首页 > 学术期刊知识库 > 网络故障诊断毕业论文

网络故障诊断毕业论文

发布时间:

网络故障诊断毕业论文

我倒是有个现成的,今年职称评定时候写的。准备出多少子儿?

1绪论研究背景与研究目的意义中国互联网络信息中心(CNNIC,2018)发布了截至2018年12月的第43次中国互联网发展统计报告。根据该报告,截至2018年12月,中国互联网用户数量为亿,并且每年保持在5000多万增量。而且这种趋势将在未来几年继续保持。5G时代的来临将会加快促进互联网与其他产业融合,网络规模必然会进一步增大。传统的网络管理系统以分布式网络应用系统为基础,采用软件和硬件相结合的方式。SNMP协议是目前网络管理领域运用最为广泛的网络管理协议,它将从各类网络设备中获取数据方式进行了统一化,几乎所有的网络设备生产厂商都支持此协议。然而传统的基于SNMP的网络管理软件大多基于C/S架构,存在着扩展性和灵活性差,升级维护困难等缺点,对网为网络的管理带来了一定程度的不便。因此,基于三层的网管系统己经成为发展趋势,随着Web技术迅猛发展,诞生了以Web浏览器和服务器为核心,基于B/S ( Browser/Server)架构的“Web分布式网络管理系统”,它具有不依赖特定的客户端应用程序,跨平台,方便易用,支持分布式管理,并且可动态扩展和更新等优点。本文将重点研究基于BP故障诊断模型,实现了一种以接口故障为研究对象的智能网络管理系统模型,并以此为基础,设计与实现基于web的智能网络管理系统,不仅可以通过对网络数据实时监控,而且基于BP网络故障诊断模型可以诊断通信网中的接口故障,在一定程度上实现网络故障管理的自动化。该系统在保证网络设备提供稳定可靠的网络服务同时,也可以降低企业在维护网络设备上的成本。国内外研究现状网络设备管理是指对各种网络设备(如核心层、汇接层、接入层路由与交换设备、服务器和计算机)进行各种操作和相关配置,管理服务器(Manager)用来处理网络信息,配合管理服务器对网络信息处理并管理的实体被称为代理服务器(Agent),被管对象是指用于提供网络服务或使用网络服务等设备的全部资源信息,各种不同的被管对象构成了管理信息库。在实际的网络管理过程当中,管理服务器和代理服务器以及代理服务器和被管对象三种实体之间都是通过规范的网络管理协议来进行信息的交互(王鹤 2015)。相比国外的网络管理系统及产品,国内相应的网络管理系统和产品起步比较晚,但是随着互联网技术的发展网络管理软件发展势头迅猛,诞生了很多优秀的网络管理软件,这些软件已经广泛运用在我国网络管理领域。国外研究现状目前国外大型网络服务商都有与其产品相对应的网络管理系统。从最初步的C/S架构逐步过渡到现在的B/S架构。比较著名的:Cabletron系统公司的SPECTRUM,Cisco公司的CiscoWorks,HP公司的OpenView,Tivoli系统公司的TH NetView。这些网络管理产品均与自家产品相结合,实现了网络管理的全部功能,但是相对专业化的系统依旧采用C/S架构。NetView这款管理软件在网络管理领域最为流行。NetView可以通过分布式的方式实时监控网络运行数据,自动获取网络拓扑中的变化生成网络拓扑。另外,该系统具有强大的历史数据备份功能,方便管理员对历史数据统计管理。OpenView具有良好的兼容性,该软件集成了各个网络管理软件的优势,支持更多协议标准,异种网络管理能力十分强大。CiscoWorks是Cisco产品。该软件支持远程控制网络设备,管理员通过远程控制终端管理网络设备,提供了自动发现、网络数据可视化、远程配置设备和故障管理等功能。使用同一家产品可以更好的服务,因此CiscoWorks结合Cisco平台其他产品针对Cisco设备可以提供更加细致的服务。Cabletron的SPECTRUM是一个具有灵活性和扩展性的网络管理平台,它采用面向对象和人工智能的方法,可以管理多种对象实体,利用归纳模型检查不同的网络对象和事件,找到它们的共同点并归纳本质。同时,它也支持自动发现设备,并能分布式管理网络和设备数据。国内研究现状随着国内计算机发展迅猛,网络设备规模不断扩大,拓扑结构复杂性也随之日益增加,为应对这些问题,一大批优秀的网络管理软件应运而生。像南京联创OSS综合网络管理系统、迈普公司Masterplan等多个网络管理系统。华为公司的iManager U2000网络管理系统,北京智和通信自主研发的SugarNMS开源网络管理平台,均得到较为广泛应用。Masterplan主要特点是能够对网络应用实现良好的故障诊断和性能管理,适用于网络内服务器、网络设备以及设备上关键应用的监测管理。SugarNMS具有一键自动发现、可视化拓扑管理、网络资源管理、故障管理、日志管理、支付交付等功能,并提供C/S和B/S两种使用方式。iManager U2000定位于电信网络的网元管理层和网络管理层,采用开放、标准、统一的北向集成,很大程度上缩短OSS集成时间,系统运行以业务为中心,缩短故障处理时间,从而减少企业故障处理成本。近些年来,随着人工智能技术的崛起,越来越多的企业开始将人工智能技术应用在网络管理上面,替代传统的集中式网络管理方式。为了减小企业维护网络的成本,提高网管人员工作效率,智能化、自动化的网络管理系统成为许多学者研究的热点。神经网络在网络管理中的适用性分析网络管理的功能就是对网络资源进行管控、监测通信网络的运行状态以及排查网络故障。管控网络资源,本质上就是管理员为了满足业务需求下发相关设备配置命令改变网络设备状态,以保证稳定的服务;监测网络运行状态一般是指周期的或者实时的获取设备运行状态进行可视化,以方便管理员进行分析当前设备是否正常运行。排查网络故障是管理员通过分析网络设备运行数据与以往数据进行比较或者根据自身经验进行分析,确定故障源头、故障类别、产生原因、解决方法。故障排除是针对前一阶段发现的网络故障进行特征分析,按照诊断流程得出结果,执行特定的指令动作来恢复网络设备正常运行(洪国栋,2016)。神经网络具有并行性和分布式存储、自学习和自适应能力、非线性映射等基本特点。当下最为流行的神经网络模型就是BP(Back-Propagation)神经网络,是一种按照误差逆向传播算法训练多层前馈神经网络,属于监督式学习神经网络的一种。该模型分为输入层、隐含层以及输出层,网络模型在外界输入样本的刺激不断改变连接权值,将输出误差以某种形式通过隐含层向输入层逐层反转,使得网络输出不断逼近期望输出,其本质就是连接权值的动态调整。BP神经网络拥有突出的泛化能力,善于处理分类问题。BP网络是目前常用的误差处理方式,在众多领域得到了广泛的应用,它的处理单元具有数据量大、结构简单等特点,并且神经网络以对大脑的生理研究成果为基础,模拟大脑某些机制与机理组成十分繁杂的非线性动力学系统,其在处理网络设备运行中的数据时以及在比较模糊信号问题的时候,能够自主学习并得出需要的结果。能够将模型中输入输出矢量进行分类、连接、来适应复杂的传输存储处理。因此,本文会基于现有网络管理技术结合BP神经网络去解决网络故障问题。本文主要研究目标本文研究目标针对传统网络管理中故障方案的问题与不足,本文探究基于BP神经网络的方法来构建基于通信网接口故障诊断模型。通过构建的通信网接口故障诊断模型可以有效的诊断接口故障并判别出故障类型。推动现有网络管理系统更趋近于智能化。以此为基础,分析、设计、实现基于三层架构的智能网络管理系统技术路线智能网络研究首先要确定该系统的开发技术路线,课题研究的主要过程首先是在查阅相关科研资料的基础上,搭建实验环境。在保证网络正常通信的前提下采集各个端口的流入流出流量,记录设备的运行状态并对设备进信息进行管理。同时布置实验环境相应故障,包括:改变端口状态、更改端口ip地址、子网掩码,采集通讯网络接口故障发生时网络拓扑中产生的异常数据。查阅BP神经网络在故障在诊断方面的相关论文,基于网络通讯设备接口的常见故障以及相关故障文档构建BP神经网络故障模型,并判断故障模型的有效性。逐步地实现系统的全部功能。最后进行系统测试,得出结论,应用于实际。本文组织结构本文主要由六个章节构成,各章节主要内容如下:第一章绪论。本章首先简要介绍了网络管理系统当前的发展及应用现状从而进一步分析出建立智能网络管理系统的重要意义。阐述了网络管理系统国内外研究现状。最后论述了本文研究目的与组织结构。第二章相关概念及相关技术。本章对SNMP的相关技术进行详细介绍,SNMP组织模型 、SNMP管理模型、SNMP信息模型、SNMP通讯模型。然后对前端框架Vue和绘图插件Echarts技术进行介绍,其次介绍了常见的故障分析技术,专家系统、神经网络等,最后对神经网络基本概念和分类进行简要描述。第三章基于BP神经网络故障推理模型。介绍了BP神经网络的基本概念、网络结构、设计步骤、训练过程,以接口故障为例详细介绍了BP神经网络故障模型的构建过程。第四章智能网络管理系统分析与系统设计。首先进行了需求分析,其次对体系结构设计、系统总体模块结构设计进行说明,对系统各个功能模块分析设计结合活动图进行详细说明,最后对数据库设计进行简要说明。第五章智能网络管理系统的实现。对整体开发流程进行了说明,对用户管理模块、配置管理模块、设备监控模块、故障诊断模块实现流程进行描述并展示实现结果。第六章系统测试与结论。并对系统的部分功能和性能进行了测试,并加以分析。第七章总结与展望。总结本文取得的研究成果和存在的问题,并提出下一步改进系统的设想与对未来的展望。2相关概念及相关技术网络管理概述网络管理就是通过合适手段和方法,确保通信网络可以根据设计目标稳定,高效运行。不仅需要准确定位网络故障,还需要通过分析数据来预先预测故障,并通过优化设置来降低故障的发生率。网络管理系统的五大基本功能,分别为:配置管理、性能管理、故障管理、计费管理和安全管理:1)配置管理:配置管理是最重要和最基础的部分。它可以设置网络通讯设备的相关参数,从而管理被管设备,依据需求周期的或实时的获取设备信息和运行状态,检查和维护设备状态列表,生成数据表格,为管理员提供参考和接口以更改设备配置。2)性能管理:性能管理是评估系统网络的运行状态和稳定性,主要工作内容包括从被管理对象获取与网络性能相关数据,对这些数据进行统计和分析,建立模型以预测变化趋势、评估故障风险,通过配置管理模块修改网络参数,以确保网络性能最优利用网络资源保证通信网络平稳运行。3)故障管理:故障管理的主要功能就是及时辨别出网络中出现的故障,找出故障原因,分析并处理故障。故障管理一般分为四个部分:(1)探测故障。通过被管设备主动向管理站发送故障信息或者管理站主动轮询被管设备两种方式发现故障源。(2)发出告警。管理站发现故障信息之后,会以短信、信号灯等方式提示管理员。(3)解决故障。对故障信息进行分析,明确其故障原因和类型,找到对应方法得以解决。(4)保存历史故障数据。对历史故障数据进行维护备份,为以后的故障提供一定依据,使得处理网络故障更为高效。4)计费管理:计费管理主要功能是为客户提供一个合理的收费依据,通过将客户的网络资源的使用情况进行统计,例如将客户消费流量计算成本从而向客户计费。5)安全管理:目的就是保证网络能够平稳安全的运行,可以避免或者抵御来自外界的恶意入侵,防止重要数据泄露,例如用户的个人隐私泄露问题等。根据网络管理系统的体系结构和ISO定义的基本功能,基于Web的网络管理系统基本模型如图基于Web的网络管理系统基本模型所示,整个模型包括六个组成部分:Web浏览器,Web服务器,管理服务集,管理信息库,网络管理协议,被管资源。 