少,煤粒的扩散阻力大,导致反应面积小,延长了颗粒燃尽的时间,颗粒中心的碳粒无法燃尽而出现黑芯,降低了燃烧效率,同时造成循环灰量不足,稀相区燃烧不充分,出力下降。另外,大块沉积,流化不畅,局部结焦的可能性增大,排渣困难。颗粒过小,床层膨胀高,易燃烧,但是易造成烟气夹带,不能被分离器捕捉分离而逃逸出去的细颗粒多,对燃尽不利,飞灰含碳量高。通过实验发现:颗粒太小,由于煤粉在炉内停留时间过短,燃不尽,飞灰含碳量就大。相对而言,燃用优质煤,煤颗粒可粗些;燃用劣质煤,煤颗粒要细些。所以对于不同的煤质要调整二级破碎机的破碎能力来调整煤的粒度。煤中水分过大不仅降低床温,同时易造成输煤系统的堵塞,故对于水分高的煤进行掺烧。

3、 过量空气系数的影响。一次风作用是保证锅炉密相区料层的流化与燃烧,二次风则是补充密相区出口和稀相区的'氧浓度。调整好一二次风的配比,有效地降低飞灰、灰渣含碳量,是保证锅炉经济燃烧的主要手段。运行中适当提高过量空气系数,增加燃烧区的氧浓度,有助于提高燃烧效率。但炉膛出口过量空气系数超过一定数值,将造成床温下降,炉膛温度下降,总燃烧效率将下降,风机电耗增大。所以在符合变化不大时,一次风量尽量稳定在一个较合适的数值上,少作调整,主要靠调整二次风比例来控制密相区出口和稀相区的氧浓度。一二次风的配比,与锅炉负荷、煤种等有关,通过进行燃烧调整试验可建立锅炉不同负荷与一二次风量配比的经验曲线或表格,供运行调整时参考。

4、 燃烧温度的影响。和煤粉锅炉炉膛温度高达1400~1500℃相比,循环流化床运行温度通常控制在850~900℃之间,属低温燃烧,在此条件下煤粒的本正燃烧速率低得多,加上流化床内颗粒粒径比煤粉炉内煤粉粗得多,所需的燃尽时间长得多。提高燃烧温度,飞灰含碳量低;相反,燃烧温度低,飞灰含碳量高。

5、 分离器分离效率的影响。分离器分离效率高,切割粒径小,飞灰含碳量低;相反,分离器分离效率低,切割粒径大,飞灰含碳量高。经过20年的发展,目前我国循环流化床锅炉使用的高效分离器有三种:上排气高温旋风分离器、下排气中温旋风分离器和水冷方形分离器。

6、 飞灰再循环倍率的影响。飞灰再循环的合理选取要根据锅炉炉型、锅炉容量大小、对受热面和耐火内衬的磨损、燃煤种类、脱硫剂的利用率和负荷调节范围来确定。

7、 锅炉蒸发量的影响。锅炉蒸发量大,相应的燃烧室温度高,一次通过燃烧室燃烧的粒子(分离器收集不下来的粒子)燃烧时间长,燃尽度较高,飞灰含碳量低;相反,飞灰含碳量高。

8、 除尘灰再循环燃烧的影响。对难燃尽的无烟煤,采取分离灰循环燃烧之后,飞灰含碳量仍比较高。为了进一步降低飞灰含碳量,一个比较有效的措施是采用除尘灰再循环燃烧。德国一台循环流化床锅炉,当分离灰再循环倍率为10~15时,飞灰含碳量仍有23%左右。为了降低飞灰含碳量,采用了除尘灰再循环燃烧。当除尘灰再循环倍率为时,飞灰含碳量降低到了10%左右;除尘灰再循环倍率为时,飞灰含碳量降低到了4%。

3 结论

降低飞灰含碳量的措施有多种,应根据实际情况选择最经济最实用的措施。我厂四台循环流化床锅炉也存在飞灰含碳量高的问题,我们会借鉴前人的经验,尝试一些措施以降低飞灰含碳量。

参考文献:

[1] 路春美等,循环流化床锅炉设备与运行[M],中国电力出版社,2003

[2] 刘德昌等,循环流化床锅炉运行及事故处理[M],中国电力出版社,2006

你应该先定题啊,这样范围太尴尬反而不好写,因为涉及太多就讲不清楚了,这样会很难写好的,我也是学会计的,今年毕业,现在正在写,写的头痛,哎,你的参考文献准备好了没?我们当时是在学校里面下载的免费论文,现在不在学校我想很难再找到免费的好论文了。大多数同学,多是网上荡荡,再惨一点自己的东西,你现在没有文献很难啊

飞灰含碳量的影响因素及应采取的措施 影响循环流化床锅炉飞灰含碳量的主要因素如下: 1、 燃料特性的影响。循环流化床锅炉煤种适应性广,但对于已经设计成型的循环流化床锅炉,只能燃烧特定的煤种(即设计煤种)时才能达到较高的燃烧效率。由于煤的结构特性、挥发份含量、发热量、水分、灰份的影响,循环流化床锅炉的燃烧效率有很大差别。我国主要按煤的干燥无灰基挥发分含量对煤进行分类,按照挥发分含量由低到高的顺序将煤分成无烟煤、贫煤、烟煤和褐煤等。挥发分含量的大小实际上反映了煤形成过程中碳化程度的高低,与煤的年龄密切相关。不同煤种本身的物理组成和化学特性决定了它们在燃烧后的飞灰具有不同的形态和特性。东南大学收集了山西大同烟煤、广西合山劣质烟煤和福建龙岩无烟煤等几种典型煤种在电站锅炉中燃烧生成的飞灰,制成样品,用扫描电镜进行了微结构分析。收到基灰发分含量为10%的广西合山劣质烟煤所生成的飞灰大部分是较密实的灰块,表面不光滑,没有熔融的玻璃体形态存在,大部分粒子的孔隙率都较小,仅有少数球状空心煤胞出现,但孔隙率也不大,壁面较厚,表面粗糙。该飞灰形态表明,该煤种燃尽率不高,取样分析其飞灰含碳量为10%左右。福建龙岩无烟煤挥发分含量较低,只有4%左右,属典型难燃煤种,表现为着火延迟、燃尽困难。虽然发热值高,燃烧时火焰温度可达1500℃以上,但燃尽率低,生成的球状煤胞中绝大多数为无孔或少孔,虽然也出现多孔薄壁球状煤胞,但数量极少。无孔或少孔的球状煤胞表面很光滑,有熔融的玻璃体形态存在,对燃尽是极为不利的。从煤粉锅炉种采取飞灰样,分析其含碳量在10%以上。山西大同烟煤飞灰中虽然也发现有极少部分少孔的密实球状煤胞,但绝大部分为多孔的疏松空心煤胞和骨质状疏松结构煤胞,这两种煤胞的孔隙率很大,这样就形成了很大的反映表面积,对煤粉的燃尽十分有利,因而这种烟煤的飞灰含碳量很低。 2、 入炉煤的粒径和水分的影响。颗粒过大,一方面床层流化不好,另一方面,碳粒总表面积减少,煤粒的扩散阻力大,导致反应面积小,延长了颗粒燃尽的时间,颗粒中心的碳粒无法燃尽而出现黑芯,降低了燃烧效率,同时造成循环灰量不足,稀相区燃烧不充分,出力下降。另外,大块沉积,流化不畅,局部结焦的可能性增大,排渣困难。颗粒过小,床层膨胀高,易燃烧,但是易造成烟气夹带,不能被分离器捕捉分离而逃逸出去的细颗粒多,对燃尽不利,飞灰含碳量高。通过实验发现:颗粒太小,由于煤粉在炉内停留时间过短,燃不尽,飞灰含碳量就大。相对而言,燃用优质煤,煤颗粒可粗些;燃用劣质煤,煤颗粒要细些。所以对于不同的煤质要调整二级破碎机的破碎能力来调整煤的粒度。煤中水分过大不仅降低床温,同时易造成输煤系统的堵塞,故对于水分高的煤进行掺烧。 3、 过量空气系数的影响。一次风作用是保证锅炉密相区料层的流化与燃烧,二次风则是补充密相区出口和稀相区的氧浓度。调整好一二次风的配比,有效地降低飞灰、灰渣含碳量,是保证锅炉经济燃烧的主要手段。运行中适当提高过量空气系数,增加燃烧区的氧浓度,有助于提高燃烧效率。但炉膛出口过量空气系数超过一定数值,将造成床温下降,炉膛温度下降,总燃烧效率将下降,风机电耗增大。所以在符合变化不大时,一次风量尽量稳定在一个较合适的数值上,少作调整,主要靠调整二次风比例来控制密相区出口和稀相区的氧浓度。