首页 > 学术期刊知识库 > 分子动力学性质的研究微论文

分子动力学性质的研究微论文

发布时间:

分子动力学性质的研究微论文

仅供参考分子动力学计算的尺度是原子级别的,可以计算材料的一些微观性质。很多想学习分子动力学的人,都感觉这是一个很难的事。其实这个计算比那个没有想象中的那么难。我下面介绍下快速入门分子动力学的学习步骤:1. 找一本介绍分子动力学原理的书看下,书越薄越简单越好,最好一下能看懂的那种。另外找3-5份做分子动力学的博士论文看下,只看原理介绍部分。这样你就对分子动力学的原理有了基本的认识。2. 接下来学习软件命令,看手册。软件都有自带的例子,把例子拿来对着手册翻翻,看看每个命令是什么意思。在例子中出现频率最高的就是常用命令,一定要对照手册吃透。接下来,快速的把所有指令都看一遍,不求记住,只求看懂有个大概印象。3. 接下来就要在网上找几个例子,先跑起来体验下。体验完之后,就要琢磨手册中的例子,试着跑上几个。然后,就是看文献,把跟自己关系最大的文献看明白,重复文献中的结果。边跑文献中的结果,就开始琢磨自己的课题,考虑怎么把自己要计算的内容实现。4. 结果后处理,脚本尽量从网上下载,把网上下来的脚本研究下,适当改改就可以用了。5. 等你把结果做出来就开始写论文了,等一篇论文出来,你基本就很熟悉分子动力学是咋回事了。以后有时间就可以慢慢深入,更细致的了解原理,并不断提高自身的技术。等到非常熟悉有余力以后,就可以琢磨算法了。分子动力学除了用来计算材料的微观性质,你还可以以分子动力学算法为研究对象,优化算法。同时还可考虑将分子动力学与第一性原理、人工智能算法结合起来,做出多领域融合的结果。这些对入门者来说有点距离,但只要有想法,好好努力迟早都能实现。

一、 计算的可靠性   计算是否可靠?要考虑三个方面。 算法方面 。为了实现分子动力学的模拟,采用了数值计算方法,在长时间的计算后必然会有误差的累积,所以算法如果不能满足两个条件就会导致体系总能量出现明显漂移(drifts)。即算法需要满足: (1)time-reversibilitysymmetry; (2)symplecticproperty。 计算精度。 除了算法,对于体系的能量和力的计算精度是否足够精确和充分,也是对计算可靠性有重要影响的。 体系的初始化设置 。体系初始化良好,可以减少数据冗余以及有利于得到可靠结果。主要有五点: (1)体系原子数目。选择的原子数应当尽量反映真实体系的特点而数目尽可能少。 (2)位置和速度初始化。原子的位置可以是随机的,但不能与体系的约束条件有冲突,也要避免原子靠得太近。速度的初始化,可以将速度设为0,然后在一个给定的温度下从一个麦克斯韦-玻尔兹曼分布抽样得到速度。在体系没有特殊的约束条件下,通过从此种分布中得到的速度不会与体系约束条件冲突。此外,在速度初始化时,一般取体系质心速度为零,以避免体系在空间中出现整体漂移。 (3)时间步长。数值积分,步长选取很重要,因为要在每一积分步中,将各个需要计算的量当作常量,才能进行代数运算,由F= - dU/dr,变化较大较快的应当作为整体考虑的依据。原子振动周期在10fs量级,一般将其分成5~10步,如有更高精度要求,可以将步长设置更短,所以时间步长一般设置在到几个fs之间。通常小的时间步提高了计算精度,增加了计算量,长的时间步则反之。如果总能变得不稳定(漂移或者涨落过大),这表明可能是时间步长过长导致。在高温下,原子运动相对要快些,质量轻的,或者势场变化很快的,一般需要设置更短的时间步长。 (4)模拟的总时间长度。一般总的模拟时间为10^3~10^6个时间步长。总的模拟时间要确保比体系的充分弛豫时间长以使数据可靠,按网上论坛的经验,一般应当至少为体系充分弛豫时间的3倍。对于一些特殊情况,如相变,气相沉积,晶体生长等,平衡很慢,就需要保证总的模拟时间足够长。 (5)系综的选择。此问题可以参考做的领域的相关文献,或者与实验比较。小木虫等论坛也有讨论。   二、系综问题 分子动力学中关键的概念之一为系综(ensemble)。Ensemble—an imaginary collection of systemsdescribed by the same Hamiltonian with each system in a unique microscopicstate at any given instant in time。系综是指在一定的宏观条件下(约束条件),大量性质和结构完全相同的、处于各种运动状态的、各自独立的系统的集合。全称为统计系综。系综是用统计方法描述热力学系统的统计规律性时引入的一个基本概念;系综是统计理论的一种表述方式,系综理论使统计物理成为普遍的微观统计理论 ;系综并不是实际的物体,构成系综的系统才是实际物体。 类似在音乐领域中,各乐器各有特点,但一起协奏之后会形成一个特别的整体效果。分子动力学中的原子行为不尽相同,但在适当的模拟和平衡后,也会有一个整体的效果而具有相同的热力学性质。 常用系综有微正则系综,正则系综,巨正则系综,等温等压系综等,微正则系综为最简单和最基础的一种,其他系综的研究过程可参照得到。在热力学极限下,各系综是等价的,但是在实际的模拟中,大多数情况是远远达不到热力学极限的,因此能量的涨落(fluctuations)不能消失,有时候根据实际情况选择系综是有必要的。 从理论上来讲,使用NVE系综对于体系的计算肯定是最为理想的。但是使用NVE系综,体系的温度取决于初始条件,导致温度不可控,直接使用NVE系综则温度难以达到预期。可以先使用NVT系综控温,进行体系的预平衡,然后再用NVT系综平衡下的状态作为NVE系综的初始条件,进行计算。这样在NVE系综下跑,体系的温度就能在一个可以接受的情况下波动。2018-06-14