SNMP协议简单网络管理协议SNMP(Simple Network Management Protocol),既可以作为一种协议,也可以作为一套标准。事实上SNMP己经成为网络管理领域的工业标准,从提出至今共有八个版本,在实践中得到广泛应用的有三个版本,分别是SNMPv1, SNMPv2c和SNMPv3(唐明兵2017)。最初的SNMPv1主要是为了满足基于TCP/IP的网络管理而设计的,但是随着网络管理行业的迅猛发展,第一版本的SNMP协议已经不适应网络行业的发展,身份验证、批量数据传输问题等暴露导致SNMPv1难以支持日益庞大的网络设备。第二版本就演变成了一个运行于多种网络协议之上的网络管理协议,较第一版本有了长足的进步,不仅提供了更多操作类型,支持更多的数据类型而且提供了更加丰富的错误代码,能够更加细致的区分错误,另外支持的分布式管理在一定程度上大大减轻了服务器的压力。但是SNMPv2c依旧是明文传输密钥,其安全性有待提高。直到1998年正式推出SNMPv3,SNMPv3的进步主要体现在安全性能上,他引入USM和VACM技术,USM添加了用户名和组的概念,可以设置认证和加密功能,对NMS和Agent之间传输的报文进行加密,提升其安全性防止窃听。VACM确定用户是否允许特定的访问MIB对象以及访问方式。 SNMP管理模型与信息模型SNMP系统包括网络管理系统NMS(Network Management System)、代理进程Agent、被管对象Management object和管理信息库MIB(Management Informoation Base)四部分组成.管理模型图如图所示:1)NMS称为网络管理系统,作为网络管理过程当中的核心,NMS通过SNMP协议向网络设备发送报文,并由Agent去接收NMS发来的管理报文从而对设备进行统一管控。NMS可以主动向被管对象发送管理请求,也可以被动接受被管对象主动发出的Trap报文。2)Agent相当于网络管理过程中的中间件,是一种软件,用于处理被管理设备的运行数据并响应来自NMS的请求,并把结果返回给NMS。Agent接收到NMS请求后,通过查询MIB库完成对应操作,并把数据结果返回给NMS。Agent也可以作为网络管理过程中的中间件不仅可以使得信息从NMS响应到具体硬件设备上,当设备发生故障时,通过配置Trap开启相应端口,被管设备也可以通过Agent主动将事件发送到NMS,使得NMS及时发现故障。3)Management object指被管理对象。一个设备可能处在多个被管理对象之中,设备中的某个硬件以及硬件、软件上配置的参数集合都可以作为被管理对象。4)MIB是一个概念性数据库,可以理解为Agent维护的管理对象数据库,里面存放了被管设备的相关变量信息。MIB库定义了被管理设备的一系列属性:对象的名称、对象的状态、对象的访问权限和对象的数据类型等。通过读取MIB变量的值, Agent可以查询到被管设备的当前运行状态以及硬件信息等,进而达到监控网络设备的目的。Agent可以利用修改对应设备MIB中的变量值,设置被管设备状态参数来完成设备配置。SNMP的管理信息库是树形结构,其结构类型与DNS相似,具有根节点且不具有名字。在MIB功能中,每个设备都是作为一个oid树的某分支末端被管理。每个OID(object identifier,对象标识符)对应于oid树中的一个管理对象且具有唯一性。有了树形结构的特性,可以高效迅速地读取其中MIB中存储的管理信息及遍历树中节点,读取顺序从上至下。目前运用最为广泛的管理信息库是MIB-Ⅱ,它在MIB-Ⅰ的基础上做了扩充和改进。MIB-Ⅱ结构示意图如图如所示:(1)system组:作为MIB中的基本组,可以通过它来获取设备基本信息和设备系统信息等。(2)interfac组:定了有关接口的信息,例如接口状态、错误数据包等,在故障管理和性能管理当中时常用到。(3)address translation组:用于地址映射。(4)ip组:包含了有关ip的信息,例如网络编号,ip数据包数量等信息。(5)icmp组:包含了和icmp协议有关信息,例如icmp消息总数、icmp差错报文输入和输出数量。(6)tcp组:包含于tcp协议相关信息,例如tcp报文数量、重传时间、拥塞设置等。应用于网络拥塞和流量控制。(7)udp组:与udp协议相关,可以查询到udp报文数量,同时也保存了udp用户ip地址。(8)egp组:包含EGP协议相关信息,例如EGP协议下邻居表信息、自治系统数。(9)cmot组:为CMOT协议保留(10)transmission组:为传输信息保留(11)snmp组:存储了SNMP运行与实现的信息,例如收发SNMP消息数据量。 SNMP通讯模型SNMP规定了5种协议基本数据单元PDU,用于管理进程与代理进程之间交换。(1)get-request操作:管理进程请求数据。(2)get-next-request操作:在当前操作MIB变量的基础上从代理进程处读取下一个参数的值。(3)set-request操作:用于对网络设备进行设置操作。(4)get-response操作:在上面三种操作成功返回后,对管理进程进行数据返回。这个操作是由代理进程返回给管理进程。(5)trap操作:SNMP代理以异步的方式主动向SNMP管理站发送Trap数据包。一般用于故障告警和特定事件发生。SNMP消息报文包含两个部分:SNMP报头和协议数据单元PDU。根据TCP/IP模型SNMP是基于UDP的应用层协议,而UDP又是基于IP协议的。因此可以得到完整的SNMP报文示意图如下:(1)版本号表示SNMP版本,其中版本字段的大小是版本号减1,如果SNMPv2则显示的字段值是1。(2)团体名(community)本质上是一个字符串,作为明文密钥在管理进程和代理进程之间用于加密传输的消息,一般默认设置成“public”。 (3)请求标识符(request ID)用于消息识别。由管理进程发送消息时自带一个整数值,当代理进程返回消息时带上该标识符。管理进程可以通过该标识符识别出是哪一个代理进程返回的数据从而找到对应请求的报文。(4)差错状态(error status)表示出现错误时由代理进程返回时填入差错状态符0~5中的某一数字,数字对应相关错误信息。差错状态描述符如下表:(5)差错索引(error index)表示在通信过程当中出现上表的差错时,代理进程在应答请求时设置一个整数,整数大小对应差错变量在变量列表中偏移大小。(6)变量名-值对以key-value的方式存储变量名称和对应值。(7)trap报文是代理进程主动向管理进程发送的报文,不必等待管理进程下一次轮询。SNMPv2的trap报文格式较SNMPv1的trap报文格式更趋近于普通的SNMP响应报文,更加统一化。以SNMPv2为例的trap报文格式如下:trap类型已定义的特定trap共有7种,后面的则是由供养商自己定制。Trap类型如下表所示: SNMP组织模型SNMP代理组织分成分散式和集中式模型。在分散模型中,每一个服务器对应一个SNMP代理,可以理解为一一对应的关系,管理站分别与每个被管服务器上的代理进行通信。集中模型当中,在管理服务器上只创建一个SNMP代理。管理站只与管理管理服务器上的SNMP代理进行通信, SNMP代理接收来自某一固定区域的所有数据。如图所示: Vue为实现前后端分离开发的理念,Vue应运而生。作为构建用户界面框架的简单易上手使得前端开发人员不必再编写复杂的DOM操作通过this来回寻找相关节点,很大程度上提高了开发的效率。通过MVVM框架,可以自动完成视图同步数据更新,在对实例new Vue(data:data)进行声明后data中数据将与之相应的视图绑定,一旦data中的数据发生变更,视图中对应数据也会发生相应改变。基于MVVM框架实现了视图与数据一致性,MVVM框架可以分为三个部分:Model、ViewModel、View。MVVM框架模式:的理念是“一切皆为组件”,可以说组件是的最强大功能。组件可以扩展HTML元素,将HTML、CSS、JavaScript封装成可重用的代码组件,可以应用在不同的场景,大大提高效率。它与传统的JavaScript相比,采用虚拟DOM渲染页面。当有数据发生变更时,生成虚拟DOM结构与实际页面结构对比,重新渲染差离部分,进一步提供了页面性能。 EchartsEcharts(Enterprise Charts),它是由百度公司研发的纯JavaScript图表库,可以流畅的运行在PC和移动设备上。ECharts兼容当前主流浏览器,底层依赖轻量级Canvas库ZRender,Echarts提供直观、生动、交互性强、高度自定义化的可视化图标。ECharts包含了以下特性:1)丰富的可视化类型:既有柱状图、折线图、饼图等常规图,也有可用于地理数据可视化的热力图、线图等,还有多维数据可视化的平行坐标。2)支持多种数据格式共存:在版本中内置的dataset属性支持直接传入包括二维表中。3)多维数据的支持:可以传入多维度数据。4)移动端优化:特别针对移动端可视化进行了一定程度优化,可以使用手指在坐标系中进行缩放、平移。5)动态类型切换:支持不同类型图形随意切换,既可以用柱形图也可以用折线图展示统一数据,可以从不同角度展现数据。6)时间轴:对数据进行可视化的同时,可以分为周期或者定时进行展示,所有利用时间轴可以很好的动态观察数据的变化。目前常见的故障诊断方法基于专家系统的故障诊断方法专家系统是目前最常使用的诊断方法。通俗来讲,专家系统就是模拟人类专家去解决现实中某一特定领域的复杂问题。专家系统接收用户界面数据,将数据传递到推理引擎进行推理,做出决策并执行。专家系统作为人工智能的前身,从上世纪60年代开始到现在专家系统的应用已经产生了巨大的经济效益和社会效益,灵活可靠、极高的专业水平和良好的有效机制使得专家系统已经成为最受欢迎、最活跃的领域之一。基于模糊理论的故障诊断方法在实际的工业生产过程当中,设备的“故障”状态与“正常”状态之间并没有严格的界限,它们之间存在一定的模糊过渡状态,并且在特征获取、故障判定过程中都中存在一定的模糊性。 因此,该方法不需要建立精确的数学分析模型,本质上是一个模式识别问题。 根据建议的症状参数,得出系统状态。 通常选择“择近原则”和“最大隶属原则”作为基本诊断原理(尤海鑫,2012)。基于免疫算法的故障诊断方法通过模拟自然生物免疫系统的功能,即快速识别外来生物和外来生物,最后通过自我排斥将异物排出体外。生物免疫系统还建立了一套算法来测试各种条件,主要是在线检测,通过不合格的自我和外部组织消除系统来实现故障识别的能力。免疫算法的故障诊断方法属于并行处理能力,可以进行很多复杂的操作和处理。同时可以与遗传算法等其他智能优化算法结合使用,以增强自适应能力和自学习能力。从公开的文献中,学者们并不热衷于这种原理的方法。一般来说,在故障诊断领域,目前人工免疫理论的研究尚处于萌芽阶段。基于神经网络的故障诊断方法神经网络是由大量简单的神经节点组成的复杂网络,以网络拓扑分布的方式存储信息,利用网络拓扑分布和权重实现对实际问题的非线性映射调整,并运用使用全局并行处理的方式,实现从输入空间到输出空间的非线性映射。该方法属于典型的模型诊断模式,不需要了解内部诊断过程,而是使用隐式方法完全表达知识。在获取知识时,它将自动生成由已知知识和连接节点的权重构成的网络的拓扑结构,并将这些问题完全连接到互连的网络中,有利于知识的自动发现和获取。并行关联推理和验证提供了便利的途径;神经网络通过神经元之间的交互来实现推理机制。