一二次风的配比,与锅炉负荷、煤种等有关,通过进行燃烧调整试验可建立锅炉不同负荷与一二次风量配比的经验曲线或表格,供运行调整时参考。 4、 燃烧温度的影响。和煤粉锅炉炉膛温度高达1400~1500℃相比,循环流化床运行温度通常控制在850~900℃之间,属低温燃烧,在此条件下煤粒的本正燃烧速率低得多,加上流化床内颗粒粒径比煤粉炉内煤粉粗得多,所需的燃尽时间长得多。提高燃烧温度,飞灰含碳量低;相反,燃烧温度低,飞灰含碳量高。5、 分离器分离效率的影响。分离器分离效率高,切割粒径小,飞灰含碳量低;相反,分离器分离效率低,切割粒径大,飞灰含碳量高。经过20年的发展,目前我国循环流化床锅炉使用的高效分离器有三种:上排气高温旋风分离器、下排气中温旋风分离器和水冷方形分离器。 6、 飞灰再循环倍率的影响。飞灰再循环的合理选取要根据锅炉炉型、锅炉容量大小、对受热面和耐火内衬的磨损、燃煤种类、脱硫剂的利用率和负荷调节范围来确定。 7、 锅炉蒸发量的影响。锅炉蒸发量大,相应的燃烧室温度高,一次通过燃烧室燃烧的粒子(分离器收集不下来的粒子)燃烧时间长,燃尽度较高,飞灰含碳量低;相反,飞灰含碳量高。 8、 除尘灰再循环燃烧的影响。对难燃尽的无烟煤,采取分离灰循环燃烧之后,飞灰含碳量仍比较高。为了进一步降低飞灰含碳量,一个比较有效的措施是采用除尘灰再循环燃烧。德国一台循环流化床锅炉,当分离灰再循环倍率为10~15时,飞灰含碳量仍有23%左右。为了降低飞灰含碳量,采用了除尘灰再循环燃烧。当除尘灰再循环倍率为时,飞灰含碳量降低到了10%左右;除尘灰再循环倍率为时,飞灰含碳量降低到了4%。 3 结论 降低飞灰含碳量的措施有多种,应根据实际情况选择最经济最实用的措施。我厂四台循环流化床锅炉也存在飞灰含碳量高的问题,我们会借鉴前人的经验,尝试一些措施以降低飞灰含碳量。另外你可以去学校图书馆下载以下论文:《循环流化床锅炉飞灰特性研究》作 者: 原永涛 杨倩 齐立强 YUAN Yong-tao YANG Qian QI Li-qiang 作者单位: 华北电力大学,河北,保定,071003 刊 名: 锅炉技术 PKU 英文刊名: BOILER TECHNOLOGY 年,卷(期): 2006 37(3)会议论文《 循环流化床锅炉飞灰碳损失研究 》海峡两岸第二届热电联产汽电共生学术交流会2002,作者黎永.YamY Lee卿山.蒋吉军.王华 降低循环流化床锅炉飞灰含碳量的因素分析 [期刊论文] -煤炭转化2004(2)循环流化床锅炉飞灰碳损失研究��黎永1,岳光溪1,吕俊复1,Yam ,Baldur Eliasson2�(1.清华大学热能工程系,北京100084; Change Dept.,ABB Corporate Research Ltd.,Switzerland)��摘 要 针对中国5台燃烧硬煤的CFB锅炉的飞灰含碳量进行了详细研究,全面分析了煤质、分离器及运行条件对飞灰含碳量的影响,并通过一系列的现场热态测试和实验室实验对CFB锅炉碳燃尽机理进行了研究。研究发现焦碳燃烧过程中发生的爆裂、磨损等行为与煤种有关,对CFB锅炉飞灰碳燃尽有很大影响。在CFB锅炉燃烧过程中焦碳反应性会降低,那些原煤变质程度低、粒径较大的焦碳颗粒的反应性降低尤为明显。研究还发现,炉膛内的中心区域气固混和不均匀会大大增加飞灰含碳量。最后提出了如何减少飞灰碳损失的一些建议。 关键词 循环流化床锅炉飞灰含碳量分离器��1前言�� 循环流化床技术由于其煤种适应性和在低成本污染物排放控制等优点,已成为很有潜力的一种洁净煤技术。中国早在上个世纪八十年代即已开始发展CFB锅炉,至今已有超过100多台CFB锅炉运行。绝大多数小型CFB锅炉(35~130t/h)采用中国自己的技术,超过220t/h的CFB锅炉则是引进国外技术。