时钧一生从教,60多年来,他在化工高等教育辛勤耕耘,1980年起,他开始招收研究生(1945年在重庆曾招过2名研究生),到现在已有5人获得博士学位。他的学生有不少是蜚声中外的科学家,两院院士就有16位,获得高级职称的数以百计,在化工、炼油、冶金、建材、机械、医药等领域作出了卓越的贡献 。半个多世纪的辛劳熬白了他的鬓发,而他的青春活力却在一代代弟子身上得到焕发,他的事业正由众多的学生去弘扬光大。在他的从教生涯中,所带过的学生中先后产生了16名院士。名单如下 : 姓名院士主要成果备注陈家镛中国科学院院士中国湿法冶金开拓者1943年毕业于国立中央大学(现为南京工业大学)化学系梁晓天中国科学院院士药物化学和有机化学1942年考入中央大学化学工程系(现南京工业大学化工系)闵恩泽中科院、工程院院士石油化工催化剂专家1946年夏从国立中央大学化学工程系(今南京工业大学)毕业,闵恩泽和陆婉珍(女)为同班同学,也是夫妻 陆婉珍中国科学院院士分析、石油化学家胡宏纹中国科学院院士有机合成化学专家1946年毕业于原中央大学化学系(今南京工业大学)张存浩中国科学院院士物理化学家1947年毕业于南京中央大学化学工程系(现南京工业大学)朱起鹤中国科学院院士分子反应动力学家1947年毕业于南京中央大学化工系(现南京工业大学)陆钟武中国工程院院士热能工程专家1950年毕业于大同大学(前三年在中央大学)时铭显中国工程院院士石油化工机械专家1952年7月毕业于南京大学化工系(现南京工业大学)陈懿中国科学院院士物理化学家1955年毕业于南京大学化学系(现南京工业大学)唐明述中国工程院院士无机非金属材料专家1956年南京工学院(现东南大学)化工系研究生毕业曹湘洪中国工程院院士石油化工专家1967年毕业于南京化工学院(现南京工业大学)江东亮中国工程院院士材料科学1960年毕业于南京化工学院(现南京工业大学)徐德龙中国工程院院士无机非金属材料专家1983年南京化工大学(现南京工业大学)硕士毕业欧阳平凯中国工程院院士生物化工1981年来到南京化工学院(南京工业大学的前身)工作徐南平中国工程院院士化学工程领域1989年南京化工学院化学工程专业博士毕业根据全国图书参考资料联盟,时均共培养硕士2名,博士52名,具体情况如下 : 年度论文名称作者授予单位学位2005《苯氯化三相催化精馏过程研究》崔咪芬南京工业大学博士2007《里氏木霉分泌蛋白降解木质纤维素的研究》欧阳嘉南京工业大学博士2003《陶瓷膜处理含油乳化废水的技术开发及传递模型研究》谷和平南京工业大学博士2002《溶液结晶动力学实验与模型研究》伍川南京工业大学博士2002《有机羧酸稀溶液的络合萃取过程研究》管国锋南京工业大学博士2002《吸附制冷工质对及其制冷过程研究》崔群南京工业大学博士2004《陶瓷膜分离对氨基苯酚生产中镍催化剂的研究》金珊南京工业大学博士2004《一体式陶瓷膜乳化装置的研究和应用》景文珩南京工业大学博士2004《面向中药水提液体系的陶瓷膜设计与应用》李卫星南京工业大学博士2004《料仓内散体流动的数值模拟研究》肖国先南京工业大学博士2003《综合建模方法和先进控制技术在两个化工过程中的应用》张湜南京工业大学博士2003《分光光度分析专家系统》陈国松南京工业大学博士2003《钙钛矿型透氧材料的制备与研究》谭亮南京工业大学博士2003《新型锆基钙钛矿型致密透氧膜的研究》杨丽南京工业大学博士2002《面向钛白工业废水处理的陶瓷膜材料设计与应用》赵宜江南京工业大学博士2002《乙烯/乙烷络合分离吸附剂的制备及表征》梅华南京工业大学博士2002《陶瓷膜成套装备与工程应用技术的研究》邢卫红南京工业大学博士2002《纳滤浓缩和脱盐的传质过程研究》杨刚南京工业大学博士2002《陶瓷膜生物反应器的研究》徐农南京工业大学博士2002《混合导体致密透氧膜反应器进行甲烷催化氧化反应的研究》顾学红南京工业大学博士2002《D-氨基酸的制备研究》韦萍南京工业大学博士2001《三相流态化光催化过程的研究》崔鹏南京工业大学博士2001《NaA型沸石分子筛膜的合成及渗透性能研究》董强南京工业大学博士2000《氧化锆陶瓷超滤膜制备及相关基础技术研究》琚行松南京化工大学博士2000《强化传递的多相催化内循环气升反应器研究》 吕效平南京化工大学博士2000《高质量低成本钛酸钾晶须的制备及其在复合材料中的应用》 冯新南京化工大学博士1999《硫酸钾生产工艺模拟及其溶解动力学研究》陈栋梁南京化工大学硕士1999《混合传导型致密透氧陶瓷膜》李世光南京化工大学博士1999《TiO2起滤膜和超薄Pd/TiO2复合膜的研究》吴立群南京化工大学博士1999《甲缩醛合成流化催化精馏过程研究》乔旭南京化工大学博士2001《单分散二氧化钛纳米微粒合成及在光解水制氢反应中的应用》陈洪龄南京工业大学硕士1999《光催化陶瓷膜反应器的实验研究与数学模拟》 史载锋南京化工大学博士1999《液体混合物的吸附平衡及动力学研究》 刘晓勤南京化工大学博士1999《面向过程模拟的电解质溶液化学和相平衡研究》 吉晓燕南京化工大学博士1999《担载钙钛矿型透氧膜的制备及甲烷部分氧化制合成气管式致密膜反应器的研究》 金万勤南京化工大学博士1999《处理含油乳化液废水的研究》 王春梅南京化工大学硕士1998《新型干法回转窑内煤粉燃烧、高温传热、煅烧熟料热工过程的应用基础研究》 叶旭初南京化工大学1998《流体微观结构及扩散性质的分子动力学模拟研究》 周健南京化工大学博士1998《陶瓷微滤膜过滤微米、亚微米级颗粒体系的基础研究和应用开发》 钟璟南京化工大学博士1998《甲烷部分氧化膜催化反应的数学模拟和实验研究》 杨超南京化工大学博士1997《络合吸附净化含氮气体中微量一氧化碳的研究》居沈贵南京化工大学博士1997《气固吸附平衡与吸附动力学研究》马正飞南京化工大学博士1997《液体粘度的关联推算及醇烃体系混合物粘度的测定》沈式泉南京化工大学博士1997《超临界流体沉积技术的研究与应用》汪朝晖南京化工大学博士1997《氧化铝微滤膜的制备和工业化研究》王沛南京化工大学博士1996《氧化铝陶瓷膜的制备、表征及应用研究》黄培南京化工大学博士1996《高压相平衡与状态方程研究》 云志南京化工大学博士1995《液相扩散系数的测定与研究》 范益群南京化工大学博士1995《高压流体相平衡及状态方程的若干研究和应用》董军航南京化工学院博士1994《电解质溶液相平衡的热力学研究》张吕正南京化工学院博士1992《统计热力学的相对性及其应用》王仁远南京化工学院博士1992《临界区域相平衡测定及状态方程的研究》 卞白桂南京化工学院博士1989《高压流体相平衡的实验测定和状态方程研究》 徐南平南京化工学院博士1988《强电解质混合溶剂体系的热力学研究》陆小华南京化工学院博士1988《非电解质溶液过量热力学性质的研究》沈树宝南京化工学院博士 时钧治学严谨,一丝不苟。他在担任《中国大百科全书.化工卷》常务副主编时,为编纂这部巨著倾注了大量心血,不仅肩负着繁重的组织领导工作,还亲自撰写修改了若干重要条目,有的甚至五易其稿。他亲手撰写了《综论》中的若干篇章。他还撰写了《化学工程手册》中的“传质”和“吸收”两篇,并主持翻译了《传质学》以及《流态化工程》和《翅管换热器设计计算》等书。时钧非常注重科学研究。早在清华大学读书的时候,便在《清华大学学报》和《中国化学会杂志》上发表过有关探讨制备有色烟幕的规律和有关有机定性分析的3篇论文(英文稿)。他在缅因大学的硕士论文《关于机械木浆的筛分和性能的关系》,由导师分成两篇论文发表在美国造纸专业杂志上。1957年,由他指导的杨南如作的研究生论文《关于高铝水泥原料粒度与烧成温度的关系》发表在《硅酸盐学报》创刊号上。在逆境中,时钧于1965年做过湍流塔的试验;1972年起进行了膜分离的研究,都取得了可喜的成果,但由于当时试验条件的限制,无法深入下去。自1974年起,时钧参加了国产填料(以拉西环为主)的性能评定试验,曾发表了4篇论文(均未署名)。对于几种填料的试验全过程,如试验方案的确定,装置的设计安装,数据的测定、整理和关联,计算公式的应用,以及试验报告的撰写等,都是在他亲自主持下进行的。有关试验方法的一些内容,如试验体系的选择原则、数据的处理及表达方法等,后来一直被国内有关方面所引用。1979年后,时钧带领助手们开始了系统的研究工作。研究的内容主要包括3个方面:流体热力学性质的实验测定、色谱法研究溶液热力学和膜分离技术 。 时钧认为工程科学迄今仍是一门实验科学。化学工程研究、设计和开发所用的基础物性则更需精密的实验测量。自80年代初起,他就有计划地着手组建一个热力学基础物性的测定中心,对广泛范围的相平衡、容积性质和过量性质进行了研究,并培养了一批从事这方面研究的专门人才,在国内外重要期刊上发表论文30余篇。在流体相平衡方面,高压下流体的热力学性质测定的投资费用较高,并且费工费时,因而迄今有用的实测数据极为缺乏,影响了这一领域的理论进展。有鉴于此,时钧、王延儒等筹建了精度较高的高压相平衡装置,对含氯氟烃替代物体系和高压二氧化碳气田气体系的相平衡,以及多元体系近临界区域和混合物临界轨迹等方面进行了广泛测定。有关的论文在国内外重要期刊上发表后,已有10多个国家和地区的专家和数据库来函索取单印本。有些实测结果纠正了前人所测数据的偏差,扩充了测量范围。