首页 > 学术期刊知识库 > 行列式的论文文献综述怎么写

行列式的论文文献综述怎么写

发布时间:

行列式的论文文献综述怎么写

撰写文献综述步骤:

1、搜索相关文献

2、评价来源

3、识别主题、辩论和差距

4、概述结构

5、写文献综述

文献综述是对论文选题研究现状的梳理,但并不仅仅是把文献进行简单的堆砌与罗列,而是需要在总结梳理别人研究的同时,对已有的研究做出评价,也就是说有述有评,这也是为什么文献综述也叫做文献述评的原因。

论文文献综述怎么写

文献综述在不同的地方会有不同的要求,比如写项目基金申请书中的文献综述和毕业论文中的文献综述会有区别;内容侧重点不同,格式要求也不同。如下给出的模板是一般文献综述中应该包含的部分和基本的格式要求。读者在实际的写作过程中可视情况而选择恰当的方式。1、文献综述(论文标题,小二号,黑体,居中)2、摘要:(“摘要:”两个字要求是黑体小四,顶格写;摘要的内容要求是楷体小四。字数要求200-300.)3、关键词: ; ; ;(关键词要顶格写,有3-5个,格式要求黑体小四,词与词间用分号隔开)4、正文 (要求:正文的标题是宋体小四,要加粗,顶格写;正文内容是首行空两格,字体小四,不加粗;标题之间的标号统一)一、前言说明写作目的意义介绍有关的概念提供必要的背景材料描述课题的研究现状有关主题争论的焦点及发展趋势(核心主题)交待综述讨论的范围(引用文献起止年份学科范围)二、正文理论发展阶段性成果理论意义实践意义成熟可靠新近的权威可信百花齐放百家争鸣(一)历史发展:采用纵向对比的方法,要按时间顺序,简要说明某一课题的提出及各历史阶段的发展状况,体现各阶段的研究水平,说明目前达到的水平。(二)现状分析:介绍国外研究现状、国内研究现状,对比研究差距,来阐述国内研究与国外研究相比还有哪些空白点没有涉及,找到未来发展趋势,提出自己的想法和观点:首先将整理和归纳出来的资料进行排列和必要的分析;其次讲解有创造性和发展前途的理论或假说,并引出论据;第三介绍有争议的相关专家观点或学说,对其进行分析比较,指出各种的发展趋势和问题焦点,并提出自己的观点;第四,简要的介绍陈旧、过时的或被否定的观点,这样使文章更系统全面,而且这些资料也可以起到对比反衬的作用。(三)趋向预测:在纵横对比中肯定所综述课题的研究水平、存在问题和不同意见、提出展望性意见。这一部分主要是给读者以启示,使从事这一课题的工作者能看到未来课题研究的发展方向。这部分的内容要客观,不仅要指明方向,而且要指出捷径,为有志于攀登新高峰者指明方向,搭梯铺路。三、总结与展望高度概括主题内容提出观点意见主张展望发展前景简明扼要地指出目前研究中尚需解决的问题及研究成果的意义和价值,在写作中应注意给出一个较为明确的阶段性结论。一篇好的综述总结,可以发人深思,具有导向意义。参考文献(格式要求:黑体小四)[1]作者,作者.文献名称[J].期刊名称,年份,卷号,起止页码.(宋体五号)(附录:学术论文参考文献的著录格式:1.专著: [序号]作者.书名[M].版本(第1版不著录).出版地:出版者,出版年.起止页码.2.期刊: [序号]作者.题名[J].刊名,年,卷(期):起止页码.3.会议论文集(或汇编):[序号]作者.题名[A].编者.论文集名[C].出版地:出版者,出版年.起止页码.4.学位论文: [序号]作者. 题名[D]. 学位授予地址:学位授予单位,年份.5.专利: [序号]专利申请者. 专利题名[P].专利国别(或地区):专利号, 出版日期.6.科技报告: [序号]著者. 报告题名[R].编号,出版地:出版者,出版年.起止页码.7.标准: [序号] 标准编号,标准名称[S].颁布日期.8.报纸文章 : [序号] 作者. 题名[N]. 报纸名,年-月-日(版次).9.电子文献: [序号] 主要责任者.电子文献题名[电子文献及载体类型标识].电子文献的出处或可获得地址,发表或更新日期/引用日期(任选).10.各种未定义类型的文献:[序号]主要责任者.文献题名[Z]. 出版地:出版者,出版年.)