计算机论文是计算机专业毕业生培养方案中的必修环节。学生通过计算机论文的写作,培养综合运用计算机专业知识去分析并解决实际问题的能力,在以后的工作中学以致用,不过我是没时间写,直接联系的诚梦毕业设计,一切搞定而且品质还很高。

计算机论文计算机网络在电子商务中的应用摘要:随着计算机网络技术的飞进发展,电子商务正得到越来越广泛的应用。由于电子商务中的交易行为大多数都是在网上完成的, 因此电子商务的安全性是影响趸易双方成败的一个关键因素。本文从电子商务系统对计算机网络安全,商务交易安全性出发,介绍利用网络安全枝术解决安全问题的方法。关键词:计算机网络,电子商务安全技术一. 引言近几年来.电子商务的发展十分迅速 电子商务可以降低成本.增加贸易机会,简化贸易流通过程,提高生产力,改善物流和金流、商品流.信息流的环境与系统 虽然电子商务发展势头很强,但其贸易额所占整个贸易额的比例仍然很低。影响其发展的首要因素是安全问题.网上的交易是一种非面对面交易,因此“交易安全“在电子商务的发展中十分重要。可以说.没有安全就没有电子商务。电子商务的安全从整体上可分为两大部分.计算机网络安全和商务交易安全。计算机网络安全包括计算机网络设备安全、计算机网络系统安全、数据库安全等。其特征是针对计算机网络本身可能存在的安全问题,实施网络安全增强方案.以保证计算机网络自身的安全性为目标。商务安全则紧紧围绕传统商务在Interne'(上应用时产生的各种安全问题.在计算机网络安全的基础上.如何保障电子商务过程的顺利进行。即实现电子商务的保密性.完整性.可鉴别性.不可伪造性和不可依赖性。二、电子商务网络的安全隐患1窃取信息:由于未采用加密措施.数据信息在网络上以明文形式传送.入侵者在数据包经过的网关或路由器上可以截获传送的信息。通过多次窃取和分析,可以找到信息的规律和格式,进而得到传输信息的内容.造成网上传输信息泄密2.篡改信息:当入侵者掌握了信息的格式和规律后.通过各种技术手段和方法.将网络上传送的信息数据在中途修改 然后再发向目的地。这种方法并不新鲜.在路由器或者网关上都可以做此类工作。3假冒由于掌握了数据的格式,并可以篡改通过的信息,攻击者可以冒充合法用户发送假冒的信息或者主动获取信息,而远端用户通常很难分辨。4恶意破坏:由于攻击者可以接入网络.则可能对网络中的信息进行修改.掌握网上的机要信息.甚至可以潜入网络内部.其后果是非常严重的。三、电子商务交易中应用的网络安全技术为了提高电子商务的安全性.可以采用多种网络安全技术和协议.这些技术和协议各自有一定的使用范围,可以给电子商务交易活动提供不同程度的安全保障。1.防火墙技术。防火墙是目前主要的网络安全设备。防火墙通常使用的安全控制手段主要有包过滤、状态检测、代理服务 由于它假设了网络的边界和服务,对内部的非法访问难以有效地控制。因此.最适合于相对独立的与外部网络互连途径有限、网络服务种类相对集中的单一网络(如常见的企业专用网) 防火墙的隔离技术决定了它在电子商务安全交易中的重要作用。目前.防火墙产品主要分为两大类基于代理服务方式的和基于状态检测方式的。例如Check Poim Fi rewalI-1 4 0是基于Unix、WinNT平台上的软件防火墙.属状态检测型 Cisco PIX是硬件防火墙.也属状态检测型。由于它采用了专用的操作系统.因此减少了黑客利用操作系统G)H攻击的可能性:Raptor完全是基于代理技术的软件防火墙 由于互联网的开放性和复杂性.防火墙也有其固有的缺点(1)防火墙不能防范不经由防火墙的攻击。例如.如果允许从受保护网内部不受限制地向外拨号.一些用户可以形成与Interne'(的直接连接.从而绕过防火墙:造成一个潜在的后门攻击渠道,所以应该保证内部网与外部网之间通道的唯一性。(2)防火墙不能防止感染了病毒的软件或文件的传输.这只能在每台主机上装反病毒的实时监控软件。(3)防火墙不能防止数据驱动式攻击。当有些表面看来无害的数据被邮寄或复制到Interne'(主机上并被执行而发起攻击时.就会发生数据驱动攻击.所以对于来历不明的数据要先进行杀毒或者程序编码辨证,以防止带有后门程序。2.数据加密技术。防火墙技术是一种被动的防卫技术.它难以对电子商务活动中不安全的因素进行有效的防卫。因此.要保障电子商务的交易安全.就应当用当代密码技术来助阵。加密技术是电子商务中采取的主要安全措施, 贸易方可根据需要在信息交换的阶段使用。目前.加密技术分为两类.即对称加密/对称密钥加密/专用密钥加密和非对称加密/公开密钥加密。现在许多机构运用PKI(punickey nfrastructur)的缩写.即 公开密钥体系”)技术实施构建完整的加密/签名体系.更有效地解决上述难题.在充分利用互联网实现资源共享的前提下从真正意义上确保了网上交易与信息传递的安全。在PKI中.密钥被分解为一对(即一把公开密钥或加密密钥和一把专用密钥或解密密钥)。这对密钥中的任何一把都可作为公开密钥(加密密钥)通过非保密方式向他人公开.而另一把则作为专用密钥{解密密钥)加以保存。公开密钥用于对机密�6�11生息的加密.专用密钥则用于对加信息的解密。专用密钥只能由生成密钥对的贸易方掌握.公开密钥可广泛发布.但它只对应用于生成该密钥的贸易方。贸易方利用该方案实现机密信息交换的基本过程是 贸易方甲生成一对密钥并将其中的一把作为公开密钥向其他贸易方公开:得到该公开密钥的贸易方乙使用该密钥对机密信息进行加密后再发送给贸易方甲 贸易方甲再用自己保存的另一把专用密钥对加密后的信息进行解密。贸易方甲只能用其专用密钥解密由其公开密钥加密后的任何信息。3.身份认证技术。身份认证又称为鉴别或确认,它通过验证被认证对象的一个或多个参数的真实性与有效性 来证实被认证对象是否符合或是否有效的一种过程,用来确保数据的真实性。防止攻击者假冒 篡改等。一般来说。用人的生理特征参数f如指纹识别、虹膜识别)进行认证的安全性很高。但目前这种技术存在实现困难、成本很高的缺点。目前,计算机通信中采用的参数有口令、标识符 密钥、随机数等。而且一般使用基于证书的公钥密码体制(PK I)身份认证技术。要实现基于公钥密码算法的身份认证需求。就必须建立一种信任及信任验证机制。即每个网络上的实体必须有一个可以被验证的数字标识 这就是 数字证书(Certifi2cate)”。数字证书是各实体在网上信息交流及商务交易活动中的身份证明。具有唯一性。证书基于公钥密码体制.它将用户的公开密钥同用户本身的属性(例如姓名,单位等)联系在一起。这就意味着应有一个网上各方都信任的机构 专门负责对各个实体的身份进行审核,并签发和管理数字证书,这个机构就是证书中心(certificate authorities.简称CA}。CA用自己的私钥对所有的用户属性、证书属性和用户的公钥进行数字签名,产生用户的数字证书。在基于证书的安全通信中.证书是证明用户合法身份和提供用户合法公钥的凭证.是建立保密通信的基础。因此,作为网络可信机构的证书管理设施 CA主要职能就是管理和维护它所签发的证书 提供各种证书服务,包括:证书的签发、更新 回收、归档等。4.数字签名技术。数字签名也称电子签名 在信息安全包括身份认证,数据完整性、不可否认性以及匿名性等方面有重要应用。数字签名是非对称加密和数字摘要技术的联合应用。其主要方式为:报文发送方从报文文本中生成一个1 28b it的散列值(或报文摘要),并用自己的专用密钥对这个散列值进行加密 形成发送方的数字签名:然后 这个数字签名将作为报文的附件和报文一起发送给报文的接收方 报文接收方首先从接收到的原始报文中计算出1 28bit位的散列值(或报文摘要).接着再用发送方的公开密钥来对报文附加的数字签名进行解密 如果两个散列值相同 那么接收方就能确认该数字签名是发送方的.通过数字签名能够实现对原始报文的鉴别和不可抵赖性。四、结束语电子商务安全对计算机网络安全与商务安全提出了双重要求.其复杂程度比大多数计算机网络都高。在电子商务的建设过程中涉及到许多安全技术问题 制定安全技术规则和实施安全技术手段不仅可以推动安全技术的发展,同时也促进安全的电子商务体系的形成。当然,任何一个安全技术都不会提供永远和绝对的安全,因为网络在变化.应用在变化,入侵和破坏的手段也在变化,只有技术的不断进步才是真正的安全保障。参考文献:[1]肖满梅 罗兰娥:电子商务及其安全技术问题.湖南科技学院学报,2006,27[2]丰洪才 管华 陈珂:电子商务的关键技术及其安全性分析.武汉工业学院学报 2004,2[3]阎慧 王伟:宁宇鹏等编著.防火墙原理与技术[M]北京:机械工业出版杜 2004