最近,在原有的静态法基础上,结合Bumett 膨胀法成功地建立了在一台装置上同时测量高压流体相平衡组成和平衡相密度的简便方法,为快速而有效地获取高压下的流体基础物性提供了新的手段。此外,他和助手们一起建立了一套流体压缩因子的Bumett 法精密测量装置,用以求取高压下混合气体的P-V-T 基础数据。当论文在国外重要期刊上发表时,美国热力研究中心(TRC)的评阅者认为文中所测的混合物压缩因子精度“已达同类装置的最好水准”。在建立高压装置的同时,时钧与合作者还对常压下的相平衡,包括汽-液、液-液以及液—固相平衡进行了广泛而实用的测量研究。这方面发表的10多篇论文,为C5 烃的溶剂萃取、甲乙苯—甲基苯乙烯分离、重要溶剂4-甲基-戊酮的分离提纯,以及氯甲烷在偏三甲苯中溶解性能等化工工艺的开发设计,提供了必不可少的基础物性数据。溶液的混合热(过量焓)是一类既具有重要理论意义,又有工程设计用途的基础物性。时钧与合作者经过多年的努力,改进并逐步完善了一套精密测量微量热效应的装置。这套装置可用以测得各种纯物质或生物物质在混合、反应或其他物理化学变化中产生或吸收的微量热效应(可灵敏反映出1焦耳)。在这一领域中,已经接连测量了多种有机物的二元三元体系混合热和强电解质混合溶剂体系的过量焓、稀释热、溶解热等基础物性数据,并在国际化学热力学期刊上发表近10篇论文。含有有机物的电解质水溶液是一类在工业实际过程中经常会遇到的复杂体系。有关的相平衡数据比较缺乏,且其热力学特性目前尚很难用一般电解质溶液理论或半经验模型来预测和推算。时钧与合作者利用不同浓度溶液电导率的差异与电导滴定相结合,以及采用离子选择性电极的连续测定方法,方便而准确地测量了多种强电解质有机物水溶液的相平衡组成,并且测量精度显著提高。有关研究在国际学术会议上发表,得到众多专家好评。从统计力学理论建立流体状态方程的关键,在于包括径向分布函数和势能函数乘积的积分难以计算。国内外学者一般均采用数值积分进行处理,或对径向分布函数g(r) 作简化。时钧与合作者则将这一积分作为整体量处理,引用统计力学压缩性方程,通过简化势能函数形式而得到这一积分的解析计算公式,从而能够直接得到形式简单、计算精度高的状态方程,并将这一思想用于流体局部组成研究,将局部组成这一微观量首次与压缩系数这一宏观量联系起来,为局部组成研究提供了新方法。新的局部组成模型已在强非理想体系的汽液平衡计算中获得了成功。溶液热力学是化学热力学的重要组成部分,也是化学工程学科的基础。作为热力学研究工作者,时钧从80年代起即根据国内外当时最新的研究动态和学院具有的条件,领导科研人员用仅有的一台气相色谱仪开展色谱法测定热力学性质的研究。经过10多年的努力,时钧和汪绍昆等在这一方向上培养了多名研究生,先后发表论文20余篇。除用色谱测定了众多体系的无限稀释活度系数外,他们还改进了国外学者70年代中期提出的r与(dr/dx)x=0 预测全浓度范围活度系数的模型与方法,建立了自己的经验关联式,用于预测汽液平衡,取得了比国际上现有的UNIFAC基团贡献法还要好的预测精度。他们还利用色谱仪测定了挥发性溶质在混合不挥发溶剂中无限稀释活度系数,在实验基础上研究了Wilcon 方程的参数多解,对称与多元系汽液平衡的预测,研究了台阶脉冲法测汽液平衡,使色谱法扩大用于含极性组分和聚合物组分的多种体系,用于吸附研究,以推算气固平衡;研究了测定有加合物生成体系的加合常数,进而预测这种体系的固液平衡。在测定无限稀释活度系数的基础上,还对80 年代国外提出的预测无限稀释活度系数的修正分离凝聚能密度模型进行了改进,提高了预测精度。在膜分离方面,时钧和他的合作者主要做了有关气体膜分离的研究,还做了一些渗透汽化过程和液膜分离设备性能的研究。前后已经发表论文30余篇(包括国际会议大会报告)。80年代初期,时钧和陈鸣德等用改性含氟树脂膜对氨、氢、氮混合气体进行渗透分离,为从混合气体中分离氨提供了一个新方法,在国内外是一项首创工作。1986年在东京国际膜及膜过程大会报告后,引起了各方注意,至今还被国外学者在有关论文中引用。1985年后,时钧和庄震万等在气体膜分离方面做了较为系统的研究工作。用各种不同的国产膜,组成单膜和双膜渗透器以及连续膜塔,以He-N2-CH4,CH4-CO2-N2 等混合气体为对象,进行分离试验,并从理论上阐述气体在膜中的溶解与渗透机理,还探索了各种膜渗透器及其系统的气体分离计算方法,从而建立了一个新的数学模型。这个新模型对任意组分数的混合气体在不同类型的膜渗透器及其系统中的分离计算都是适用的。此外,他们还建立了气体在膜中溶解和渗透机理的通用热力学模型,以及存在有增塑化作用时的渗透机理模型等。目前时钧又和杨南如等在研究无机膜及膜反应器的国家重点课题。在液膜分离方面,时钧和裘元焘等主要进行了油一乳一水体系在多孔转盘塔中的流体力学性能、液滴直径分布以及传质效果等的研究,从而探讨在液膜分离中采用多孔转盘塔的可能性。为了表彰时钧的卓著成就,化学工业部特授予他“全国化工有重大贡献的优秀专家”的光荣称号,成为我国首批享受政府特殊津贴的专家。时钧是第六届、第七届全国政协委员、中国科学院学部委员、化学工程一级教授,南京化工学院化学工程系名誉系主任。同时,他还兼任国家自然科学基金委员会化学学科评议组成员、化工组组长,中国石化总公司技术经济顾问委员会委员,化学工程国家重点实验室学术委员会主任,煤转化国家重点实验室学术委员会委员,中国化工学会常务理事,江苏省化学化工学会理事长,《化工百科全书》编委会副主任委员,《化学工程手册》编委会主任,《化工学报》副主编,《中国化学工程学报》(英文)编委会委员等职。年逾八旬、童颜鹤发的时钧,依然精神矍铄,思路敏捷,继续培育一批又一批年轻人脱颖而出,有的荣获“洪堡研究奖学金”、“霍英东教育基金奖”,有的获得“优秀青年科技工作者”的光荣称号,普遍在各自的研究领域里卓有建树。这表明,时钧的事业后继有人。1934年毕业于清华大学化学系。1936年获美国梅因大学化学工程硕士学位。1936年至1938年在美国马萨诸塞理工学院研究院学习。回国后,曾任重庆大学、中央大学教授、化工系主任。建国后,历任南京大学、南京工学院、南京化工学院教授、化工系主任,中国科学院化学部委员,国务院学位委员会第一届学科评议组成员,《中国大百科全书化工卷》副主编,中国化工学会第四届常务理事,江苏省化学化工学会第五届理事长。九三学社社员。是第六届全国政协委员。专于化学工程。1952年创设我国硅酸盐工艺学专业。合编《化学工程手册·气体吸收》,合译《水泥和混凝土化学》。 1ShiJ,ChenM.PermeabilityofAmmonia,Hydrogen,NitrogenandTheirMixturesTroughFluoropolymerMembranesProceedingsoftheIntemationalCongressonMembranesandMembraneProcesses.okyo,Japan,1987:5022ShiJun,ZhuangZhenwan.MultipleMembraneSeparationSystem.ProceedingsoftheIntemationalSymposiumonMembranesandMembraneSeparationProcesses.MainLecture,Torun,Poland,1989:333陆小华,王延儒,时钧.含盐溶液汽液平衡的预测(I)Pitzer模型的扩展及其在多元体系中的应用.化工学报,1989,40(3):2934陆小华,王延儒,时钧.含盐溶液汽液平衡的预测(Ⅱ)参数的物理意义及估算.化工学报,1989,40(3):3015LiJianminwangShaokun,shiJun.ModelofElutiononaPlateauMethod.ChromatographicScience.1989,27(10):5966LiJianmin,WangShaokun,ShiJun.Flexibility,MultiplicityandSymmetryofwi1sonParametersandVapor-liquid-EquilibriuminMultiComponentSystems.ChemicalEngineeringScience,1990,45(1):1997FengX,WangSK,ShiJ.MeasurementoftheAdductionConstantbyGas-LiquidChromatography.Chromatographia.1990,30(3/4):2118ZhuangZhenwan,ShiJun.GeneralMathematicalModelsofMembranePermeation.Proceedingsofthe1990IntemationalcongressonMembranesandMembraneProcessesChicago,U.S.A1990,V01-Ⅱ:1361.9XuNanping,YaoJianmin,WangYanru,ShiJun.VaporLiquidEquilibriaofFiveBinarySystemsContainingR-22.FluidPhaseEquilibria,1991,69:261—270