行列式的论文文献综述

简介在线性代数,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作det(A).在本质上,行列式描述的是在n维空间中,一个线性变换所形成的“平行多面体”的“体积”.行列式无论是在微积分学中(比如说换元积分法中),还是在线性代数中都有重要应用.行列式概念的最初引进是在解线性方程组的过程中.行列式被用来确定线性方程组解的个数,以及形式.随后,行列式在许多领域都逐渐显现出重要的意义和作用.于是有了线性自同态和向量组的行列式的定义.行列式的特性可以被概括为一个n次交替线性形式,这反映了行列式作为一个描述“体积”的函数的本质.若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段.行列式的值是按下述方式可能求得的所有不同的积的代数和,既是一个实数:求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数.也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负.[编辑本段]垂直线记法矩阵A的行列式有时也记作|A|.绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆.不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标.此外,矩阵的绝对值是没有定义的.因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式).例如,一个矩阵:行列式det(A)也写作|A|或明确的写作:即矩阵的方括号以细长的垂直线取代.[编辑本段]定义一个矩阵A的行列式有一个乍看之下很奇怪的定义:其中sgn(σ)是排列σ的符号差.对于比较小的矩阵,比如说二阶和三阶的矩阵,行列式表达如下,有些像是主对角线(左上至右下)元素的乘积减去副对角线(右上至左下)元素的乘积(见图中红线和蓝线).2阶:3阶:.但对于阶数较大的矩阵,行列式有n!项,并不是这样的形式.二维向量组的行列式行列式是向量形成的平行四边形的面积设P是一个二维的有向欧几里得空间,即一个所谓的欧几里得平面.两个向量X和X’的行列式是:经计算可知,行列式表示的是向量X和X’形成的平行四边形的有向面积.并有如下性质:行列式为零当且仅当两个向量共线(线性相关),这时平行四边形退化成一条直线.如果以逆时针方向为正向的话,有向面积的意义是:平行四边形面积为正当且仅当向量X和X’逆时针排列(如图).行列式是一个双线性映射.也就是说,,并且.

我也是差不多这个课题啊,我的是 矩阵可对角化的条件及对角化方法,有资料互相参考啊,是写开题报告么 ,从别处拷过来的 矩阵对角化在国内外已有一定的研究。早在十九世纪末,人们在研究行列式的性质和计算时,提出了对角矩阵的概念,由于计算机的发展,更是为矩阵对角化的应用开辟了广阔的前景,它经常出现在诸如可用于求解微分方程组,用于研究数理统计量的分布,还有用于研究集合曲面的标准形等不同的科技领域中,这就使得对角矩阵成为计算数学中应用及其广泛的矩阵。

4. 行列式的性质:

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

5. 注意区分行列式与矩阵

矩阵定义:由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。

矩阵样式:

主要书写区别便是行列式使用竖线,矩阵使用括号(通常使用中括号)。同时行列式一个数,而矩阵是数的集合。

行列式

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

数学定义

n阶行列式

是由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和

式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那末数D称为n阶方阵相应的行列式.例如,四阶行列式是4!个形为

的项的和,而其中a13a21a34a42相应于k=3,即该项前端的符号应为

(-1)3.

若n阶方阵A=(aij),则A相应的行列式D记作

D=|A|=detA=det(aij)

若矩阵A相应的行列式D=0,称A为奇异矩阵,否则称为非奇异矩阵.