一般认为,CFB锅炉具有很高的燃烧效率,但在中国,许多燃烧硬煤如烟煤和无烟煤以及废弃物等的CFB锅炉的实际飞灰含碳量很高,大大超过预测和设计值〔11〕。高飞灰含碳量使得CFB锅炉的市场竞争力下降。另外,锅炉飞灰可用作建筑材料,部分替代水泥或用于制造水泥,这是飞灰最具经济价值的应用。飞灰含碳量过高将限制其在水泥和建筑行业的应用〔9〕。含碳量很高的飞灰曾被用作燃料来制砖。但是这种季节性的砖生产只能部分消化源源不断地从CFB锅炉中排出的高含碳飞灰,并且近年来砖生产迅速减缩并被新建材替代。另一方面,飞灰填埋成本也在上长。因此处理CFB锅炉飞灰的最好办法是减少含碳量,使得建筑和水泥工业能够接受。�2部分中国CFB锅炉飞灰含碳量分析��尽管一台CFB锅炉可被设计用于燃烧几乎所有不同类型的固体燃料,但实际运行的CFB锅炉的飞灰含碳量远没有所设想的低。下面表1列举的5台实际运行锅炉的飞灰含碳量数据和相应运行工况,锅炉燃用煤种性质如表2所示。�3煤种和飞灰含碳量关系 表1的数据清晰地表明飞灰含碳量与煤质强烈相关。煤A为褐煤,煤B为无烟煤,煤C、煤D和煤E为低变质程烟煤。如果以干燥无灰基挥发分除以发热量所得的数值作为一个煤质指标,会发现飞灰含碳量和煤质之间明显的相关关系(如图1所示)。所以不同煤种在CFB锅炉中的焦碳燃尽是大不相同的。尽管炉膛温度比其它锅炉高,燃用无烟煤的锅炉B的飞灰含碳量仍然是5台锅炉中最高的。实际上中国燃用无烟煤的CFB锅炉的飞灰含碳量普遍都很高。对于许多燃烧不同烟煤的CFB锅炉,即使煤发热量较高,排放飞灰减少,因而飞灰未燃碳损失减小,但飞灰含碳量相比煤粉炉仍要高出许多。只有在燃烧褐煤时,中国现运行的CFB锅炉的飞灰碳燃尽才比较彻底。上面得出的煤质指标较好地反应了煤燃烧活性,便于用来分析比较飞灰碳燃尽。���4分离器性能�� 从密相区扬析出来的细焦碳颗粒是飞灰未燃碳的主要来源,因此分离器性能是减少飞灰含碳量的关键。由于炉膛温度较低,在CFB锅炉焦碳的燃烧速率比煤粉炉低,细颗粒焦碳所需燃尽时间长,所以分离器的分级分离效率的数据十分重要。不幸的是,可得到的实际运行CFB锅炉的分离器分级分离效率数据非常少。尽管飞灰和循环灰的质量尺寸分布与煤成灰特性及灰颗粒磨耗有关,但仍可在一定程度上表征分离器性能。关于煤成灰特性和物料平衡的讨论请参见文献〔7〕。下面图2和图3给出了表1中5个锅炉的飞灰和循环灰的尺寸分布,这5台锅炉的分离器分级分离性能实际差别较小,几乎一样。循环灰的平均粒径约为110~180μm,而飞灰粒径总的说来不超过100μm,这与Thorpe的发表结果一致〔1〕,总之,CFB锅炉中大型分离器的切割粒径(50%)似乎很少低于100μm。���即使作出了许多努力来提高分离器的收集效率,在细小颗粒的收集上仍收效甚微〔9〕。飞灰回送是改善飞灰含碳量的一个有效方法。典型的例子是一台燃烧无烟煤的Alhstrom 100MW CFB锅炉,当将一级电气除尘器的飞灰百分之百地回送后,飞灰含碳量减少了约10%。然而对于许多中小型CFB锅炉,并不能都采取飞灰回送的办法,因为飞灰回送系统复杂且运行和维护费用较高。�5气固混和�� CFB锅炉运行时会有大量的固体颗粒从密相区扬析出来,炉膛内存留的物料对于气固混和有较大影响。为考察气固混和对于燃烧的影响,我们对一台锅炉的二次风位置以上的炉膛内氧浓度分布进行了测量〔3〕。被测试锅炉的炉膛长6米,宽3米,氧浓度测量探头从侧墙伸入炉膛内部〔4〕。测量结果如图4所示。同时还相应测量了炉膛内的固体颗粒浓度,结果如图5所示。在炉膛中心区域固体浓度小,而在近壁区域,固体浓度较高,这是因为沿壁面存在颗粒回落。出乎意料的是,炉膛中心区域的氧浓度接近于零,而富氧区域则靠近壁面。在二次风喷口以上不同高度的炉膛截面的测量结果均如此,这样我们在二次风口以上发现了一个位于炉膛中央的贫氧区域,如同一个空心芯(见图6)。