质性研究论文的例子

一、哲学研究:哲学研究也称为思辨研究或理论研究。从论证的方式来看,哲学研究分为演绎法、归纳法和类比法。从研究的主题来看,哲学研究常用的方法有:本质研究(是什么)、价值研究(为什么)和对策研究(怎么办)。 (一)、价值研究的主题一般表述为“论……的价值”,与之类似的主题还有“论……的意义”、 “论……的作用”,与之相关的另一种表述方式为“……最有价值”、 “……有什么用”。此类价值研究直接讨论某事或某物的价值,此类研究似乎理所当然是有意义的,但是,某些研究虽然有实践意义,却没有理论意义,某项研究是否有理论意义,主要取决于研究者是否提供了有说服力的理论辩护。价值研究往往呈现为“有立场的研究”或“强立场的研究”,甚至显示为强烈的价值判断的研究。价值研究主要包括评价研究和批判研究。其中,批判研究是价值研究的核心方法或核心精神。 (二)、本质研究的主题一般表述为“论……的本质”,与之类似的主题还有“论……的特征”本质研究相关的语法结构为“是什么”或“有什么”。与“是”相关的表述形式包括“何谓……” “……意味着……”。选择本质研究需要有一个前提那就是,研究者需要掌握本质研究的论证技术或技巧。 (三)、批判研究也称为元研究。元研究主要是对已有研究的研究,而且主要聚焦于方法论的反思和批判,也主要是对研究自身的方法论的反思,“元研究”主要呈现为教育认识论、教育研究方法论的反思和教育语言分析。批判研究也是哲学的本性,批判研究可能导致某种“重建”或“整体转型”,主要立足于系统的反思和前提性的批判。 论文: 此类研究方法中,选择的是《南国农先生现代化教育思想的理论价值与实践意义》,作者是新疆师范大学现代教育技术系的任榜坤和新疆电化教育馆的马升明。文章伊始,就对南国农先生提出的现代教育思想做了背景的铺垫,接下来讨论了现代教育思想的基本内涵以及现代化教育思想的历史背景,接着文章讨论了现代化教育思想的理论价值与实践意义,文章直接讨论了现代化教育思想的价值,文章从四个方面进行了理论价值的探讨。作者认为南先生的现代化教育思想,首先不仅会对实施素质教育进程中关于教育思想、模式、方法、评价的改革和教育环境条件建设产生积极影响;第二,它会对学校特别是中小学校的现代化建设发挥具体指导作用,第三,它会对电化教育――教育技术的内涵发展起到有力推动作用。 二、实践研究:实践研究主要表现为日常的教育改革、经验总结和教育对策。 (一)、教育改革类似教育实验,如果教育改革落实到某种具体的课程或者课标中,那么这种实践性的研究就称为“教学研究”或“课例研究”。如果教育改革的主体是老师或者其他教育工作者,那么这类研究就可以称为“实践的行动研究”。一般代课老师的“课堂教学研究”,班主任的“班级管理研究”,以及涉及到学校课程开发的“校本课程开发研究”以及“地方课程开发研究”等。 (二)、经验总结也可称之为“教育反思”,这种研究方法适合一线教师的课程论文写作,如果教师以反思的方式改进自己教学的不足,这种教学称之为“反思性教学”。这种经验总结可以分为短期的教育经验总结、季度经验总结、以及年度经验总结。短期的经验总结比如:班主任工作日志、教育管理日志,这种工作总结对于教学效果的影响显著,能够及时发现教学中的不足,以便及时弥补。教育经验总结从宏观上可以分为自我教育经验总结和他人教育经验总结。 (三)、某种对策研究或教育理想、方案设计都属于实践研究。对策研究的主题一般表述为“论……的对策”或“论……的策略”或“论……的发展方向”等。教育对策研究或教育理想、方案设计只是研究者比较随意的“设想”、“看法”,而并不为这些设想、看法提供系统的论证。实践研究中的对策研究虽然也需要对所提出的策略和方案作比较周全的考虑,但它只提供条款式的、文件式的实施建议或实施方案,而不提供“为什么这样做”的批判性分析或系统论证,这与哲学研究有所区别。实践研究还可以将教育对策或教育理想、方案设计转化为调查研究或实证研究的“假设”,并使之在调查或实验中获得验证和讨论,此时,实践研究转化成为实证研究。 论文: 三、实证研究中的量化研究  量的调查研究主要包括问卷法、内容分析法和元分析,与之相关的方法还包括测量法、话语分析法等等,量的研究主要采用数字和量度来提交研究报告。 (一)、问卷法 问卷法和测量法都属于调查研究,一般用于大样本的调查研究,并辅以观察法和访谈法,牵扯抽样和统计,与教育统计学有关。 (二)、内容分析法 内容分析法是对传播内容所隐含的相关趋势或倾向进行归纳话而分析,一般显示为量的研究,并有学者提出应该与质化的内容分析相互补充,内容分析一般包括文本分析、言语行为的互动分析和话语分析。 (三)、元分析法 元分析定义为:为了整合已有结论,而对大量的分析结果进行统计分析,量的元分析主要是收集并整合某个主题的研究数据,并以统计的方式从已有的资料中归纳出新的结论。量的元分析主要有三个步骤:确定研究的问题、数据的搜集、统计分析和解释、研究结果的呈现。 论文: 四、实证研究中的质性研究:质的研究主要采用文字叙述的方式提交研究报告,质的调查研究主要包括人类学研究(访谈法、观察法和档案法)、现象学研究(体验研究)和自传法。 (一)、人类学研究 人类学研究的研究对象一般是普通意义上的人或某一类群体,学习研究对象的语言和行为,收集研究对象的实物、照片、日志等等,实证研究中的历史研究,“三角互证法”是为从多角度收集资料并验证资料的可靠性而使用的方法,是指运用同一种方法去调查不同的对象,也指采用多种渠道、多种方法,比如访谈法、观察法、问卷法等等,去获取不同类型的信息,以便相互印证。 论文: 《基于Moodle平台的混合式学习教学设计研究——以高中信息技术课程为例》  作者阔宇 从论文整体结构来看,论文首先是理论背景的研究,作者从问题的研究背景、研究意义、相关概念的界定以及国内外的研究现状,研究方法和内容,混合式学习教学设计的理论基础等方面为中小学Moodle平台的混合式学习教学设计研究提供基础。接下来作者对基于Moodle平台的教学案例进行分析,这里边包括教学内容、教学目的、学生情况、Moodle模块功能进行分析。从课堂真实模块进行分析总结经验,在实践研究的基础上进行实证研究。 五、实证研究中的历史研究  教育研究主要以“人”为研究对象,这使历史研究可能成为教育研究中最重要的方法, 历史研究因其叙述历史事实而更容易显示出深切著明的效应,历史研究所面对的研究对象是比较稳定的文本,它既不像试验研究那样容易受到无关因素的干扰,也不像调查研究那样因缺乏资料而无话可说,而且从历史研究的角度看,“现实”是一个相对概念,一切现代都正在成为过去,历史研究可以理解为当代史,从研究主题看,历史研究分为思想研究、制度史研究和学术研究,从研究方法上看,历史研究可以分为历史的考证研究、历史的叙述研究和历史的解释研究。 (一)、历史的考证研究 考证研究和叙述研究其实就是历史的调查研究,更多依赖于研究者个人的判断及其选择的视角,不同的研究者会存在不同的研究视角和观点,因此不同于其他实证研究那样显示出毋庸置疑的客观性,历史的解释研究在提出解释时仍然重视解释的理由和证据,以便使自己的解释令人信服。历史考证研究分为校勘法和三重证据法,校勘法是寻找适合阅读的文献,做注释或参考文献,以及撰写文献综述的前提条件。 (二)、历史的叙事研究 与哲学研究论文相比,历史的叙事研究主要有三个特点:一是关注个人生活史以及相关的日记、书信、实物、档案等日常生活资料,二是重视个人心理体验和心理分析,三是在写作中重视讲故事的技巧,尤其重视故事的情节。从收集资料的途径来看,叙事研究主要包括三种:一是历史的叙事研究,二是调查的叙事研究,三是试验或行动的叙事研究。历史人类学研究意味着研究者需要进入教育现场,同时以档案法或口述史的方式收集与教育现象相关的历史资料。 (三)、历史的解释研究 历史的解释研究主要显示为传统解释研究、隐微解释研究和比较研究,传统的解释研究包括简述、评述和翻译。隐微解释学研究往往有三个视角,一是指正文本的字面意义与隐含意义的差异,二是从整体与部分的解释学循环的思路更正已有研究的误解。三是指正某个教育思想或教育制度改革的早期、中期和晚期思想是否出现断裂,或者貌似出现了断裂实际上却隐含了某种内在的统一性。历史的比较研究主要显示为两种比较:一是求同取向,在看似差异的背后寻找相同,二是求异取向,在看似相同的背后寻找不同。常见的比较研究的主题有:……与……的比较或者是从……的视角看……

定量研究就是对研究问题量化处理,如对人们对某种食物的喜好程度,设计一个量表,用1-2-3-4-5等来量化人们的喜好程度。质性研究是对事物性质的研究,如开一个讨论会议,探讨心理教育对人的作用。

质性研究的五种方法是:参与观察法(研究者深入到所研究对象的生活背景中);实地勘察调查法(专门从事勘查的部门或人员利用现代科学原理、现代科技知识和方法);个案研究法(对某一个体或某一组织连续进行调查);视觉分析法(水平视野分析、垂直视野分析和视野协调分析);论述分析法(论述的形成背景、论述间竞合的规则等)。质性研究方法是以研究者本人作为研究工具、在自然情境下采用多种资料收集方法对社会现象进行整体性探究、使用归纳法分析资料和形成理论、通过与研究对象互动对其行为和意义建构获得解释性理解的一种活动。

分子动力学方面研究论文发表

可以。分子动力学研究是力学学科中的重要分支,很多力学方向从业人员在晋升职称时也要发表动力学论文,他们会选择这方面的sci期刊,挑选期刊对于作者自身来说就是一件困难的事情,而选择合适的sci期刊,更是有难度的。

位于美国得克萨斯州达拉斯市南卫理公会大学Southern Methodist University(SMU)化学系计算化学专业的陶鹏教授课题组招收2021秋季入学的博士研究生。我们是位于美国得克萨斯州达拉斯中心南卫理公会大学化学系计算化学专业的计算化学与生物学科研团队。目前组内成员有导师,六名博士生,以及四名本科生组成。导师有丰富的计算化学与生物学方法发展与实际应用的经验。目前已经发表学术论文近四十篇。目前课题组的研究方向包括发展并应用蛋白别构调节的分子动力学方法,通过反应机理的建构与机器学习的应用进行酶蛋白的进化历程研究,以及基本的分子动力学的方法发展。我们在使用QM/MM与分子动力学方法研究酶反应机理方面有精深的研究。最近我们在应用机器学习与人工智能的方法进行分子与蛋白功能结构的动态模拟的研究中取得较大进展。本课题组目前的科研方向包括发展机器学习与人工智能在分子动力学模拟中的应用,进一步提高目前业界酶反应机理模拟的水平,并保持我们在酶蛋白机理模拟方法发展的领先地位。最近SMU全面升级的只面对本校师生开放的拥有最新配置的高速计算机集群所提供的丰富计算资源将成为我们课题组的进一步提高科研能力的强大后盾。由于最近的出色科研成果,今年我们课题组获得了竞争异常激烈的美国国家自然科学基金(NSF)提供的为期五年的CAREER研究基金和美国国立健康研究院(NIH)提供的为期三年的R15研究基金。 欢迎有相关背景(分子力学,蛋白结构模拟,量子力学,机器学习或者人工智能)并有志在计算化学与生物学的方法发展与实际应用方面有所建树的同学加入我们的团队。所有的博士研究生都会得到每年$25000生活费用。在生活消费较低的达拉斯地区,你的生活质量会有相当的保障。如果你有能力与动力做最好的科研,我们就会提供最好的发展平台供你发挥。一位今年刚刚从本课题组毕业的博士生取得了发表七篇第一作者以及五篇第二作者的科学论文的骄人成就,并成功入职谷歌位于美国加利福尼亚州本部进行高端软件开发的工作。如果有雄心壮志,你一样可以成功!我们缺的不是机遇,我们需要的是能够把握机遇的人。我们学校的要求必须有GRE与英语(托福或者雅思)成绩。GRE没有具体分数要求,托福最低80分。英语很重要,但更重要的是你追求学术与人生梦想的动力与能力!需要提醒的是,要在我们的领域里获得成功,第一需要的是你对计算科学和计算机算法与编程天生的兴趣。第二需要对自然与生命科学内在规律强烈的好奇。第三还必须耐得住寂寞和不向任何困难低头的勇气。以上三条缺一不可。