标号集:序列1,2,...,n中任取k个元素i1,i2,...,ik满足

1≤i1

i1,i2,...,ik构成{1,2,...,n}的一个具有k个元素的子列,{1,2,...,n}的具有k个元素的满足(1)的子列的全体记作C(n,k),显然C(n,k)共有  个子列.因此C(n,k)是一个具有个元素的标号集,C(n,k)的元素记作σ,τ,...,σ∈C(n,k)表示

σ={i1,i2,...,ik}

是{1,2,...,n}的满足(1)的一个子列.若令τ={j1,j2,...,jk}∈C(n,k),则σ=τ表示i1=j1,i2=j2,...,ik=jk。

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

什么是行列式

行列式是数学中的一个函数,将一个的矩阵A映射到一个纯量,记作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维度空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。

行列式的特性可以被概括为一个多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数

行列式的竖直线记法

矩阵A的行列式有时也记作|A|。绝对值和范数|矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵:

行列式det(A)也写作 | A | ,或明确的写作:

即把矩阵的方括号以细长的垂直线取代

行列式的历史

行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德•莱布尼茨各自独立得出,时间大致相同。

行列式的早期研究

关孝和在《解伏题之法》中首次运用行列式的概念。1545年,卡当在著作《大术》中给出了一种解两个一次方程组的方法。他把这种方法称为“母法”。这种方法和后来的克莱姆法则已经很相似了,但卡当并没有给出行列式的概念。

1683年,日本数学家关孝和在其著作《解伏题之法》中首次引进了行列式的概念。书中出现了、乃至的行列式,行列式被用来求解高次方程组。

1693年,德国数学家莱布尼茨开始使用指标数的系统集合来表示有三个未知数的三个一次方程组的系数。他从三个方程的系统中消去了两个未知量后得到一个行列式。这个行列式不等于零,就意味着有一组解同时满足三个方程。[5]由于当时没有矩阵的概念,莱布尼茨将行列式中元素的位置用数对来表示:代表第i行第j列。莱布尼茨对行列式的研究成果中已经包括了行列式行列式的展开和克莱姆法则,但这些结果在当时并不为人所知。

任意阶数的行列式

1730年,苏格兰数学家科林•麦克劳林在他的《论代数》中已经开始阐述行列式的理论,记载了用行列式解二元、三元和四元一次方程的方法,并给出了四元一次方程组的一般解的正确形式,尽管这本书直到麦克劳林逝世两年后(1748年)才得以出版。

1750年,瑞士的加布里尔•克拉默首先在他的《代数曲线分析引论》给出了n元一次方程组求解的法则,用于确定经过五个点的一般二次曲线的系数,但并没有给出证明。[8]其中行列式的计算十分复杂,因为是定义在置换的奇偶性上的。

此后,关于行列式的研究逐渐增多。1764年,法国的艾蒂安•贝祖的论文中关于行列式的计算方法的研究简化了克莱姆法则,给出了用结式来判别线性方程组的方法[10]同是法国人的亚历山德•西奥菲勒•范德蒙德则在1771年的论着中第一个将行列式和解方程理论分离,对行列式单独作出阐述。这是数学家们开始对行列式本身进行研究的开端。

1772年,皮埃尔-西蒙•拉普拉斯在论文《对积分和世界体系的探讨》中推广了范德蒙德著作里面将行列式展开为若干个较小的行列式之和的方法,发展出子式的概念。一年后,约瑟夫•拉格朗日发现了的行列式与空间中体积的联系。他发现:原点和空间中三个点所构成的四面体的体积,是它们的坐标所组成的行列式的六分之一。

行列式在大部分欧洲语言中被称为“determinant”(某些语言中词尾加e或o,或变成s),这个称呼最早是由卡尔•弗里德里希•高斯在他的《算术研究》中引入的。这个称呼的词根有“决定”意思,因为在高斯的使用中,行列式能够决定二次曲线的性质。在同一本着作中,高斯还叙述了一种通过系数之间加减来求解多元一次方程组的方法,也就是现在的高斯消元法。

行列式的现代概念

进入十九世纪后,行列式理论进一步得到发展和完善。奥古斯丁•路易•柯西在1812年首先将“determinant”一词用来表示十八世纪出现的行列式,此前高斯只不过将这个词限定在二次曲线所对应的系数行列式中。柯西也是最早将行列式排成方阵并将其元素用双重下标表示的数学家(垂直线记法是阿瑟•凯莱在1841年率先使用的)柯西还证明了行列式行列式的性质(实际上是矩阵乘法),这个定理曾经在雅克•菲利普•玛利•比内的书中出现过,但没有证明。