这表明二次风的穿透浓度并没有达到炉膛中央,贫氧芯的存在显然使得炉膛中央的焦碳颗粒的燃尽变得困难。为了增强二次风的混和,提高了二次风的速度,结果飞灰含碳量明显减少(见图7)。��6CFB锅炉中的焦碳失活�� 对飞灰中的焦碳颗粒的研究表明,这些未燃尽细颗粒可根据其反应性大致分为两类,一类反应性相对较高甚至还有较多未析出挥发分,这类颗粒停留时间不长,可称为“年轻”颗粒。另一类恰好相反,挥发分基本已经析出,而反应性很低。对于“年轻”颗粒,提高分离器效率或者采用飞灰回送会是保障其燃尽的有效方法,对于第二类颗粒则不然,因为其反应性很低,即使被送回炉膛,会否燃尽仍成问题。值得探讨的是,为什么会出现这些低反应性的“惰性”颗粒呢?针对这个问题,做了一系列的实验,下面简要介绍。��很多研究发现煤热解过程中反应性会降低〔2,8〕。我们做了类似实验,结果同样发现反应性随着停留时间的增长而逐渐降低,在热解最初阶段反应性下降非常快,接下来下降速度减缓,最后达到由热处理温度决定的一个渐近值,温度越高,此渐近值越低(见图8)。图8中每一个点代表一个焦碳样品,是将原煤在900℃马弗炉中热解7分钟脱挥发分,然后在管式炉中进行不同停留时间和不同温度的热解所得到的。我们分析了实际循环流化床飞灰中第二类未燃尽焦碳颗粒,其反应性比实验室内相应温度条件(热解温度等于炉膛温度)下热解焦碳所下降达到的最低反应性(即图8中的反应性渐近值)还要低。Senneca还将其它研究者发表的类似结果进行了总结,将不同温度下焦碳反应性下降到渐近值所需时间简洁地表示在一张图上〔6〕。��在CFB锅炉燃烧温度下,比如说900℃,反应性下降至最低的有效热解时间是10~30分钟(因煤种而异)。炉膛给煤中的细小颗粒一般并不能停留这么久,所以飞灰中低反应性焦碳极有可能是来自于原煤形成的大颗粒焦碳。大颗粒焦碳在因爆裂、磨损达到可扬析的细小颗粒之前可能会停留较长时间。在炉内焦碳颗粒温度要比环境温度——床温高于50~200℃,焦碳因热处理引起的反应性下降实际不需要10~30分钟就会达到最低。综合这些因素,可以推断,飞灰中的“惰性”未燃尽颗粒极有可能是来自有较长停留时间的大焦碳颗粒,如果适当减小给煤中的大粒径颗粒的份额,就有可能降低飞灰含碳量,但这需要进一步确认。��7结论�� 锅炉在燃烧硬煤时的飞灰含碳量通常很高。� b.飞灰含碳量与煤种强烈相关,用干燥无灰基挥发分除以发热量所得的数值作为煤反应性指标是很方便实用的。� c.炉膛内的气固混和对焦碳燃尽十分重要。特别需要指出的是,二次风的刚性必需保证足够的穿透度,以避免出现炉膛上部中央出现贫氧中芯。� d.对分灰中的焦碳反应性的分析,并结合对热解过程中焦碳反应性变化的研究,发现在CFB锅炉中大颗粒焦碳可能明显失活,从而产出飞灰中反应性很低的“惰性”未燃尽颗粒,从而影响飞灰回送的效果。另一方面这提示了通过适当减小给煤的大颗粒的大粒径份额来减小飞灰含碳量的可能性。希望这些对你有用,(有些来自网页希望谨慎参考,最好自己去学校图电子书馆下论文)PS:你这个课题不算是新兴课题,现在已经有很多研究成果了,上你们学校图书馆的数据库随便搜一下就一大把(维普数据库,中国知网数据库,万方数据库,一般学校图书馆都买了权限的,学生可以免费查阅),只要看过10到15篇相关论文,你就基本上可以搞定了另外,你的毕业设计(姑且称为设计吧)本人觉得只有“ 输会系统 干除灰输送系统的管道布置 ”这个跟设计好像挺搭尬,至于“飞灰含量影响分析”这块就跟论文比较贴切(因为这些影响是结果性的论述,是要有实验根据的,是为论文(设计的话说白了像是空口说话,只根据某些既定的准则规律做预期,但是它并不是结果)),或者可以把它放在综述里面,而且“循环流化床锅炉的飞灰特性的分析”这个命题也比较像是论文命题,不太想设计呀去年偶滴设计就是“130t/h燃煤锅炉半干法烟气脱硫工程设计”偶水平一般,若有说的不当之处还请见谅