电动汽车动力性的研究论文

去买辆雷克萨斯LS600,然后问他们拿技术标准,或者干脆让他们写份《论混合动力》给你

摘要:随着我国汽车保有量的持续增长,汽车排放污染跟能源问题将会越来越严峻。现在我们国家提 摘要 倡低碳生活和可持续发展,为了响应国家的政策。我们必须寻找一种对环境零污染或低污染的汽车,而目 前公认最为理想可行的就是纯电动汽车了。而作为内燃机跟纯电动汽车的过渡产物就是混合动力汽车,混 合动力汽车已经不是什么新鲜的产物了,目前已经有很多车企生产了。在近两年,我国的车企对纯电动汽 车的热情很高,可惜都只是雷声大雨点小。大都只是处于概念车的阶段。发动纯电动汽车还有一段很曲折 艰辛的路要走。 关键词:内燃机:混合动力: 电动汽车:汽车: 关键词 内燃机 像我们这代人,对于汽车并不会感到很陌生.特别是近几年中国车市出现井喷的现象,据保 守的估计,中国现在的机动车保有量已经超过两亿.而且还保持上升的趋势,去年的产销量达 1360 万辆,首次超过美国而位居世界第一.今年 1 到 9 月份的产销已经达到去年全年的水平了, 保守估计今年的产销量将达 1700 万辆.而且在接下来的几年会稳居榜首,产销量持续增长.在 这数据中,又有多少是属于电动汽车的呢?统计数据显示是非常非常的少,几乎可以被忽视. 汽车的产销量不断的增长,这也将引起一系列的问题.内燃机技术发展到今天已经可说是 炉火纯青的地步了,想到再进一步改善是非常的困难了.我们都是知道无论是汽油机还是柴油 机,都会排放一些对大气有害的气体,如:CO HC Nox 等.虽然说排放标准不断的在提高,但是污 染还是存在的.这将跟我们提倡的低碳生活有点格格不入,因此我们就必须找出其它代替品. 就目前而言,就有新燃料发动机,如:醇燃料 氢燃料 石油气燃料 天然气燃料 太阳能燃料混合动力汽车 电动车等等.在这些新能源汽车中,纯电动汽车将是我们发展的趋势.因为其它 的,不是技术太难攻关,就是使用经济性和燃料来源困难等等.电动汽车的优点是零排放 零污 染 燃料来源方便 动力性良好等.但就目前的现状而言,电动汽车的缺点也是显而易见的, 目 前电动汽车尚不如内燃机汽车技术完善,尤其是动力电源(电池)的寿命短,使用成本高。 电池的储能量小,一次充电后行驶里程不理想,电动车的价格较贵。但从发展的角度看,随 着科技的进步,投入相应的人力物力,电动汽车的问题会逐步得到解决。扬长避短,电动汽 车会逐渐普及, 其价格和使用成本必然会降低。 现在处于内燃机跟纯电动汽车的过渡产物是HEV 混合动力汽车, 混合动力汽车的种类目前主要有 3 种。一种是以发动机为主动力,电 动马达作为辅 串联混合动力电动汽车原理。 另外一种是, 在低速时只靠电动马达驱动行驶, 速度提高时发动机和电动马达相配合驱动的“串联、并联方式” 。还有一种是只用电动马达 驱动行驶的电动汽车“串联方式” ,发动机只作为动力源,汽车只靠电动马达驱动行驶,驱 动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。 现在车市的混合动力车主要有,PRIUS 思域 凯美瑞 凯越 LS600H S400 SMART F3DM 等等. 由于我们国家提倡低碳生活,国家的政策便大力的支持发展纯电动汽车.目前几乎所有的车企都积极的响应国家的号召,如:比亚迪的 E6 奇瑞 S18 众泰 2008EV 长安奔奔 MINI 日 产的 LEAF 通用的 VOLT 等等.虽然推出的车型很多,但也只是雷声大雨点小.技术都不啥的, 而且销量也是少之又少. 电动汽车并不是现代才有的产物, 早在 19 世纪后半叶的 1873 年,英国人罗伯特·戴维 森 (Robert Davidsson) 制作了世界上最初的可供实用的电动汽车。 这比德国人戴姆勒 (Gottlieb Daimler)和本茨(Karl Benz)发明汽油发动机汽车早了 10 年以上。戴维森发明的电动汽车 是一辆载货车,长 4800mm,宽 1800mm,使用铁、锌、汞合金与硫酸进行反应的一次电池。 其后,从 1880 年开始,应用了可以充放电的二次电池。从一次电子表池发展到二次电池, 这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。在 19 世纪下半叶成为交通运输的重要产品,写下了电动汽车需求量有了很大提高。在 19 世纪 下半叶成为交通运输的重要产品,写下了电动汽车在人类交通史上的辉煌一页。1890 年法 国和英伦敦的街道上行驶着电动大客车,当时电动汽车生产的车用内燃机技术还相当落后, 行驶里程短,故障多,维修困难,而电动汽车却维修方便. 电池是电动汽车发展的首要关键,汽车动力电池难在 “低成本要求”“高容量要求”及 、 “高安全要求”等三个要求上。要想在较大范围内应用电动汽车,要依靠先进的蓄电池经过 10 多年的筛选,现在普遍看好的氢镍电池,铁电池,锂离子和锂聚合物电池。氢镍电池单 位重量储存能量比铅酸电池多一倍, 其它性能也都优于铅酸电池。 但目前价格为铅酸电池的 4-5 倍,正在大力攻关让它降下来。铁电池采用的是资源丰富、价格低廉的铁元素材料,成 本得到大幅度降低,也有厂家采用。锂是最轻、化学特性十分活泼的金属,锂离子电池单位 重量储能为铅酸电池的 3 倍,锂聚合物电池为 4 倍,而且锂资源较丰富,价格也不很贵,是 很有希望的电池。 我国在镍氢电池和锂离子电池的产业化开发方面均取得了快速的发展。 电 动汽车其他有关的技术,近年都有巨大的进步,如:交流感应电机及其控制,稀土永磁无刷 电机及其控制,电池和整车能量管理系统,智能及快速充电技术,低阻力轮胎,轻量和低风 阻车身,制动能量回收等等,这些技术的进步使电动汽车日见完善和走向实用化。我国大城 市的大气污染已不能忽视,汽车排放是主要污染源之一,我国已有 16 个城市被列入全球大 气污染最严重的 20 个城市之中。我国现今人均汽车是每 1000 人平均 10 辆汽车,但石油资 源不足,每年已进口几千万吨石油,随着经济的发展,假如中国人均汽车持有量达到现在全 球水平---每 1000 人有 110 辆汽车, 我国汽车持有量将成 10 倍地增加, 石油进口就成为大问 题。因此在我国研究发展电动汽车不是一个临时的短期措施,而是意义重大的、长远的战略 考虑。 下面是一些专家对我国发展电动汽车的看法: 锂电池大规模用于电动车还需一定时间 河南环宇集团锂电池产业技术副总工程师邓伦浩 目前国内锂电池的研究工作和国外相比,差距主要体现在电池的控制系统和电源 管理系统上。邓伦浩对记者说,现在国内对锂电池的研究处于各自开发的状态。目前,有的公司已经能 够为电 动汽车提供相应 的锂电 池配套产品,配 套的锂 电池一般能跑 200~500 公里左右。 邓伦浩告诉记者,现在国内锂电池的价格太高,电源管理系统的问题还没得到很 好地解决。电动汽车还面临充电的问题。目前,家里的一般线路不能为电动汽车锂电 池充电,必须配一个小型的专用充电器,而且充电的时间很长,很麻烦。在国外,为 了解决这一问题,一般都把充电站和加油站放在一起。现在国内的充电站还没有大规 模地建立起来。 国内锂电池研究存在三大问题 中国汽车工程学会电动汽车分会主任陈全世 陈全世告诉记者,目前国内锂电池研究存在三大问题。首先是制造的一致性问题。 由于在锂电池的制造工艺和设备上存在差距,使得国内锂电池的生产工艺参差不齐, 制造标准还达不到一致性。电动汽车所用的锂电池都是串联或并联在一起,如果一致 性问题解决不好,那么所生产的锂电池也就无法大规模应用于电动汽车。 其次是知识产权问题。目前国内在磷酸铁锂电池的研究上已经取得突破,但是由 于美国在这方面有专利,所以虽然我们在一些环节上能够自主研发,但是在知识产权 问题上,还不知如何应对。 第三是原材料的筛选问题。现在用于锂电池生产的原材料不可能全部进口,主要 还是取自国内, 但是国内的原材料要通过国际认证, 生产出的锂电池才能被国际认可, 所以在原材料认证环节上目前还存在一些问题。 大力发展电动汽车将增加能源供需紧张形势 中国国际经济合作学会经济合作部副主任杨金贵 目前中国 80%的二氧化碳排放来自燃煤,超过 50%的煤炭消费用于火力发电,而同时, 火力发电量占到总发电量的 70%以上。加之目前我国煤炭发电平均效率只有 35%,在这样 的情况下,发展电动汽车,无异于增加电力消耗,同时也就意味着增加碳排放量。随着我国 城镇化、工业化步伐的加快,电力资法律论文 源将更为紧张。而在风能、核能发电尚在发展阶段的我 国而言,大力发展电动汽车,势必将增加能源供需紧张形势,相反不利于低碳产业的发展布 局。对于政府来说,在不遗余力地支持电动汽车发展、支持相关企业开发新产品的同时,更 需要解决源头问题。以电动汽车为例,用煤炭替换石油的作为并不可取,电动汽车成为低碳 经济时代先锋的前提是解决电力资源问题,否则,前景并不乐观。 从以上各个专家的看法,可以看出我国要发展电动汽车是非常艰辛的和曲折的。但这并 不代表不可能, 只是时间问题, 只要我们攻关了那些技术难题, 电动汽车将会造福我们国民, 甚至全人类。因此,发展纯电动汽车势不可挡。