十九世纪五十年代,凯莱和詹姆斯•约瑟夫•西尔维斯特将矩阵的概念引入数学研究中[12]。行列式和矩阵之间的密切关系使得矩阵论蓬勃发展的同时也带来了许多关于行列式的新结果,例如阿达马不等式、正交行列式、对称行列式等等。

与此同时,行列式也被应用于各种领域中。高斯在二次曲线和二次型的研究中使用行列式作为二次曲线和二次型划归为标准型时的判别依据。之后,卡尔•魏尔斯特拉斯和西尔维斯特又完善了二次型理论,研究了解析失败 (PNG 转换失败; 请检查是否正确安装了 latex, dvips, gs 和 convert): \lambda 矩阵的行列式以及初等因子。行列式被用于多重函数的积分大约始于十九世纪三十年代。1832年至1833年间卡尔•雅可比发现了一些特殊结果,1839年,欧仁•查尔•卡塔兰发现了所谓的雅可比行列式。1841年,雅可比发表了一篇关于函数行列式的论文,讨论函数的线性相关性与雅可比行列式的关系

现代的行列式概念最早在19世纪末传入中国。1899年,华蘅芳和英国传教士傅兰雅合译了《算式解法》十四卷,其中首次将行列式翻译成“定准数”。1909年顾澄在著作中称之为“定列式”。1935年8月,中国数学会审查各种术语译名,9月教育部公布的《数学名词》中正式将译名定为“行列式”。其后“行列式”作为译名沿用至今。

行列式的直观定义

一个n阶方块矩阵A的行列式可直观地定义如下:

其中,Sn是集合{1,2,...,n}上置换的全体,即集合{1,2,...,n}到自身上的一一映射(双射)的全体;

表示对S全部元素的求和,即对于每个σ∈S,在加法算式中出现一次;对每一个满足1≤i,j≤n的数对(i,j),ai,j是矩阵A的第i行第j列的元素。

σ表示置换σ∈Sn的置换的奇偶性,具体地说,满足1≤iσ(j)的有序数对(i,j)称为σ的一个逆序。

如果σ的逆序共有偶数个,则sgn(σ) = 1,如果共有奇数个,则sgn(σ) = − 1。

举例来说,对于3元置换σ=(2,3,1)(即是说σ(1)=2,σ(2)=3,σ(3)=1而言,由于1在2后,1在3后,所以共有2个逆序(偶数个),因此sgn(σ) = 1,从而3阶行列式中项a1,2a2,3a3,1的符号是正的。但对于三元置换σ=(3,2,1)(即是说σ=3,σ=2,σ=1)而言,可以数出共有3个逆序(奇数个),因此sgn(σ) = − 1,从而3阶行列式中项a1,3a2,2a3,1的符号是负号。

注意到对于任意正整数n,S_n共拥有n个元素,因此上式中共有n个求和项,即这是一个有限多次的求和。

对于简单的2阶和3阶的矩阵,行列式的表达式相对简单,而且恰好是每条主对角线(左上至右下)元素乘积之和减去每条副对角线(右上至左下)元素乘积之和(见图1中红线和蓝线)。

σ表示置换σ∈Sn的置换的奇偶性,具体地说,满足1≤iσ(j)的有序数对(i,j)称为σ的一个逆序。

如果σ的逆序共有偶数个,则sgn(σ) = 1,如果共有奇数个,则sgn(σ) = − 1。

举例来说,对于3元置换σ=(2,3,1)(即是说σ(1)=2,σ(2)=3,σ(3)=1而言,由于1在2后,1在3后,所以共有2个逆序(偶数个),因此sgn(σ) = 1,从而3阶行列式中项a1,2a2,3a3,1的符号是正的。但对于三元置换σ=(3,2,1)(即是说σ=3,σ=2,σ=1)而言,可以数出共有3个逆序(奇数个),因此sgn(σ) = − 1,从而3阶行列式中项a1,3a2,2a3,1的符号是负号。