故障诊断毕业论文

我 ,么 这个是,给的。 写的, 帮助的,做的,成的。

奥迪轿车自动变速器打滑故障故障现象:一辆已经累计行驶 15万km的奥迪轿车,行驶中逐渐感到加速无力,当轿车自动变速器操纵杆置于D 4档起步加速时,明显感到加速无力,发动机和自动变速器无异响。加速时观察汽车上的车速表和发动机转速表,发现发动机转速表明显地快,而车速表反应迟缓;汽车速度升高后,车速表升高,而发动机转速表仍明显高;当汽车进入高速时,发动机转速表能与车速表相对应。因此断定汽车变速时特别是低档加速时离合器有打滑现象。故障诊断:这辆奥迪轿车是德国原装电控自动变速器轿车。检查电控部分,并无故障代码输出。根据司机反映,轿车已行驶 15万km。只是刚换了一次自动变速器油,而且只换了3L的情况,认为是自动变速器过脏,有脏物堵塞,引起换档控制油压不足。具体地讲,有可能是自动变速器油滤网堵塞或处于半堵塞状态;有可能是直接档离合器或2号档单向离合器控制油路不畅,致使加速无力,形成离合器打滑的现象。根据判断,进行免解体维护,彻底清洗和冲洗自动变速器。排除方法:将这辆奥迪轿车的自动变速器与自动变速器清洗设备相联接。从自动变速器加油孔加入一瓶威力狮自动变速器清洗剂 (#64401),并按照上述方法进行变速器清洗循环。刚刚清洗时就发现循环油很脏。询问,为什么新换的油还这么脏,回答,这辆车自从运行以来,没有清洗过变速器,这次换油也是第一次,换油也没有换干净。于是决定强力冲洗自动变速器。为了清洗彻底,冲开油路中的堵塞物,这次将汽车的驱动轮支起来,将后轮用三角木掩住,在变速器 D 4档加大油门使驱动轮转动。再踏脚制动,使车轮降低转速,再加大油门使车轮加速转动。在清洗过程中感到清洗管路中油流很快,循环油液很热。如此循环运转,持续了40min。清洗结束后,换新的变速器油缸,看到被顶出的废油很脏,直到最后排出新油为止。汽车放平后,重新进行路试,发现各档加速性能良好,加速时汽车平稳前冲,后背有压力。原文网址: 原文网址: 原文网址:

电控发动机与化油器式发动机最大的不同在燃油供给系。电控发动机的燃油供给系取消了化油器,却增加了不少电子自动控制装置。其中包括许多传感器,执行元件和ECU。电控发动机不仅要完成化油器所要完成的任务,而且要完成化油器难以完成的任务。例如,使可燃混合气的空燃比浓度能控制在所需要的范围内。化油器式发动机油路和电路划分的非常清楚,互相影响不大。而电控发动机燃油供给系统增加了电子控制部分,这就使得油路和电路相互联系,它不仅影响发动机燃油系的工作,而且还影响发动机的正常运行。由于电控发动机电子控制装置的增加,这就使发动机的整个结构(包括电控系)更为复杂。快速导航结构组成 工作原理 待测参数 优点基本思想在初期,是以电子技术替代机械控制技术实现系统的功能,并对其功能进行扩展,使性能得到大幅度提高;发展到一定程度后,电子技术可以促使系统原理发生本质变化,从而可以突破局限,使发动机性能得以大幅度提高。电控发动机结构组成电子控制单元电控单元(ECU)是发动机电子控制系统的核心。它完成发动机各种参数的采集和喷油量、喷油定时的控制,决定整个电控系统的功能。传感器传感器(Sensor)将发动机工况与环境的信息通过各种信号即时、真实的传递到ECU。换句话说,ECU所了解到的只是一个由诸多信号所构成的发动机。所以,传感器信息的准确性、再现性与即时性就直接决定控制的好坏。执行器电控系统要完成的各种控制功能,是靠各种执行器来实现的。在控制过程中,执行器将ECU传来的控制信号转换成某种机械运动或电器的运动,从而引起发动机运行参数的改变,完成控制功能。工作原理以发动机转速和负荷作为反映发动机实际工况的基本信号,参照由试验得出的发动机各工况相对应的喷油量和喷油定时脉谱图来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时或点火定时,然后通过执行器进行控制输出。