随着石油供应的日趋紧缺和环境污染的日益加剧,电动车这种以电能为动力的交通工具凭借其节能、环保的优点日渐成为业界关注的焦点[1]。20世纪80年代以来, 许多发达国家纷纷投入巨资研发电动汽车,我国的“863 计划”也已明确将电动汽车作为重点攻关项目。目前,我国电动汽车的研发水平与发达国家基本上处在同一起跑线上,在某些方面甚至超过国外[2]。2005年,我国第一代混合动力商品车通过论证和验收[3]。 法国、日本、美国、德国等都经过试验和示范运行,开发出具有商品化水平的纯电动汽车,如法国PSA 公司的标志P106 和雪铁龙AX 电动轿车,日本丰田汽车公司的RAV-4EV 电动轿车,美国通用汽车公司的EV1 电动轿车等。我国也将电动汽车的研究开发列入“八五”、“九五”国家科技攻关项目,并于1996年6月建成广东汕头国家电动汽车试验示范基地。“十五”期间,国家科技部将电动汽车项目列入国家“863”重大专项。成了资助电池、电机及其控制系统、整车控制系统以外,重点资助北京市(北京理工大学牵头)进行纯电动大客车的研发和示范运行。2005 年6 月21日由国家发改委正式批准,14辆铅酸电池纯电动公交大客车在北京公交121 路线投入商业化运行。另一个课题资助天津清源动力公司(中国汽车技术研究中心)进行纯电动轿车的研究开发和示范运行。其中有5辆纯电动轿车于2005年初首次出口到美国[4]。 虽然电动汽车具有很多优点,但是它不能取代传统的燃气动力模式,而混合动力汽车是目前新型清洁动力汽车中最具有产业化和市场化前景的车型,其发展方向是真正零排放、无污染,不消耗燃油的燃料电池车辆。现在混合动力汽车在欧美国家及日本已形成产业化[3],而国内还处于起步阶段,没有形成产业化。 2.混合动力技术的分类及原理 混合动力电动汽车(HybridElectric Vehicle,简称HEV)是将电力驱动与辅助动力(APU)结合起来,充分发挥二者各自的优势及二者相结合产生优势的车辆。辅助动力可以采用燃烧某种燃料的原动机,如内燃机、燃气轮机等或其他动力发电机组。根据混合动力系统连接方式的不同,混合动力汽车主要可以分为三种结构形式,即串联、并联和混联,它们各有优势。 串联 串联式混合动力系统示意图如图1所示。串联结构的特征是以电力形式进行复合,发动机直接驱动发电机对储能装置和牵引电机供电,电动机用来驱动车轮,储能装置起着发动机输出和电动机需求之间的调节作用。其优点是发动机的运行独立于车速和道路条件,适用于车辆频繁起步、加速和低速运行。发动机在最佳工况点附近运转,避免了怠速和低速工况,从而提高了效率,提高了排放性能。但在机械能与电能的转化过程中有效率损失,很难达到明显降低油耗的目的,目前主要用于城市大客车,在轿车中很少见。 并联 并联式混合动力系统示意图如图2所示。并联结构的特征是以机械形式进行复合,发动机通过变速并联混合动力系统示意图装置和驱动桥直接相连,电机可同时用作电动机或发电机以平衡发动机所受的载荷,使其能在高效率区域工作。但是由于发动机和驱动桥机械连接,在城市工况时,发动机并不能运行在最佳工况点,车辆的燃油经济性比串联时要差。 其中转速复合装置类似于差速器,这种结构形式在实际中很难被采用,因为这种结构需要发动机和电动机的输出转矩时刻保持相等;单轴转矩复合式车辆驱动系中机械功率的联合是在发动机曲轴输出端处实现的,变速器为单轴输入,本田Insight属于这种形式;双轴转矩复合式的机械功率的联合是在变速器的输出轴处实现的,发动机和电机采用不同的变速系统,变速器为双端输入;华沙工业大学设计的混合动力系统属于这种形,这种结构也可以实现无级变速,但是不能实现发动机输出转矩和电机输出转矩的直接叠加。 在牵引力复合式系统中,机械功率的联合是在驱动轮处通过路面实现的,具有两套独立的驱动系,可以实现全轮驱动,主要适用于SUV,丰田的THS—C系统就属于这种形式。

动力电池是电动汽车的关键技术之一.1881年特鲁夫(Gustave Trouve)制造出世界上第一辆电动三轮车时,使用的是铅酸电池.目前,仍有不少混合动力汽车和纯电动汽车采用新一代铅酸电池.近十多年来,锂离子动力电池在电动汽车生产中得到应用,越来越显示出其优越性.美国学者麦斯J.A.Mas通过大量实验提出电池充电可接受的电流定理:1)对于任何给定的放电电流,电池的充电接受电流与放出容量的平方根成正比;2)对于任何放电深度,一个电池的充电接受比与放电电流的对数成正比,可以通过提高放电电流来增大充电接受比;3)一个电池经几种放电率放电,其接受电流是各放电率接受电流之总和.也就是说,可以通过放电来提高蓄电池的充电可接受电流.在蓄电池充电接受能力下降时,可以在充电的过程中加入放电来提高接受能力.汽车动力电池的性能和寿命与很多因素有关,除了其自身的参数,如电池的极板质量、电解质的浓度等外;还有外部因素,如电池的充放电参数,包括充电方式、充电结束电压、充放电的电流、放电深度等等.这给电池管理系统BMS估计蓄电池的实际容量和SOC带来很多困难,需要考虑到很多的变量.WG6120HD~合动力电动汽车的电池管理系统是建立在SOC数值的管理上.SOC(state ofcharge)指的是电池内部参加反应的电荷参数的变化状态,反映蓄电池的剩余容量状况.这在国内外都已经形成统一认识.