注意到对于任意正整数n,S_n共拥有n个元素,因此上式中共有n个求和项,即这是一个有限多次的求和。

对于简单的2阶和3阶的矩阵,行列式的表达式相对简单,而且恰好是每条主对角线(左上至右下)元素乘积之和减去每条副对角线(右上至左下)元素乘积之和(见图1中红线和蓝线)。

2阶矩阵的行列式:

3阶矩阵的行列式:

但对于阶数n≥4的方阵A,这样的主对角线和副对角线分别只有n条,由于A的主、副对角线总条数 = 2n < (n − 1)n < n! = Sn的元素个数

因此,行列式的相加项中除了这样的对角线乘积之外,还有其他更多的项。例如4阶行列式中,项a1,2a2,3a3,1a4,4就不是任何对角线的元素乘积。不过,和2、3阶行列式情况相同的是,n阶行列式中的每一项仍然是从矩阵中选取n个元素相乘得到,且保证在每行和每列中都恰好只选取一个元素,而整个行列式恰好将所有这样的选取方法遍历一次。

另外,n×n矩阵的每一行或每一列也可以看成是一个n元向量,这时矩阵的行列式也被称为这n个n元向量组成的向量组的行列式

行列式论文文献综述

一个n维行向量乘以一个n维列向量是一个数,或者可以看成一个1*1的矩阵。一个n维列向量乘以一个n维行向量得到一个n*n的矩阵,这个矩阵的秩是1(若行向量和列向量都不为零向量)。因为假设a为一个n维列向量,b=[b1,b2,...,bn] 为一个n维行向量,则a*b=a*[b1,b2,...,bn]=[a*b1,a*b2,...,a*bn],可以看出各列之间是线性相关的(都是a乘以一个数),所以若a和b都不为0向量时,a*b是一个秩为1的n*n的矩阵。所以当然不是所有的行列式都可以表示成一个行向量和一个列向量的乘积的形式。但是,任意非零矩阵都可以表示成若干个秩1矩阵的和,而秩1矩阵都可以表示为一个列向量乘以一个行向量,所以可以表示为sum_{i=0}^m a_i*b_i 的形式,其中a_i为列向量,b_i为行向量。

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

关于范得蒙(vandermonde)行列式|111...........1||a1a2a3............an||a1^2a2^2a3^a..........an^2||....|=d|....||....||a1^(n-1)a2^(n-1)a3^(n-1)...an^(n-1)|行列式形式也可写成(更美观)|1a1a1^2...a1^(n-1)||1a2a2^2...a2^(n-1)||....||....||....||1anan^2...an^(n-1)|按第二方式写出的行列式第i行第j列元素可表示为a(ij)=ai^(j-1)这样的行列式就是范德蒙德行列式,其结果为:ii(ai-aj)1<=j应用于解线性方程组,而且对行列式理论本身进行了开创性研究,是行列式的奠基者。他给出了用二阶子式和它的余子式来展开行列式的法则,还提出了专门的行列式符号。他具有拉格朗日的预解式、置换理论等思想,为群的观念的产生做了一些准备工作。一种特殊的行列式以他的名字命名,但数学界有不同的看法,因为这一行列式并未出现在他的论文中。

这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。

文献综述式的论文怎么写

文献综述是对论文选题研究现状的梳理,但并不仅仅是把文献进行简单的堆砌与罗列,而是需要在总结梳理别人研究的同时,对已有的研究做出评价,也就是说有述有评,这也是为什么文献综述也叫做文献述评的原因。

论文综述范文写法如下:1、标题的标题一般多是在设计(论文)选题的标题后加“文献综述”字样。

2、提要或前言此部分一般不用专设标题,而是直接作为整个文献综述的开篇部分。内容是简要介绍本课题研究的意义;将要解决的主要问题;如果本课题涉及到较前沿的理论,还应对该理论进行简要介绍;最后要介绍研究者搜集的资料范围及资料来源。3、正文这是论文文献综述的核心部分。应在归类整理的基础上,对自己搜集到的有用资料进行系统介绍。撰写此部分时还应注意以下两点:其一、对已有成果要分类介绍,各类之间用小标题区分。其二、既要有概括的介绍,又要有重点介绍。根据自己的分类,对各类研究先做概括介绍,然后对此类研究中具有代表性的成果进行重点介绍。4、总结