离合器的那好的,看要求的是

机械故障诊断论文

引言机械零部件的磨损是机械设备发生的故障中最常见、最主要的故障形式,是影响机械设备正常运行的主要障碍之一。据统计,磨损故障占机械设备故障的80%〔1〕,而且磨损还可诱发其它形式的故障。随着现代工业的发展,对生产的连续性和运转机械设备的可靠性要求不断提高,因而对机械设备进行磨损工况监测和故障诊断具有重要意义。 机械零部件发生磨损时,磨损颗粒便进入润滑系统并悬浮在润滑油中。这些微小的磨损颗粒携带有机械设备发生磨损故障的重要信息。为了从润滑油里的磨损颗粒中获取有关机械设备磨损故障的特征信息,常采用“油液监测技术”,其中包括磁塞法、光谱法、铁谱法、放射性示踪法、过滤法、颗粒计数法[2,3]。实践证明,在上述这些方法中,铁谱分析技术是监测磨损工况和诊断磨损故障最为有效的方法,在设备日常管理、预测性维修、可靠性分析和寿命预测方面起到了重要作用。然而,在铁谱诊断技术应用的近20年中,诊断过程中的磨粒识别和故障诊断这两个关键步骤主要凭借人的经验。由于磨损现象的复杂性、研究的对象不同以及铁谱分析者间缺乏充分交流,导致使用磨粒术语和描述磨损故障的混乱,尽管在磨粒分类与磨粒术语标准化方面还有一些基础工作要做,但经过一些研究者的努力,已有比较一致的观点。相比之下,对磨损故障分类与磨损故障描述规范化的研究则较少。在人工诊断时,重点在磨粒识别,磨损故障描述方面的混乱对故障诊断的影响并不突出。随着现场监测对智能化诊断的迫切要求以及计算机图像处理技术和智能(人工智能和神经网络)技术在铁谱诊断中的应用,对磨损故障的分类与铁谱诊断方法提出了新的要求。本文系统分板到几械设备磨损故障和铁谱诊断过程,舞在综合分析铁谱诊断方法的基础上,提出了一个智能化铁请诊断模型。1机械设备磨损故障分析机械设备磨损故障的原因机械设备磨损故障(以下简称磨损故障)是指由于相对运动的两个表面之间的摩擦磨损致使设备的功能低于规定水平的状态。概括地讲,引起磨损故障有两种情况:①由设备设计时预计之中的常规磨损引起的故障。在一般机械零件摩擦副中,正常的零件磨损过程大致分为磨合磨损、稳定磨损和剧烈磨损三个阶段川。在稳定磨损达到一定时期时,设备的磨损率随时间而迅速增大,超出设备设计时规定的磨损量水平,使工作条件急剧恶化,进而使设备出现故障甚至完全失效;②设备安装与使用过程中的异常磨损导致的故障。机械零件在安装过程中由于安装不良或(和)清洗不干净会导致设备在运转过程中的异常磨损,或者在使用过程中由于偶然的外来因素(磨料进入、载荷条件变化、a划伤:由于犁沟作用,在滑动方向上产生宽而深的划痕。b点蚀:在接触应力反复作用下使金属咬死等)和内部因素(润滑不良、摩擦发热等)影响而出现异常磨损。异常磨损弓!发的故障具有偶然性和突发性,对此类故障的诊断具有重要意义。磨损故障的分类分类的目的是为了将人们常用而又实际存在的各式各样的磨损故障按一定的标准归纳为几个基本类型。合理的分类能够使诊断工作简化,有利于故障诊断的状态识别过程的进行,提高故障诊断的有效性。由于铁谱技术在诊断磨损类故障方面具有独特的优越性,因而本文的分类主要是针对铁谱诊断方法的。根据不同的应用目的,磨损故障从以下几个方面进行分类比较合适。 按磨损机理划分不同的磨损机理产生的磨粒各异,因而可通过磨粒分析来识别引起磨损故障的磨损机理,以便为设备的设计、制造服务。与润滑油分析有关的磨损机理可分为以下几类:a粘着磨损:接触表面作相对运动时,由于固相焊涪作用使材料从一个表面转移到另一个表面而造成的一种磨损。 b 磨料磨损:由于硬颗粒或硬突起物使材料产生迁移而造成的一种磨损。 c疲劳磨损:由于循环交变应力引起疲劳而使材料脱落的一种磨损。微动磨损应归入此类。d腐蚀磨损:由于与周围介质发生化学反应而产生的一种磨损。其中包括氧化磨损、氢致磨拐、介质腐蚀磨损。 按磨损形式划分磨粒的产生与磨损表面有着密切的联系,因而可从磨损表面的破坏形式来分类。按磨损形式来分,磨损故障可分为:疲劳破坏而形成的表面凹坑。c剥落:金属表面由于变形强化而变脆,在载荷作用下产生微裂纹随后剥落。 d胶合:由粘着效应形成的表面结点具有较高的连接强度,使剪切破坏发生在表面层内一定深度,因而导致严重磨损。 e腐蚀:由于润滑油中含水和润滑油膜破裂而使金属与周围介质发生化学反应而产生的表面损伤。上述的划伤、点蚀、剥落和胶合有宏观与微观之分,对于铁谱诊断而言,主要是针对微观形式的。 按磨损类型划分对于磨损故障的描述,铁谱分析者针对铁谱分析的特点采用一套适用的分类方法,归纳起来可以说是按磨损类型来分: a正常磨损和磨合期磨损:滑动表面经常发生的正常磨损。b切削磨损:由于滑动表面的相互穿入引起的非正常磨料磨损。c滚动疲劳磨损:滚动接触表面的疲劳磨损。了滚滑复合磨损:与齿轮系相关的疲劳磨损和粘着磨损。e严重滑动磨损:滑动表面的过载和高速造成的磨损。 按磨损原因划分按磨损原因来分,磨损故障可分为由磨料进入、润滑不良、油中含水、安装不良或有裂纹、过载、高速、过热和疲劳等引起的故障。这可为设备设计、保养和维修提供有用信息。按磨损程度划分按磨损程度来分,磨损故障可分为正常磨损和严重磨损。正常磨损与严重磨损间并无明确的定量界限。根据设备的重要性和诊断的灵敏性,磨损程度可分为3级:正常、b从谱片上的磨损颗粒中提取设备磨损状态的有用信息(征兆):磨粒识别与统计,注意、极高(报警);也可分成4级:正常、较正常、异常、严重异常磨损。 ‘按磨损材料划分按磨损材料来分,磨损故障可分为黑色金属磨损故障、有色金属磨损故障和非金属磨损故障。按诊断对象划分有的磨损故障在实际应用中采用俗称,比如在柴油机中有“拉缸”、“拉瓦”、“烧瓦”和“抱轴”等叫法。因而磨损故障也可按诊断的特定设备来分类,并制定出相应的诊断标准。在故障诊断时,根据不同的诊断目的和任务要求,尽量采用某一分类方法并逐层推进,不要出现交叉使用的现象。2铁谱诊断过程铁谱诊断技术是一种以磨损颗粒分析为基础的诊断技术。采用该技术监测机械零部件的磨损状态,无需将正在运转的机械设备打开或关闭,就可确定其磨损状态。.由机械零部件产生的磨损颗粒作为分离相存在于润滑油中,通过铁谱仪磁场的作用将它们从润滑油中分离出来,特定的工况条件和冤同的金属零件产生的磨粒具有不同的特性。通过观察磨粒的颜色、形态、数量、尺寸及尺寸分布,可以推断机械设备的磨损程度、磨损原因和磨损部位。根据机械设备诊断学的观点[4],故障诊断过程有3个主要步骤:信号测取(检测设备状态的特征信号),征兆提取(从所检测的特征信号中提取征兆)和状态识别(根据这些征兆和其它诊断信息来识别设备状态)。 具体来讲,铁谱诊断过程可分为以下几个步骤:a取油样,制谱片,得到设备磨损状态的特征信纂一磨损颗粒;磨损参数测量;c根据上述征兆,识别设备的磨损状态(状态诊断),包括识别设备的磨损状态将有无异常(故障早期诊断)与是否已有异常(故障诊断);d根据设备的征兆与状态,进一步分析设备的磨损状态及其发展趋势(状态分析),包括当设备有故障时,分析故障位置、类型、性质、原因与趋势等;e根据设备的状态与趋势,作出决策,干预设备及其运行过程。3磨损故障铁谱诊断方法与智能化铁谱诊断模型铁谱诊断方法自铁谱技术问世以来,其发展重点主要是在诊断过程的前两步,对磨损故障识别理论与方法的研究较少,这可从众多有关铁谱技术用于磨损工况监测与故障诊断的资料中看出。目前铁谱技术用于故障诊断所采用的方法归纳起来有3种:定性铁谱诊断法、定量铁谱诊断法(严格地说是准定量铁谱诊断法)、定性与定量相结合的铁谱诊断法。定性铁谱诊断能够在铁谱片上获取大量有关磨损状态的信息,但在很大程度上受操作者的经验和其它主观因素的影响,状态识别过程由领域专家或分析者来完成。诊断是依据谱片上磨粒的形态、数量、颜色、尺寸及尺寸分布等信息来推断机器的磨损状态。目前普遍得到应用的铁谱分析报告单就是定性铁谱诊断的总结。将模糊数学方法应用到定性铁谱诊断,可让计算机模拟专家的识别方法进行磨损状态诊断,这种方法具有一定的智能性,但这并不是铁谱诊断技术发展的关键所在。目前的定量铁谱诊断是根据铁谱片上磨粒的浓度和磨粒的尺寸分布来对设备的磨损状态作出诊断。诊断主要采用函数分析法、趋势分析法和灰色理论等方法,有些方法已能在一定程度上反映出智能性。定量铁谱诊断具有较大的客观性,但所提供的数据只反映出少量的磨损状态信息,而且不能应用在脂样分析中。定量与定性相结合铁谱诊断是目前实际应用的最多的一种方法,一般是先用定量参数进行故障可能性和趋势判断,再辅之以铁谱片上磨粒特征分析来确诊。为了提高铁谱诊断技术的准确性和智能性,必须进一步发展定量铁谱诊断方法。该方法应能综合定量分析磨粒的形态、尺寸、数量、颜色和尺寸分布等特征并应角人工智能和神经网络的方法加以诊断。随着计算机图像分析技术以波人工智能特别是神经网络技术不断发展,为实现综合定量铁谱诊断及其智能化创造了有力的条件。将智能化技术应用到铁谱诊断,其诊断过程的第三步不仅变得同前二步一样重要,而且将会成为智能诊断技术的关键,因而对磨损故障识别理论与方法的研究很有必要。由于磨损现象的复杂性和磨粒分析的困难性,铁谱诊断智能化的发展一直较缓慢。1989年美国的Carborundum公司开发出一套被称之为FAST的铁谱分析专家系统[5],并在最近将其发展成FASTPLUS系统。据报道,利用这一专家系统可以对铁谱片进行分析并以人机对话的方式进行决策。但从原理上看,该系统主要是将谱片上的特征磨粒与存储在系统的光盘中的磨粒图谱的照片进行比较而得出结论,因而具有较大的局限性。在国内,文献[6]困将计算机图像分析技术和人工智能理论与方法引人到铁谱分析技术中,建立了基于黑板的铁谱图像解释系统的模型,并进行了部分研究,取得一些很有意义的研究成果。由于追求铁谱诊断的完全智能化使得该技术离实用还有较远的距离。磨损故障铁谱诊断水平根据铁谱诊断的目的和实际应用的需要,将磨损故障铁谱诊断水平划分成3个级别:第一级诊断水平三对设备状态进行监测、确定磨损状态是否正常;第二级诊断水平:在第一级诊断的基础上,判别引起磨损状态异常的磨损原因、类型、形式乃至趋势分析,以便采取维修措施或改进设计。不同原因导致的故障具有不同的表现形式,从而反映出不同的故障状态。通过磨粒的形态、尺寸、数量、分布等特征可对磨损原因进行识别;第三级诊断水平:用以判断发生故障的部位或部件,同时也为第二级诊断提供补充信息。不同的材料产生的磨粒经谱片加热或湿化学处理在铁谱显微镜下可以区分出来,从而将故障隔离到不同零件上。由于设备结构的复杂性、同台设备使用摩擦副材料相同性以及鉴别材料手段的局限性,使得故障隔离与定位并不能总是有效。但为了提高磨损故障诊断的有效性和全面性,此级诊断无疑是必要的。在人工诊断时,上述3级诊断常常是同步完成的,但随着现场监测对智能化诊断的需要,在人工智能或神经网络技术引入到铁谱诊断后,就需要对磨损故障诊断水平进行分级。智能化铁谱诊断模型本文从实际应用的需要出发,提出一种智能化铁谱诊断系统模型,如图1所示。其中的些主要工作已经完成。该系统包括3大模块:磨粒分析模块、磨粒识别与统计模块和机械磨损故障铁谱诊断模块:在磨粒分析模块中可以采用计算机图像分析和模拟人工分析两种方式。铁谱图像分析子系统 [7]能够提取定量的磨粒特征参数。这包括形态数字特征和光密度特征,提取的信息中的一部分输入磨粒识别与统计模块,并采用神经网络技术识别磨粒[8],经统计后,将结果送入磨粒信息库;一部分直接送入磨粒信息库。模拟人工分析子系统,采用人一机协作的方法,人工提取定性的磨粒特征参数,应用神经网络专家系统进行磨粒识别[9],识别结果经统计后送入磨粒信息库;定量钳普参数采用光密度计测量,测量结果直接送入磨粒信息库。根据不同的需要,磨粒信息库中的数据可按不同的方式组织,形成不同的数据文件,以备故障诊断与监测取用。机械磨损故障铁谱诊断模块根据用户需要可实现磨损状态诊断、磨损故障类型诊断和磨损原因诊断,三者的实现均采用神经网络模型[l0转自深圳培训吧]。在铁谱诊断时,除了利用磨粒信息库的数据文件作为输入向量外,还应充分利用被监测设备知识库的知识。该系统还可以直接从磨粒信息库中提取数据,采用神经网络技术进行磨损趋势预测