高分子溶液的性质研究论文怎么写

兄弟这是我的给你用下吧。反正也毕业了,给分啊附件1:外文资料翻译译文含有非共面的2,2'-二甲基-4,4'-二苯基单元和纽结性的二苯甲撑键的高度有机可溶解的聚醚酰亚胺的合成和特征两种新的双醚酐2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯基二酐(4A)和双[4-(3,4-二羧基苯氧基)苯基]二苯甲烷二酐(4B)可以由三步反应制得。首先,由4-硝基邻苯二甲腈分别与2,2'-二甲基二苯基-4,4'-二醇和双(4-羧基苯基)二苯甲烷发生硝基取代,然后双醚四腈在碱性条件下水解和随后的双醚四酸脱水。一系列的新的高度有机可溶解的聚醚酰亚胺采用常规的两步合成法由双醚二酐和各样的二胺制得。制得的聚醚酰亚胺固有粘度在-范围内。GPC测量显示这些聚合物的数均分子量和重均分子量分别高达45000和82000所有的聚合物表现出典型的无定型衍射图样。几乎所有的聚醚酰亚胺都表现出优良的溶解性以及容易在不同的溶剂中,例如N-甲基-2-吡咯烷酮,N,N-二甲基乙酰胺(DMAC),N,N-二甲基甲酰胺,吡啶,环己酮,四氢呋喃和氯仿。这些聚合物的玻璃化转变温度在224-256℃范围内。热重分析表明这些聚合物都是稳定的,在氮气下10%重量损失点在489℃以上。等温重量分析结果说明这些聚合物在350℃的静态空气中等温老化的重量损失都在-%。具有韧性和柔性的聚合物膜可以通过其DMAC溶液浇注制得。这些膜的抗张强度具有84-116MPa,抗张模量具有-。引言芳香族聚酰亚胺由于其突出的热稳定性,因具有低介电常数而有优良的电绝缘性,对常用基材具有好的黏附性,以及卓越的化学稳定性,及其在半导体和电子封装工业领域被广泛的应用。但是由于最初的聚酰亚胺是不溶不熔的,它们在许多领域的应用受到限制。因此,目前已经进行了大量的研究来寻找新的方法来绕过这些局限性.改变聚酰亚胺回避化学结构的通用方法是引入柔性基团和/或庞大的单元到聚合物主链中。聚醚酰亚胺作为芳香族的亲核取代反应产物得到迅速发展,又成为与市场需要接轨的高性能的而且能够用注射挤出工艺制造的聚合物。GeneralElectric Co.开发并商业化的Ultem 1000就是一个重要的例子,它表现出比较好的热稳定性和良好的力学性能另外还有良好的可塑性。目前的研究主要集中在一系列新的有好的溶解性的聚醚酰亚胺的合成和特性化,主要基于包含异面的2,2'-二甲基-4,4'-二苯撑单元的4A和包含二苯甲撑纽结环的双[4-(3,4-二羧基苯氧基)苯基]二苯甲烷二酐的4B。在对位键合的聚合物链中结合2,2'-二取代的二苯撑降低了聚合物分子链间的相互影响。通过2,2'-二取代将苯环加在异面构象中,减弱了分子链间的分子间力,结晶倾向明显降低,溶解性显著提高。另外获得有机可溶性的聚酰亚胺的另一个有效途径是结合取代的甲撑键,例如异丙叉[(CH3)2C=]、六氟异丙叉和二苯甲撑单元,它们提供主链上的刚性苯环间的纽结,来提高聚合物的溶解性。聚合物主链中的纽结单元的出现降低了分子链的刚性,以至提高了聚合物的溶解性。试验发现有二苯甲撑单元的聚合物比含有异丙叉和六氟异丙叉单元的聚合物有更好的热稳定性。因此,结合异面的2,2'-二甲基-4,4'-二苯撑和纽结单元的二苯甲撑可以制成具有良好热稳定性的可溶性聚醚酰亚胺。不同的结构单元对聚合物性能的影响如溶解性、热稳定性和力学性能,这里也将讨论。实验步骤材料:原料二元醇,2,2'-二甲基-4,4'-二羟基-二苯(1A)和双(4-羟基苯基)二苯甲烷(1B)分别由2,2'-二甲基-4,4'-二氨基二苯和4,4'-二氯二苯甲烷制得。DMF,DMAC和吡啶在使用前减压蒸馏纯化,醋酐用真空蒸馏纯化。单体合成:见图12,2'-二甲基-4,4'-双[4-(3,4-二腈基苯氧基)]二苯(2A)。在100mL圆底烧瓶中加入()的2,2'-二甲基-4,4'-二羟基-二苯(1A)和(70mmol)的4—硝基邻苯二腈溶解在80ml的纯DMF中。加入无水碳酸钾(),浊液在室温下搅拌两天。然后将反应的混合物加入到500ml的水中沉析,得到浅黄固体产物,用水和甲醇重复冲洗,过滤和干燥。粗产品在乙腈中重结晶得到黄色晶体双(醚二腈)(2A),产率83%,熔点227-228℃。双[4-(3,4-二腈基苯氧基)苯基]二苯(2B)。合成2B的步骤和合成2A的步骤相似,用双(4-羟基苯基)二苯甲烷替换二元醇做反应物。同样在乙腈中重结晶两次得到棕色晶体双(醚二腈)(2B),产率86%,熔点219-220℃。2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯(3A)。在100ml的圆底烧瓶中将()的双(醚四腈)(2A)加入到含有()gKOH的40ml水/40ml乙醇溶液。固体双醚四腈在一个小时内溶解。回流持续两天直到不再放出氨气。在过滤和减压下除去剩下的乙醇后,用200ml水稀释然后用分析纯盐酸酸化。过滤双(醚四酸)沉淀用蒸馏水洗涤直到滤液澄清。产率在92%。反应物因为热环化脱水而产生的吸收峰在165℃附近(用DSC)。双[4-(3,4-二羧基苯氧基)苯基]二苯(3B)。3B的合成步骤类似3A,只是用2B替换双(醚四腈)做反应物。产物收率为91%,熔点138-170℃。2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯酐(4A)。在100ml的原地烧瓶中,将双(醚四酸)(3A)溶解于35ml冰醋酸和25ml醋酐的溶液中,回流24小时。然后,过滤混合物放置结晶一天。过滤出沉淀物再在醋酐中重结晶。过滤得到棕色晶体,用纯甲苯洗涤并在100℃下真空中烘干24h得到双(醚二酐)(4A)。产率81%,熔点217-218℃。双[4-(3,4-二羧基苯氧基)苯基]二苯酐(4B)。4B的合成步骤类似4A,只是用3B替换双(醚四酸)做反应物。获得产率84%,熔点262℃。聚合步骤:见图二。在搅拌下缓慢地将双醚二酐(4A)(,)加入到3,3',5,5'-四甲基-2,2'-双[4-(4氨基苯氧基)苯基]丙烷(5b)()的DMAC溶液中。混合物在室温下于氩气环境下反应2h形成聚醚酰亚胺酸预聚体(A-6b)。化学亚胺化可通过将3mlDMAC、1ml酸酐和吡啶加入到上述A-6b溶液中,在室温下搅拌1h升温至100℃反应3h。接着将均匀的溶液加入到甲醇中过滤,将沉析出的黄色固体用甲醇和热水洗涤,然后在100℃下干燥24h,得到聚醚酰亚胺A-7b。在浓度为温度为30℃的条件下,聚合物在DMAC中的固有粘度是。所有其他聚醚酰亚胺用采用相似步骤来制备。表征熔点用BUCHI装置的毛细管测量(型号 BUCHI 535)。红外光谱在4000-400cm‐1范围用JASCO IR-700光谱仪测量。13C和1H的核磁共振光谱由在的炭和的质子通过JEOLEX-400获得。所有的聚醚酰亚胺的固有粘度通过Ubbelohocle粘度计测得。用Perkin-Elmer2400装置作元素分析。用(GPC)凝胶渗透色谱的方法确定质均和数均分子量。四个300*水柱(105、104、103、50埃系列)由THF(四氢呋喃)冲洗液用来作GPC(凝胶渗透色谱)分析。用UV探测器(Gillon型号116)在254nm处监测,用聚苯乙烯做标样。在室温下,与胶片样品上用Ni过滤地Cu,Ka射线的X射线(30KV,20mA)衍射仪测得广角X射线衍射图样。热解重量通过流动速率为(100cm3·min‐1)的以20℃·min‐1的加热速率加热的空气或氮气的热解重量分析仪(TGA 250)来获得。差示量热分析通过Dupont的差示量热分析仪来实现,该差示量热分析仪的加热速率是20℃·min‐1。玻璃化转变温度就是它的屈服点。抗张性能通过一个载荷为10Kg的定向拉伸机测得的应力-应变曲线决定。通过ULVAC等温重量分析仪(型号7000)来获得等温重量分析。这项研究用厚度3cm的试样在应变速率为2cm·min‐1的条件下进行,在室温下用5个胶片样品(4mm宽,5cm长,厚)来测量。结果和讨论单体合成如图1所示,二醚酐由三步合成方法制得,以二元醇(1A和1B)与4-硝基邻苯二腈在室温下碳酸钾的存在下于无水的DMF中的亲核硝基取代开始。硝基取代反应最好在低温下进行,不要在高温(高于100℃)下进行。因为在高温下得到的产品(2A和2B)往往是黑色的。获得的双(醚二腈)2A和2B各自在碱性溶液中水解得到双(醚二酸)3A和3B。2A的水解反应需要进行两天。然而,2B因为其溶解性小于2A,所以2B的水解反应还要用更长的时间等到完全水解,完全水解的溶液变得澄清。在用盐酸酸化以前必需除去残留的乙醇,如果在水溶液中有未除尽的乙醇存在,往往使反应物在酸化的时候发粘,然后双(醚二酸)环化脱水得到双醚酐4A和4B。这些合成化合物的结构可以用元素分析、IR和NMR的方法的得到确认。例如,二醚酐的红外光谱显示出环酐的特征吸收峰在1837和1767cm-1,分别归属于酐基团中的C=O地对称和部对称的伸缩振动。NMR谱数据列在实验部分。NMR光谱提供了清晰的证据,在此制备的双(醚二酐)单体与预期结构是相互关联的。聚醚酰亚胺的制备聚醚酰亚胺是用常规的两步法合成的,如流程2所示。包括开环加成聚合行成聚醚酰胺酸和随后的化学环化脱水。一般聚醚酰亚胺酸的热环化脱水反应也可在减压高温(大约300℃)下进行。然而如此热环化脱水得到的产物比化学环化脱水产物的溶解性差。因为我们研究的目的就是制得有机可溶性的PEI,在此采用了化学环化脱水。聚醚酰胺酸的预聚物是通过聚醚二酐(4A合4B)缓慢地加入到二胺溶液中反应制得。然后将脱水剂如醋酐和吡啶的混合物加到获得的粘性聚醚酰胺酸溶液中得到各种PEI。这些PEI固有粘度在-(表1)。除了聚合物A-7c,这些PEI地数均分子量(——Mn)和重均分子量(——Mw)分别在32000和52000g/mol以上。以聚苯乙烯为标样采用GPC法测量,所有的聚合物膜都可以由其DMAC溶液浇注制得。所有的聚合物膜都是坚韧的、透明的、柔软的。这些膜都经受了拉力试验。聚合物表征聚合物的结晶性用广角X-射线衍射图谱检测。所有的聚合物都在2θ=8°和40°之间表现完全非晶样式,说明聚合物是非晶的,这个发现是合理的。因为异面结构2,2'-二取代苯撑单元的存在和二苯甲撑中的苯结构减弱了分子链间的分子间力,引起了结晶度的减少。一般,聚合物主链中二苯撑单元的存在导致刚性棒聚合物有高结晶性和低溶解性。尽管如此,在4,4´-二苯撑单元上结合2,2´-二甲基取代基,可以有效地降低聚合物的堆砌效应。值得注意的是聚合物链中含有对称的取代基往往带来好的堆砌。在甲撑结构中的二苯基取代,也可以看成是聚合物主链上的对称取代。尽管如此,二苯甲撑键往往以扭结构型存在,因此聚合物分子链的刚性降低了。因而结晶性也因为聚合物含有纽结链降低了。这些PEI在一些有机溶剂中的%(w/v)的溶解度也概括到了表2中。几乎所有的PEI都溶解在这些测试的溶剂中,包括N-甲基-2-吡咯烷酮、DMAC、吡啶、环己酮、四氢呋喃、甚至氯仿在室温下溶解。这些PEI有好的溶解性可以归结为柔软的醚键,异面的二苯撑和纽结键的存在。正是这些结构降低了分子间的作用力和刚性。这些PEI溶解性的对比暗示着含有二苯甲撑的PEI比含有2,2'-二甲基-4,4'-二苯撑单元的PEI有稍好的溶解性。这就说明了扭结单元对于增加聚合物的溶解性比异面的2,2'-二甲基-4,4'-二苯撑单元更有效。这些PEI地热稳定性也在表3中列出。用DSC法测得这些PEI的玻璃化转变温度(Tg's),其值在224-256℃范围内。DSC检测中没有发现熔融吸收峰,这也证明了PEI是非晶的。显而易见含有2,2'-二甲基-4,4'-二苯撑的单元比含有纽结键的聚合物显示出更高的Tg值。这是因为有二苯撑单元的聚合物比有纽结键的表现出更高的刚性。热重分析(TG)揭示了这些PEI有优良的热稳定性。它们在450℃以上仍然保持稳定。在氮气气氛下,这些聚合物有10%重量损失的温度(Td10)可以达到489-535℃。研究发现有二苯撑单元的2,2'-二甲基-4,4'-二苯撑的聚合物比那些有二苯甲撑键的单元有更高的Td10。通过对用二胺(A-C)制得的聚合物A-7a-A-7c的比较,可以发现有2,2'-二甲基-4,4'-二苯撑单元的聚合物(A-7c)比含有不对称的特丁基取代基团的聚合物(A-7a)表现出更高的Td10,含有四甲基取代的聚合物(A-7b)在这些聚合物中(A-7a-A-7c)表现出最低的Td10。和我们以前的研究中的相似发现差不多,异面结构比特丁基取代基和四甲基取代基团赋予聚合物更好的热稳定性。另外有2,2'-二甲基-4,4'-二苯撑单元的聚合物(B-7c)比含有不对称的特丁基取代基团的聚合物(B-7a)表现出更高的Td10,含有四甲基取代基的聚合物(B-7b)在这些聚合物中(B-7a-B-7c)表现出最低的Td10。在我们以前的研究中就发现异面结构2,2'-二甲基-4,4'-二苯撑在聚合物的主链上可以提高聚合物的溶解性。因为它降低了分子间作用力和刚性,就像以前的相似结论一样,在2,2'-二甲基-4,4'-二苯撑单元上结合上甲基取代基在有效范围内牺牲了聚合物少量的热稳定性但却提高了加工性。根据以前的研究结果,在苯撑单元上有四甲基取代的聚合物比没有的,不仅有效地提高了聚合物的溶解性还提高了聚合物的热氧稳定性。这些聚合物的IGA测试结果说明了异面二苯撑结构的聚合物比哪些有二苯甲撑纽结结构的聚合物有更高的热稳定性。IGA的结果说明了这些PEI有好的热氧稳定性,一般地,IGA结果与TGA数据相仿。特别地在静止的空气中350℃下进行20h的恒温老化,聚合物重量损失在-%(表3),通过重量损失值的对比发现,有2,2'-二甲基-4,4'-二苯撑单元的聚酰亚胺要比含有二苯甲撑单元的有稍高的热稳定性。2,2'-二甲基-4,4'-二苯撑的聚合物有较少的重量损失,包括PEI在空气中主链中的甲基结构被氧化生成(C=O)结构导致增重。通过热稳定性的对比,所有的这些聚酰亚胺都比我们以前报告过的聚酰亚胺热稳定性好。这些聚酰亚胺可以被称为新的高性能工程塑料。这两系列在DMAC溶液中用溶液浇注的方法得到的PEI膜的机械性能概括在表4中。这些坚韧有弹性的膜抗张强度在84-116MPa,断裂伸长率在6-12%,初始模量为-。这些膜有强而韧的物理性能,可以总结出含有2,2'-二甲基-4,4'-二苯撑单元的聚合物膜比有纽结的二苯甲撑键的强度大,这是非常合理的。在PEI中有4,4'-二苯撑单元表现出棒状结构以致聚合物链比纽结键有更高的刚性。通过对这些聚合物的机械性能的对比,聚酰亚胺A-7b-A-7c也比商业化的聚酰亚胺Ultem 1000(105MPa)有更高的抗张强度。所有这些聚酰亚胺的机械性能也必我们以前的报告中提到的要高。结论含有异面2,2'-二甲基-4,4'-二苯撑单元和含有扭结性的二苯甲撑键的两种新的双醚二酐用三步方法成功制得。一系列有适当的分子量的PEI用这些双醚二酐单体和不同的二胺制得。这些PEI可以很容易在多种有机溶剂中溶解,包括常用的有机溶剂如环己酮和氯仿。另一方面这些PEI有好的热稳定性和机械性能。因此这些新的可溶性的PEI可以被认为是新的高性能的工程塑料。这里提供的结果也说明了含有2,2'-二甲基-4,4'-二苯撑单元的聚合物比那些有扭结性二苯甲撑键的聚合物表现出更高的热稳定性和机械性能。然而,后者比前者有更好的溶解性。