对上述研究成果的主要特点、研究趋势及价值进行概括与评价。此部分应着重点明本课题已有的研究基础(已有成果为自己的研究奠定了怎样的基础或从中受到怎样的启发)与尚存的研究空间(本课题已有研究中存在的空白或薄弱环节)。5、参考文献要求列出的参考文献不少于15篇,且外文文献不少于3篇,并按论文中的参考文献的格式将作者名、文献名、文献出处、时间等信息全面标示出来。

格式:多次引用的文献,每处的页码或页码范围(有的刊物也将能指示引用文献位置的信息视为页码)分别列于每处参考文献的序号标注处,置于方括号后(仅列数字,不加“p”或“页”等前后文字、字符)并作上标。参考文献类型及文献类型,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:专著M;报纸N;期刊J;专利文献P;汇编G;古籍O;技术标准S;学位论文D;科技报告R;参考工具K;检索工具W;档案B;录音带A;图表Q;唱片L;产品样本X;录相带V;会议录C;中译文T;乐谱I;电影片Y;手稿H;微缩胶卷U;幻灯片Z;微缩平片F;其他E。

第一种写法:论文绪论部分的文献综述。

我们知道,一篇过万字的论文,在第一章绪论部分,都会涉及到文献综述,又可叫做国内外研究现状。

先说国内外研究现状的写法, 这种写法顾名思义就是把文献综述分为国外研究现状、国内研究现状去写,这里需要注意的一点就是,如果国内研究早于国外,则应该先写国内研究现状,在写国外研究现状,反之亦然。

还有一种写法, 标题就为文献综述,在内容的安排上,写先大的方面的研究综述,在进一步缩小到本文的研究方向上。

例如论文题目是《高校固定资产管理研究》,那么在文献综述的安排上,可以这样写:有关于固定资产管理的研究、有关于固定资产管理的意义研究、有关于高校固定资产管理的研究。

当然,以上两种文献综述的写法,也并不是简单的对前人的研究成果进行简单的堆砌,而是要加入自己的话去进行归纳整理,最后提出现有研究成果的不足,引出你的研究思路与方法,来弥补这一方面的研究不足。

也就是说,在写完文献综述之后,还要增加一段内容,即文献述评。

第二种写法:文献综述研究。

这种写法,实际上是以文献综述为论文,进行研究,不再是论文当中的组成部分之一,而是独立成文。

这种写法, 实际上也是对第一种写法的进一步扩充,写法上更加细致化。

还是以《高校固定资产管理研究》为例,那么在具体的写法上,首先要保护相关概念及其理论,说出固定资产管理的定义、有关于固定资产管理的理论依据。这一部分的内容是作为基本概述来进行阐述的。

在此基础上,进一步对国内外学者有关于高校固定资产管理的研究方法、研究对象、研究方向进行系统化的分类整理。

最后,提出现阶段的研究成果,在研究方法、研究对象、研究方向等方面的不足,并结合其不足,进一步论述未来的研究方向(如何规避这些不足,提出个人的见解。)

这是文献综述的两种写法,在弄清楚这一点之后,接下来才是搜索相关文献成果。

综述性论文的文献综述怎么写

撰写文献综述步骤:

1、搜索相关文献

2、评价来源

3、识别主题、辩论和差距

4、概述结构

5、写文献综述

综述论文基本结构如下:

1、论文的名称

论文名称要能很好地概括论文的主要内容,能表达论文的主题,但是同时需要注意论文的题目不要太大,否则不容易深入写作。

2、作者的署名和单位

署名和单位这部分内容要求要真实,不能用化名,不能虚假。

3、摘要

作为文章的内容提要,要对论文有高度的概括性,摘要的书写要简明扼要,涵盖写作的目的、方法、结果、结论这四个方面。在摘要这部分内容中不需要大家列图表,不需要引文,也不需要缩略语,一般独立成章,在200-300字即可。