锅炉采用单锅筒,自然循环方式,总体上分为前部及尾部两个竖井。前部竖井为总吊结构,四周有膜式水冷壁组成。自下而上,依次为一次风室、浓相床、悬浮段、蒸发管、高温过热器、低温过热器及高温省煤器。尾部竖井采用支撑结构,由上而下布置低温省煤器及管式空气预热器。两竖井之间由立式旋风分离器相连通,分离器下部联接回送装置及灰冷却器。燃烧室及分离器内部均设有防磨内衬,前部竖井用敖管炉墙,外置金属护板,尾部竖井用轻型炉墙,由八根钢柱承受锅炉全部重量。 锅炉采用床下点火(油或煤气),分级燃烧,一次风率占50—60%飞灰循环为低倍率,中温分离灰渣排放采用干式,分别由水冷螺旋出渣机、灰冷却器及除尘器灰斗排出。炉膛是保证燃料充分燃烧的关键,采用湍流床,使得流化速度在—,并设计适当的炉膛截面,在炉膛膜式壁管上铺设薄内衬(高铝质砖),即使锅炉燃烧用不同燃料时,燃烧效率也可保持在98—99%以上。 分离器入口烟温在450度左右,旋风筒内径较小,结构简化,筒内仅需一层薄薄的防磨内衬(氮化硅砖)。其使用寿命较长。循环倍率为10—15左右。 循环灰输送系统主要由回料管、回送装置,溢流管及灰冷却器等几部分组成。 床温控制系统的调节过程是自动的。在整个负荷变化范围内始终保持浓相床床温860度的恒定值,这个值是最佳的脱硫温度。当自控制不投入时,靠手动也能维持恒定的温床。 保护环境,节约能源是各个国家长期发展首要考虑的问题,循环流化床锅炉正是基于这一点而发展起来,其高可靠性,高稳定性,高可利用率。最佳的环保特性以及广泛的燃料适应性,越来越受到广泛关注,完全适合我国国情及发展优势。

  • 索引序列
  • 石墨烯与二氧化钛毕业论文实验
  • 氧化石墨烯的制备研究论文
  • 二氧化钛毕业论文
  • 石墨烯灭菌毕业论文
  • 流化床论文题目石墨烯
  • 返回顶部