基于OSA-CBM标准的机械故障诊断系统研究

作者:姜广伟

摘要:一、OSA-CBM标准概述OSA-CBM继承了已被全球很多国家认可的ISO-13374标准,并做出了更大的完善。该标准定义了状态检测系统的六大功能模块,并进一步规范了各个模块的输入和输出模式、接口方式和数据结构等。这六个模块分别是数据获取模块、数据处理模块、状态检测模块、状态评估模块、预测模块和生成建议模块,以上顺序是由低到高排列的。除了处理数据类型、显示结果和

关键词:标准定义 故障诊断系统 状态检测系统 功能模块 机械 数据处理模块 CBM OSA

DOI: CNKI:SUN:

年份: 2012

范文来源:学术堂

设备在使用过程中,由于零部件磨损、疲劳或环境造成的变形、腐蚀、老化等原因,使原有性能逐渐降低的现象称为设备劣化。我整理了机械设备维修管理论文,欢迎阅读!

机械设备维修管理

摘要:本文介绍了国内机械设备的常见故障诊断以及维修管理的流程。

关键词:机械设备,故障,维修,诊断,管理

中图分类号: TB486 文献标识码: A

引言

设备在使用过程中,由于零部件磨损、疲劳或环境造成的变形、腐蚀、老化等原因,使原有性能逐渐降低的现象称为设备劣化。机械设备的劣化可以分为使用劣化、自然劣化、灾害劣化。使用劣化是指设备在使用过程中,由于零部件磨损等原因造成的损坏或变形,使机械设备失去本身的性能;自然劣化是指随着时间的流逝材料的老化,或者遭受意外的灾害而加快老化速度的现象;灾害劣化是指由于自然灾害使设备遭受破坏的现象。由于设备不同的零部件的使用寿命都不一样,因此做好设备的故障诊断及维修管理,具有重要的经济意义。

1机械设备维修管理现状及发展趋势

目前,国内企业的机械维修,基本采用的是前苏联的周期计划维修,即定期大、小修。理论上来说,周期计划维修是属于预防维修范畴,在保证设备完好、增加设备的使用寿命方面发挥了积极作用。但是,随着现代工业技术的不断发展,机械工艺性能和安全性能有了很大提高,随之引起的设备维修管理也更趋合理。自上个世纪八十年代以后,预知维修的理论逐步渗透到我国,根据设备运行状态,确定维修时间和维修方式,相比周期计划维修更加先进。预知维修则是特别注重预防检查、监测,既做到了预防,同时还避免了过剩维修。90年代初,我国先后引进了一大批具有世界先进水平的机械设备。这些进口设备除了润滑、保养、清洁和局部检修项目之外,并无大小修项目,并且一般设备都具有机电一体化,技术含量高,结构相对复杂,装配精度极高。若按照传统的维修方法,周期性的拆装,很难使设备的精度恢复到出厂的标准,同时可能在拆装过程中造成不必要的损坏,影响设备发挥原有的性能。因此,有的企业从设备投入使用初期,就采用预知维修代替周期计划维修,后来又根据国内设备新老机型特点不同,采用周期计划维修与状态维修相结合的方式进行设备维修,也取得了良好效果。

2机械设备维修管理的常见问题

对机械设备维修与管理的重视程度不够

机械设备维修与管理是一个系统的过程,涉及到多个环节(采购、使用、改造、更新等),部分企业比较注重对设备的前期管理,而在设备使用过程中的维修与管理则不太重视,导致实际维修与管理工作出现问题。

维修与管理跟不上

机械设备维修与管理机械的按照计划进行,很容易忽视设备的实际情况,导致机械设备的维修、保养等工作不能满足实际需求,降低了机械设备的使用性能和工作效率。

重修理,不重改造

目前国内大部分企业对于机械设备的态度是“不坏不修”,导致大量设备长期“亚健康”运行,严重的影响了工作的效率和质量。同时对于部分需要改造的设备,迫于改造费用高或者技术要求高等难题导致必要的改造被迫中断。

3机械设备维修的理论指导

机械故障

(1)机械故障的概念

所谓机械故障,就是指机械系统(零件、组件、部件或整台设备乃至一系列的设备组合)已偏离其设备状态而丧失部分或全部功能的现象。

(2)机械故障的类型

根据故障发生的速度分渐发型故障、突发型故障和复合型故障;根据故障后果分参数故障和功能故障;根据故障出现的情况分为已发生的实际故障和未发生的潜在故障;根据故障发生的原因或性质分人为故障和自然故障;根据故障发生的部位分机械故障和电气故障;根据故障发生的频率分常见故障和特殊故障;根据故障来源分设计、制造、使用和检修维护发生的故障等。研究故障类型是为了通过各种故障分析其对设备功能、参数、零部件失效形式的影响,从而在设计,使用中采取相应的改进措施,减少或杜绝类似的故障再次发生。

(3)机械故障的规律

机械设备故障的规律是指机械故障随时间变化而变化的规律。设备的故障率随时间的变化大致可以分3个阶段:早期故障期、偶发故障期和耗损故障期。

(4)机械故障发生的原因

机械设备故障的原因是多种多样的,总的来说可以分为外部原因和内部原因。外部原因主要有:使用环境原因,如粉尘、气候等因素;设备负荷原因,如负荷超过设计能力、负荷不均等;安装调试问题,如安装调试不当或未达到设计要求等;未按要求维护操作设备,如润滑不良、密封问题、设备使用初期未按要求试车磨合、岗位工错误操作等;上次检修不当,如更换或修复的零件不合要求、装配问题等。内部原因主要有:机械本身设计存在问题、零件制造质量不过关等。

机械零件的失效形式

①断裂。零件在外载荷作用下,某一截面上的应力超过零件的强度极限时,就会造成断裂失效。在变应力作用下,长时间工作的零件容易发生疲劳断裂。零件的断裂失效对机械产品造成的危害最大。

②过大残余变形。零件受载荷作用后发生弹性变形,过度的弹性变形会使零件的机械精度降低,造成较大的振动,引起零件的失效;当作用在零件上的应力超过了材料的屈服极限,零件会产生塑性变形,甚至发生断裂。在高温、载荷的长期作用下,零件会发生蠕变变形,造成零件的变形失效。