4、正文

正文分为前言、中心部分、小结部分以及参考文献部分。前言要求简单明了,点明主题就可以;中心部分要求严肃引用别人资料,将肯定意见写在前面,否定意见写在后面,不能片面的只写自己的观点;小结部分要对文章的主要内容作简要总结;参考文献部分要求10-20篇左右。

5、关键词

关键词要能反映文章主要内容,便于读者了解论文的主题。一篇论文可以有3-5个关键词,这几个关键词可以从正文、摘要以及文章的小标题里边选出,注意关键词写原形词,用规范语言,关键词之间空一格书写或者用分号隔开都行,最后一个关键词末尾不用加标点符号。

文献综述的写作要点

1、大量阅读文献

在撰写综述前一定要全面搜集资料,如果不能系统全面地把握研究现状,或片面理解他人研究结果,盲目地认为某问题或领域尚未被研究,就会使得自己的研究变成一种重复性劳动,或者脑洞开的太大,论文可行性不高。

2、综合分析

综述不能仅仅是将前人的观点罗列出来而未进行系统分类、归纳和提炼。如果是“综”而不“述”,那么即便是内容有一定的系统性,充其量也只是陈述了他人的观点,达不到通过分析、评说而发现和确立论文选题的目的。写文献综述可以采用“填充法”,简而言之就是画导图、列框架、不断细化内容。

一、文献综述的准备工作

1、定向选题

在文献收集前,需要初步确定大致的研究方向,确定研究题目时要注重科学性、前沿性、专业性、可行性和适用性等原则。然后对该研究方向进行资料收集,对这些参考文献和资料进行阅读、归纳、整理,筛选出具有重要价值的代表论文进行精读,掌握在该领域的最新研究成果后,确定具体的文献综述题目,避免做一些重复性的工作。

2、收集文献

收集文献要以发表在研究领域主流期刊上的文章为主,这一类论文通常经过严格考证、反复推敲,是最具代表性的文献。建议从以下几个方面入手:

(1)选取研究领域较为经典的几篇著作,然后溯源这些论文的参考文献,通过“顺藤摸瓜”的方法可以找到一系列质量较高的论文;

(2)运用检索法,可在文献资源较多覆盖全部领域的文献搜索网站上查找文献,例如:文献党下载器。对搜索结果的引用量进行排序,下载学习具有高影响因子的论文;

(3)充分利用学校图书馆资源,高校的图书馆是大学里储藏图书和文献资源最为丰富的地方。

3、整理文献

首先,要阅读文献,对于整理得到的大量文献进行初筛后确定选择略读还是精读。略读的对象是一些与研究课题有相关性但仅需要阅读这类文献的重点内容。精读的文献是从泛读的文献中挑选出来的,需要带着批判的眼光去阅读文献,理解文章中图表、图注、规律和结论等重要信息,同时做好文献笔记的工作。

其次,要对文献整理和分类。根据所查阅文献的结果、结论及主要观点的不同进行归纳分类,围绕这些主题,将相似的文献分门别类保存在一起,使知识系统化。

最后,要列出一个撰写文献综述的框架。根据分门别类得到的资料,列出纲目和标题,将这些资料放在不同的标题下,保证标题和内容的一致性,同时也要确保整个框架的逻辑性,从头到尾思路要做到条理清晰、层次分明。

4、形成观点

在撰写文献综述之前,笔者应该全面掌握该领域的知识和文献,形成自己的认识和观点。切忌在自身对问题认识尚不成熟的时候动笔写文献综述。当笔者形成了自己的认识和观点,有一定的独到见解后,可全面引用、总结、分析和论述现有文献,引导读者了解这个领域,加深读者的认识,总结现有的结论和共识,指明有价值的研究方向和亟须解决的科学问题,从而促进这个领域的进一步发展。