指高聚物溶解在溶剂中形成的溶液。在高分子科学发展的早期,由于溶液中高分子的尺寸大小与胶体粒子的大小相似,因此高分子溶液曾一度被错误地认为是一种胶体溶液,后来很多实验证明高分子溶液是处在热力学平衡状态的真溶液,而且是能用热力学函数来描述的分子分散的稳定体系。研究高分子稀溶液的性质可以得到高分子的分子量与分子量分布、高分子在溶液中的形态和尺寸大小以及高分子与溶剂分子间相互作用等重要参数。高分子的极稀溶液的减阻作用在流体力学方面得到实际应用。高分子浓溶液在合成纤维生产中的溶液纺丝、干法纺丝,片基生产中的溶液铸膜,塑料的增塑等都有密切的关系。这方面的研究侧重在高分子溶液的流变性能与成型工艺的关系。高分子溶液的混合热、混合熵和混合自由能等热力学性质的研究和高分子在溶液中的迁移性质(包括高分子溶液的沉降、扩散和粘度)的研究都是高分子溶液基础研究的重要方面。高聚物的溶解过程高聚物的溶解比小分子化合物慢得多。溶解过程分为两个阶段:①高聚物的溶胀,由于非晶高聚物的分子链段的堆砌比较松散,分子间的作用力又弱,溶剂分子比较容易渗入非晶高聚物内部,使高聚物体积膨胀;而非极性的结晶高聚物的晶区分子链堆砌紧密,溶剂分子不易渗入,只有将温度升高到结晶的熔点附近,才能使结晶转变为非晶态,溶解过程得以进行。在室温下,极性的结晶高聚物能溶解在极性溶剂中。②高分子分散,即以分子形式分散到溶剂中去形成均匀的高分子溶液。交联高聚物只能溶胀,不能溶解,溶胀度随交联度的增加而减小。高分子溶液(特别是那些溶剂的溶解能力较差的溶液)在降低温度时往往会发生相分离,分成两相,一相是浓相;另一相为稀相。浓相的粘度较大但仍能流动;稀相比分级前的浓度更低。往高分子溶液中滴加沉淀剂也能产生相分离,高分子的相分离有分子量依赖性,因而可以用逐步沉淀法来对高聚物进行分子量的分级。高分子在溶剂中溶解度的判定在一定程度上仍可用极性相近原则来判定高分子的溶解度,即极性大的高聚物溶于极性大的溶剂,反之亦然。更精确一点的方法是通过比较高聚物和溶剂的溶度参数δ,溶度参数δ的定义是内聚能密度的平方根,它是物质凝聚态分子间相互作用能的一种量度。当高聚物和溶剂的溶度参数的差值Δδ较大时(Δδ=|δp-δS|,δp为高聚物的溶度参数,δS为溶剂的溶度参数),高分子就不易溶于溶剂中;如果高聚物与溶剂的溶度参数极为接近,则高分子容易溶于溶剂中。粗略地从目前实验得到的数据来看,对非极性溶剂来说,可以发生溶解的最大允许的Δδ值约为±,对极性溶剂来说约为±。由于分子间的相互作用和溶解过程比较复杂,因此用溶度参数来判定溶解性能仍有例外情况(见高聚物内聚能密度)。

弗洛里-哈金斯理论的晶格模型忽略了一个实际问题,即在很稀的高分子溶液中,链段的空间分布必然是非连续的,在高分子线团所在的区域链段的浓度很高,而在高分子线团之间却为纯溶剂所占据。高分子的每一个链段都占有一定的体积,在此体积中排除了其他链段进入的可能,通常称为排除体积效应,它又依赖于溶剂的性质。在良溶剂中,高分子链段优先选择溶剂分子作为近邻,使高分子的实际尺寸和排除体积增大。相反地,在劣溶剂中排除体积却减小。排除体积的理论计算是一个十分复杂的问题,但可以预期它应与相互作用参数χ有关。1950年弗洛里和.克里格鲍姆假定高分子线团在溶液中近似球形,其中链段密度按高斯函数的形式分布。他们计算了高分子稀溶液的热力学函数,并提出了一个具有温度量纲的参数 θ(常称为弗洛里温度)。在T=θ时,高分子溶液的热力学性质与理想溶液的偏差消失。 θ点可以用改变溶液的温度或改变溶剂的性质而达到。高分子在θ 溶剂中的尺寸相当于高分子链的链段间没有相斥和相吸引力时的尺寸,常称为无扰尺寸,此时,第二维利系数A2为零。

【胶体溶液――溶胶】 1、构成:分散质微粒(胶粒)――分子、离子或原子的聚焦体固态小颗粒.分散剂――――气体、液体、固体.2、特点:丁铎尔现象;胶粒带电荷(分正溶胶、负溶胶).在少量电解质作用下,生成沉淀(三角洲);正溶胶与负溶胶相互沉淀.3、应用:明矾净水 【高分子溶液】 1、高分子化合物及高分子溶液(属胶体溶液) 2、高分子溶液特点:稳定性强,黏度大 3、对溶胶具有保护作用 如血液中蛋白质对碳酸钙、磷酸钙的保护作用;蛋白银;硫酸钡合剂.

  • 索引序列
  • 分子动力学性质的研究微论文
  • 质性研究论文的例子
  • 分子动力学方面研究论文发表
  • 电动汽车动力性的研究论文
  • 高分子溶液的性质研究论文怎么写
  • 返回顶部