③表面损伤失效。零件在长期工作中,由于磨损、腐蚀、磨蚀、接触疲劳等原因,造成零件尺寸变化超过了允许值而失效,或者由于腐蚀、冲刷、气蚀等而使零件表面损伤失效。

④材质变化失效。由于冶金元素、化学作用、辐射效应、高温长时间作用等引起零件的材质变化,使材料性能降低而发生失效。

⑤破坏正常工作条件而引起的失效。有些零件只有在一定条件下才能正常工作,如带传动,只有当传递的有效圆周力小于临界摩擦力时,才能正常工作。如果这些条件被破坏,将会发生失效。

4机械故障诊断技术

机械故障诊断是一种了解和掌握机器在运行过程的状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。油液监测、振动监测、噪声监测、性能趋势分析和无损探伤等为其主要的诊断技术方式。机械故障诊断技术是20世纪70年代以来,随着电子测量技术、送信号处理技术以及计算机的发展而逐渐形成的一门综合技术。目前我国在一些特定设备的诊断研究方面很有特色,形成了一批自己的监测诊断产品。全国各行业都很重视在关键设备上装备故障诊断系统,特别是智能化的故障诊断专家系统,在电力系统、石化系统、冶金系统、以及高科技产业中的核动力电站、航空部门和载人航天工程等。

机械诊断技术的任务:①弄清引起设备劣化或故障的主要原因②了解设备劣化部位及程度③了解设备的性能、强度、效率等④预测设备的使用寿命。

5机械设备故障维修

机械设备维修前的准备工作很多都是技术性很强的工作,其完善程度、准确性、及时性都会直接影响大修计划进度、维修质量和经济效益。不同企业的设备维修组织和管理分工相应的有所不同,但设备维修前的准备工作内容及过程大致相同。

为了全面深入了解设备劣化的具体情况,在大修前需要安排的停机预检。预检工作由技术人员负责,设备使用部门的机械维修人员参加,并共同承担。预检工作量大小由设备的复杂程度、劣化程度决定,设备越复杂,劣化程度越严重,预检工作量就越大,预检时间也越长。从预检结束到设备维修开始之间的时间间隔不宜过长,否则可能在此期间导致设备的状态加速劣化,致使预检的准确性降低,给维修施工带来困难。

通过预检和分析确定修理方案后,要以修理技术文件的形式做好修理前的技术准备。机械设备修理技术文件有修理技术任务书、修换件明细表、材料明细表、修理工艺和修理质量标准等。这些技术文件是编制修理作业计划,准备备品、配件、材料,校算修理工时与成本,指导修理作业以及检查和验收修理质量的依据,它的正确性和先进性是衡量企业设备维修技术水平的重要标志之一。

结论

做好机械设备维修管理工作,是保证机械设备正常运转的基本条件,对提高企业的经济效益,保证企业持续发展十分重要。

点击下页还有更多>>>机械设备维修管理论文

齿轮故障诊断技术毕业论文

机械故障标准的话~你可以去参考<机械工程与技术>/<仪器与设备>等相关的资料吧~找下自己的思路

基于OSA-CBM标准的机械故障诊断系统研究

作者:姜广伟

摘要:一、OSA-CBM标准概述OSA-CBM继承了已被全球很多国家认可的ISO-13374标准,并做出了更大的完善。该标准定义了状态检测系统的六大功能模块,并进一步规范了各个模块的输入和输出模式、接口方式和数据结构等。这六个模块分别是数据获取模块、数据处理模块、状态检测模块、状态评估模块、预测模块和生成建议模块,以上顺序是由低到高排列的。除了处理数据类型、显示结果和

关键词:标准定义 故障诊断系统 状态检测系统 功能模块 机械 数据处理模块 CBM OSA

DOI: CNKI:SUN:

年份: 2012

范文来源:学术堂

自己写算啦!

滚动轴承故障振动检测实验台的机械结构设计论文编号:JX473 有设计图,论文字数:24694,页数:65 摘 要 本文利用传感器检测滚动轴承的振动信号进行故障检测与诊断,可以研究不同的滚动轴承的不同的故障所表现的出来的不同的振动信号。本文主要以外圈直径是50㎜、60㎜的深沟球轴承为例设计了滚动轴承故障振动检测实验台的机械结构部分,该实验台由动力源、减速装置、传动装置、装卡装置几部分组成。其工作原理是通过传感器采集轴承运转时被检测点的振动信号,对每个监测点画出频谱图,与开始建立的参考频谱图数据库比较,分析在哪些频率点振动级值增加,从而判断其故障所在。该实验台可以让学生通过实验对故障诊断这门新兴学科建立更深刻的认识,特别是对滚动轴承故障的振动诊断技术有深刻的认识和了解,进一步认识到故障诊断技术的重要性。 关键词 滚动轴承 故障检测与诊断 振动诊断技术 传感器 Abstract This paper use sensor to diagnose antifriction bearings’ vibration signal for failure examination and diagnosis. It can study different kinds of vibration signals of different bearings which expressed out. This text mainly take the diameter of antifriction bearings are 50mm and 60mm for example to design the experiment pedestal. It contains motive source, gearbox, transfer device and charge equipments. Its’ work principle is to gather vibration signals of the examined points by sensor when antifriction bearing is wheeling, and then draw a frequency chart, then compare with the already built database. Analyze where the vibration value is increased, then judge the failure places and kinds. The pedestal can show more about the discipline of failure diagnosis, especially about the subject of antifriction bearings’ failure diagnosis. And acquaintance the importance of failure diagnosis subject. Key words antifriction bearings failure examination and diagnosis vibrate diagnosis technique sensor目 录摘要 ⅠAbstract Ⅱ第1章 绪论 1 课题背景 课题来源及研究的目的和意义 故障诊断技术的发展现状 滚动轴承故障诊断技术 2 本文研究的内容 3 本章小结 3第2章 滚动轴承故障检测实验台总体设计 4 实验台的功能需求分析 4 振动检测实验台方案提出及评价 基本参数的确定 设计方案的确定与评价 4 本章小结 5第3章 检测实验台传动部件设计 6 电动机的选择 选择电动机的类型和结构型式 确定电动机的容量 6 减速器的设计 齿轮的设计 减速器的润滑、密封以及附件的选择 16 联轴器的选择与法兰盘的设计 17 联轴器类型的选择 17 联轴器尺寸型号的选择 17 法兰盘的设计 17 本章小结 18第4章 检测实验台的装卡机构结构设计 19 轴承箱的结构设计 支承部分的刚性和同心度 被检测滚动轴承的轴向紧固 被检测轴承游隙的调整 被检测滚动轴承的预紧. 被检测滚动轴承的润滑 被检测滚动轴承的密封装置 被检测滚动轴承安装轴的加载装置设计 被检测滚动轴承安装轴的设计与校核 导轨的设计 24 卡盘的设计 25 本章小结 26第5章 传感器的选用与安装 27 传感器的选用 27 传感器安装 29 本章小结 34第6章 检测实验台的经济技术性分析 35 系统结构设计的合理性 35 系统设计的经济性 选材方面 动力源方面 使用、保养、与维护方面 36 本章小结 36结论 37致谢 38参考文献 49附录1 40附录2 49以上回答来自:

轴承故障诊断排查毕业论文

电动机故障诊断技术的应用分析论文

无论是在学习还是在工作中,大家一定都接触过论文吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。相信写论文是一个让许多人都头痛的问题,下面是我收集整理的电动机故障诊断技术的应用分析论文,欢迎阅读与收藏。

摘要:

当前,大型机械设备中安装电动机是非常普遍的,是辅助机械设备生产功能的一种手段,然而电动机在长期不间断工作,在电能转化为机械能的过程中造成温度持续上升、电动机性能降低、工作效率低下、电动机出现故障的情况,因此故障诊断技术的快速发展是延长电动机使用寿命的关键。本文立足于现实角度,针对现阶段电动机容易出现故障的类型,维修管理中应用的故障诊断技术的如何应用进行分析。希望通过本次研究,来探讨故障诊断技术在电动机维修管理上的应用情况,从而对相关专业知识有更深层次的理解。

关键词:

故障诊断技术,电动机,维修管理,技术

引言:

电动机的出现可以追溯到上个世纪初,随着二次工业革命的快速发展,电动机发挥了巨大的作用。随着我国科学技术、生产技术的突飞猛进,电动机在制造业、工业、农业中发挥了巨大的作用。然而长时间通过工程机械高频率使用电动机,很容易造成电动机故障。因此,故障诊断技术也顺势而生,当前电动机的故障主要包括四种类型,然而该如何进行故障诊断,从而对症下药,是当前专家学者与技术人员共同重视的问题,也是需要持续研究的课题。

1、电动机出现的故障类型分析

转子故障

转子故障主要是因为电动机在长期运行的过程中,由于转子长期处于机械制动的高频率里,所以很容易存在转子故障。电动机转子也包括两个板块:定位轴承、非定位轴承。定位轴承主要是承担转子在高速运转过程中承担负荷力度。在电动机运行的过程中为了避免其他外部作用力造成的损害电动机的情况,还需要安装非定位轴承。

因此,定位轴承与非定位轴承都可能因为电动机遭受了各种作用力造成损害或者损毁的情况,最终导致电动机出现转子故障,这种故障出现是电动机的常见故障之一,也是电动机无法持续运转的关键因素,最终形成断条。