二、文献综述的内容和要求

一篇文献综述通常包含五个部分:摘要、引言、正文、结论和参考文献。

摘要要求具有独立性和自含性,即摘要应包含正文里的内容,但又不能完全一致,应是全文的总结,用最简短的语句来高度概括文章所做的工作。摘要通常要求 200~300字,不能出现公式、图表和口头语句,避免出现非专业性用词、数据等。还需总结出3~5个关键词,关键词需采用专业名词,突出文章重点和亮点,便于文献的检索。

引言是说明文献综述的背景、目的和意义,介绍该研究问题已经取得的成就及当前尚需讨论的焦点,使读者在心中有个大致的印象,能够初步了解笔者想要表达的是什么。引言的撰写应做到以下几个方面:

(1)指出有关研究主题已发表论文的历史、现状和趋势,叙述有关的基本概念,定义研究领域,明确综述的范围。

(2)说明有关问题的现状,抓住主要争论的要点,引出综述的主线。

(3)突出写作的目的,引出正文。

正文是文章的主体部分,根据引言中提出的论点,基于搜集的文献资料,通过分析问题,比较不同学者对于同一研究对象提出的不同观点和理论依据,有理有据的剖析问题的本质,阐明自己的看法,进而解决问题。正文的撰写无固定格式,可结合使用以下几种方法:

(1)循序法。根据文献发表的先后顺序或事物、观点、结论、技术手段等发展的趋势进行阐述。

(2)论证法。根据研究问题的不同进行分门别类,从各个问题的角度进行论述。

(3)分类法。对综述主题的不同方面进行划分,例如,对同一主题的文献综述可从国界出发,对国内和国外的参考文献分别进行阐述,也可以按照不同主题来撰写。(4)对比法。将文献资料中不同的观点或结论进行评价分析,比较两者或多者之间的优劣性。

(5)归纳法。系统性的总结收集到的文献资料,将有理有据的观点结合起来,分析研究对象的现象和本质。

在正文的最后对全文进行扼要总结,主要点明文章的主题思想、主要观点,同时对这些观点和结论要有自己的见解和思考,明确哪些观点是成熟的、相对正确的、可靠的,进而提出该研究课题未来发展的趋势,有哪些问题值得深入研究和探讨。

参考文献一般位于文章的末尾。对于撰写文献综述来说,参考文献是非常重要的,一篇好的文献综述其参考文献的引用质量相对较高。对于文献综述的写作也有一定的要求。主要有以下几个方面需要注意:

(1)收集文献要尽可能的全面,但也要学会取舍。写好一篇文献综述的前提是需要大量的文献资料,但并不是要把读过的文献都写进去,而是仅包含那些有助于文章形成论点的原始材料。

(2)文献综述不是“数据库”,不是对现有文献简单的罗列和介绍,更不能大段的复制粘贴,而是需要笔者对过往研究观点的优点和缺点进行批判式的分析和评价,展现出笔者的“洞察力”。

(3)引用的参考文献具有代表性、可靠性和科学性,务必引用研究课题的经典文献。同时,可能存在诸多文献表述的观点较为一致的情况,因此,要在这诸多文献中找到最具有代表性的高质量论文。

(4)引用文献的内容要忠于文献本身。实事求是的表述作者想要表达的观点和文献的内容,不能随意篡改作者的本意,要做到全面、准确、客观,论点和论据采用第一手文献资料,避免引用他人对原始论文的分析和评价。

(5)文献的布局要有连贯性,逻辑清晰,不可拼凑内容,对不同观点的分析需做到公平公正,不能偏颇于某一观点或意见,把自己想象成一名“法官”,分析正反方的观点,给出自己的结论。

(6)避免在没有得到适当许可的情况下使用他人文献里的内容,这主要针对部分文献里的图表等内容,需要在图表的标题中注明文献来源。

(7)对于从来源中引出的句子,即使不能用更好的句子来重新表述,也要组织语言写出论点,并用引文或引语来支持此论点。

论文文献综述怎么写

  • 索引序列
  • 行列式的论文文献综述怎么写
  • 行列式的论文文献综述
  • 行列式论文文献综述
  • 文献综述式的论文怎么写
  • 综述性论文的文献综述怎么写
  • 返回顶部