定子故障

定子故障的产生很大程度是因为电动机的外部绝缘体受到了损害导致的;还有一种可能是由于电动机在使用的过程中出现了匝间短路故障。一旦出现了匝间短路则匝间绝缘需要承担暂态过电压。出现这种情况很大程度上是由于电动机长期处于较差环境中,并且持进行高速作业,造成的短路故障、绝缘变形、绝缘损坏的情况下出现的定子故障。

定子故障的产生也是非常常见的,维修人员可以通过故障检修技术来探讨电动机的使用状况、预计电动机的未来使用寿命。定子故障的产生也说明电动机的各个零部件、线路的性能出现了问题。

气隙偏心故障

气隙偏心故障的产生是由于电动机在组装过程中产生零部件、线路出现偏差。出现这种故障一般情况下是由于组装问题、组装人员专业素质导致的。

出现气隙偏心故障的另一原因就是电动机长期作业,在不断震动和高频度使用的过程中造成了零部件松动、轴承故障,或者是因为定子铁芯内径的椭圆度不符合电动机的长期作业指标,从而导致的气隙偏心故障。一旦出现这种故障,很容易产生连锁效应,导致电动机无法正常运作,最终导致定子、转子之间出现了间隙。当电动机无法正常运转时,自然对工程机械的使用造成了困难。

轴承故障

轴承故障的产生原因与气隙偏心故障有相似之处,也是由于零部件长期作业的过程中出现了松动、间隙之后产生的问题。由于轴承承担着电动机运转的多方力量,所以在实际运作的过程中很容易出现温度升高的情况。当温度不断升高,则轴承的径杆因热量影响,产生胀力,从而使轴承松动。电动机的轴承受到转子重力的影响,也必然会导致轴承径杆的表面因为长时间的旋转导致了磨损的情况。再加上轴承圈和轴表面在长期的旋转中呈现机械摩擦,最终导致电动机内部出现热量,最终对轴承造成破坏,导致电动机无法正常、持续的运转。

2、电动机故障诊断技术的应用分析

神经网络诊断

神经网络诊断的方法是目前使用较多的一种诊断方法。神经网络诊断是模仿人类大脑神经元结构,将电动机内部作为大脑结构,从而建立起非线性动力学网络系统,最终由各个单元进行集成式扫描处理,高度并联。

通过互联网数学模拟的能力,进行电动机的故障诊断工作。神经网络诊断方法与传统的计算机诊断方法有所不同。只需要通过软件编制相应的程序,以软件编制任务为基础,高度实行诊断指令,感知与处理电动机内部各个零部件的参数、具体数据,并对比故障之前的.电动机各项零部件的参数,从而扫描出高故障的零部件样本。

通过这种方法,能够更强的感知到电动机内部故障,判断是定子故障还是转子故障,并判断什么区域的零部件出现了松动、磨损的情况。因此,可以看出神经网络诊断主要是将电动机内部各项参数提前掌握,最终实现运算、对比、扫描工作来确诊。

专家系统诊断

专家系统故障诊断与神经网络诊断有相似之处,前者是依靠互联网数字技术,而专家系统诊断则是依靠了人工智能技术。该技术是综合了电动机故障检修相关专家的意见,并结合智能技术检测电动机各项参数,最终进行综合判断。

在使用专家系统诊断时,工程师需要根据自身知识素养来建立诊断模型,通过模型对比,逐一排查的方式,对电动机故障确诊。这种方法是目前较为新颖的检测技术,在建立模型、与专家系统诊断结合的过程中,能够对应解决故障,针对性延长电动机使用寿命,而且综合判断的准确率很高,在快速检测中实现全面排查工作,还能够对电动机有更加系统的诊断报告,帮助相关人员了解与判断电动机状态、未来预计使用寿命。

信号处理诊断

信号处理诊断技术是针对电动机发生故障后发出信号、指令来判断故障情况。除了一些先进的电动机机器设备外,一些企业会在电动机的绝缘设备上安装诊断用信号处理装置,通过安装这种装置,能够完全对应信息处理要求。而维修人员、工程师则根据信号处理诊断技术,对电动机发出的信号时域、时频来进行分析(分析内容是信号的时域、频域、频率分量的变化、信号非平稳时的时变函数判断),从而对相关设备发出的故障进行计算、参数对比,信号处理方式。

混合诊断方法

混合诊断方法也是常见的故障诊断技术,是结合以往的应急型故障诊断方法(该方法需要综合素质较高的工程师、检修工人来进行,结合仪器检测来综合判断电动机故障原因,但由于是肉眼检测和主观判断检测,所以准确率不高)的基础上,结合电动机维修管理工作,实施定期维护、管理工作,来进一步获取电动机内部定子、转子、各项零部件的数据参数,从而避免一旦出现故障会出现明显的数据误差,不利于判断重点损坏区域。当前,这种故障诊断技术随着互联网技术、数字技术的推进,也逐渐走向智能化,方便检修人员实时进行参数对比,方便预判电动机的状态,制定故障维修方案。

3、结束语

本文主要分析的是故障诊断技术在电动机维修管理中的应用,针对目前电动机故障类型进行系统分析与探讨,并针对故障诊断技术的分别具体应用进行详细的探讨,希望通过本文的分析,能够对相关专业知识有更深层次的了解。电动机是工程机械运行的重要组成部分,因此了解故障诊断技术的基础上,能够对相关专业研究有一定的引导作用。

参考文献

[1]刘迎春.故障诊断技术在煤矿机电设备维修中的运用探讨[J].现代工业经济和信息化,2019,9(02):111-113.

[2]王镇林.“电动机故障诊断”实训教学中任务驱动教学法的“微课”应用[J].科技创新导报,2018,15(31):144,146.

[3]孙慧影,林中鹏,刘银丽,李萌.基于随机游走蜂群算法优化的RBF神经网络电动机故障诊断研究[J].水电能源科学,2017,35(08):165-168.

滚动轴承故障振动检测实验台的机械结构设计论文编号:JX473 有设计图,论文字数:24694,页数:65 摘 要 本文利用传感器检测滚动轴承的振动信号进行故障检测与诊断,可以研究不同的滚动轴承的不同的故障所表现的出来的不同的振动信号。本文主要以外圈直径是50㎜、60㎜的深沟球轴承为例设计了滚动轴承故障振动检测实验台的机械结构部分,该实验台由动力源、减速装置、传动装置、装卡装置几部分组成。其工作原理是通过传感器采集轴承运转时被检测点的振动信号,对每个监测点画出频谱图,与开始建立的参考频谱图数据库比较,分析在哪些频率点振动级值增加,从而判断其故障所在。该实验台可以让学生通过实验对故障诊断这门新兴学科建立更深刻的认识,特别是对滚动轴承故障的振动诊断技术有深刻的认识和了解,进一步认识到故障诊断技术的重要性。 关键词 滚动轴承 故障检测与诊断 振动诊断技术 传感器 Abstract This paper use sensor to diagnose antifriction bearings’ vibration signal for failure examination and diagnosis. It can study different kinds of vibration signals of different bearings which expressed out. This text mainly take the diameter of antifriction bearings are 50mm and 60mm for example to design the experiment pedestal. It contains motive source, gearbox, transfer device and charge equipments. Its’ work principle is to gather vibration signals of the examined points by sensor when antifriction bearing is wheeling, and then draw a frequency chart, then compare with the already built database. Analyze where the vibration value is increased, then judge the failure places and kinds. The pedestal can show more about the discipline of failure diagnosis, especially about the subject of antifriction bearings’ failure diagnosis. And acquaintance the importance of failure diagnosis subject. Key words antifriction bearings failure examination and diagnosis vibrate diagnosis technique sensor目 录摘要 ⅠAbstract Ⅱ第1章 绪论 1 课题背景 课题来源及研究的目的和意义 故障诊断技术的发展现状 滚动轴承故障诊断技术 2 本文研究的内容 3 本章小结 3第2章 滚动轴承故障检测实验台总体设计 4 实验台的功能需求分析 4 振动检测实验台方案提出及评价 基本参数的确定 设计方案的确定与评价 4 本章小结 5第3章 检测实验台传动部件设计 6 电动机的选择 选择电动机的类型和结构型式 确定电动机的容量 6 减速器的设计 齿轮的设计 减速器的润滑、密封以及附件的选择 16 联轴器的选择与法兰盘的设计 17 联轴器类型的选择 17 联轴器尺寸型号的选择 17 法兰盘的设计 17 本章小结 18第4章 检测实验台的装卡机构结构设计 19 轴承箱的结构设计 支承部分的刚性和同心度 被检测滚动轴承的轴向紧固 被检测轴承游隙的调整 被检测滚动轴承的预紧. 被检测滚动轴承的润滑 被检测滚动轴承的密封装置 被检测滚动轴承安装轴的加载装置设计 被检测滚动轴承安装轴的设计与校核 导轨的设计 24 卡盘的设计 25 本章小结 26第5章 传感器的选用与安装 27 传感器的选用 27 传感器安装 29 本章小结 34第6章 检测实验台的经济技术性分析 35 系统结构设计的合理性 35 系统设计的经济性 选材方面 动力源方面 使用、保养、与维护方面 36 本章小结 36结论 37致谢 38参考文献 49附录1 40附录2 49以上回答来自:

从滚动轴承的故障特征入手,1)从振动数据提取出故障特征模式,2)故障特征关联从滚动轴承的故障诊断入手,1)故障模式识别,2)实时故障趋势分析

  • 索引序列
  • 网络故障诊断毕业论文
  • 故障诊断毕业论文
  • 机械故障诊断论文
  • 齿轮故障诊断技术毕业论文
  • 轴承故障诊断排查毕业论文
  • 返回顶部